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Abstract—In this paper, we address the issue of automating
network configurations for dynamic network environments such
as the Internet of Vehicles (IoV). Configuring network settings
in IoV environments has proven difficult due to their dynamic
and self-organizing nature. To address this issue, we propose
a deep reinforcement learning-based approach to configure IoV
network settings automatically. Specifically, we use a collection of
neural networks to convert the observations of a communication
environment (channel power gain, cross-channel power gain,
etc.) into key features, which are then supplied to a deep Q
neural network (DQN) as input for training. Afterward, the
DQN will select the optimal network configuration for vehicles in
the IoV environment. In addition, our approach considers both
centralized and distributed training strategies. The centralized
training strategy conducts the DQN training process on a
roadside server, while the distributed training strategy trains the
DQN on vehicles locally. Through our designed IoV simulation
platform, we evaluate the efficacy of our proposed approach,
demonstrating that it can improve the quality of services (QoS) in
the IoV environments concerning reliability, latency, and service
satisfaction.

Index Terms—Internet of Vehicles, Deep Reinforcement Learn-
ing

I. INTRODUCTION

Intelligent transportation systems (ITS) integrate network
communication, computing, and sensor engineering technolo-
gies to achieve real-time automated transportation manage-
ment [1]–[3]. According to Gartner’s forecast, more than
740 000 autonomous-ready vehicles will be added to the mar-
ket in 2023 [4]. These autonomous vehicles rely on develop-
ing supporting infrastructure (specialized computer hardware,
intelligent software agents, and reliable communication chan-
nels). Internet of Vehicles (IoV) is a key network architecture
that supports communication among smart-enabled vehicles
and supporting devices (e.g., roadside units (RSUs)). The
new era of IoV has several distinct characteristics, including
large-scale support, high dynamicity, and strict quality of
service (QoS) requirements (latency, reliability, autonomy, and
efficiency, among others), which shall be considered in its
design [5]. In dynamic IoV scenarios, the communication
environment changes rapidly, presenting difficulties for packet
scheduling tasks, especially concerning strict QoS require-
ments (e.g., acceptable delay, packet delivery rate).

Deep learning-based techniques, such as deep reinforce-
ment learning, leverage deep neural networks (DNNs) to
approximate state-action value functions for solving sequential
decision-making problems in the Markov decision process
(MDP) [6]. Deep reinforcement learning techniques have been
widely adopted to solve complex problems in a variety of
domains, such as the cooperative multi-agent control [7],
communication and control of industrial Internet of Things
(IIoT) [8], autonomous IoT, and robots [9], energy-efficient
computational offloading [10], and autonomous driving [6].
For example, Ning et al. in [10] proposed a deep reinforcement
learning framework to conduct computational offloading such
that energy efficiency in IoV scenarios can be improved
considering delay constraints.

To ensure the QoS of IoV in heterogeneous and dynamic
networking environments, in this paper, we propose a deep
reinforcement learning-based approach that assists with the au-
tomation of IoV configuration. In dynamic IoV environments,
the communication links could be unreliable, significantly
affecting QoS performance. To deal with this issue, we design
a deep Q learning-based approach to reconfigure network
settings so that QoS requirements are satisfied automatically.
Specifically, our approach consists of three phases: (i) data
preparation, (ii) deep Q neural network (DQN) training, and
(iii) distribution of control. Based on how the DQN model
is trained, we consider both centralized DQN and distributed
DQN strategies. In the centralized DQN strategy, the IoV
system collects data from IoV vehicles, which is used to
train the DQN at the RSU server. Next, the DQN updates
its parameters based on the collected data during training.
Finally, the trained DQN is forwarded to the vehicles, which
automatically assists vehicles in configuring their network
settings. In the distributed DQN strategy, each IoV vehicle
trains its own DQN model and shares the learned information
with other vehicles in the network via learning aggregation to
improve accuracy. An aggregated model is stored on the RSU
server for other vehicles.

To summarize, we make the following contributions: (i)
We address the QoS issues for heterogeneous and dynamic
IoV network environments where communication links are
unstable and unreliable. We propose two deep reinforcement
learning-based strategies to automatically configure IoV net-
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working settings such that QoS in different scenarios can
be improved. (ii) We compare our proposed approach with
two other IoV network configuration strategies (i.e., random
selection and single DQN) in two classic IoV scenarios: urban
and highway areas. We conduct extensive performance eval-
uations based on our designed IoV simulation platform. Our
experimental results demonstrate that our proposed approach
can significantly increase the performance of IoV in terms of
reliability, latency, and service satisfaction.

The remainder of this paper is organized as follows: In Sec-
tion II conducts a literature review of relevant studies on IoV
communications. Section III presents the system model of IoV
communications. Section IV describes our proposed approach
with centralized and distributed model training strategies in
detail. Section V describes the evaluation of validating the
efficacy of our approach. Finally, Section VI summarizes the
paper.

II. RELATED WORK

IoV Network Architecture: The IoV is facilitated by
supporting devices inside the vehicle (e.g., cameras, sensors)
and structures outside the vehicle (e.g., buildings, RSUs). IoV
devices are interconnected through heterogeneous communi-
cation systems such as sensor networks, global positioning
systems (GPS), cellular networks, Bluetooth, radio frequency
identification (RFID), Wi-Fi, etc. Richa et al. [11] studied
heterogeneous-IoVs (HET-IoVs) and proposed the four-layer
IoV architecture, including the environment sensing layer,
heterogeneous networking layer, coordination control layer,
and application service layer. Jiang et al. [12] proposed a
measurement framework that characterizes IoV performance
for IoV, including delay, loss, throughput, and others.

QoS-aware Network Management in IoV: The perfor-
mance (i.e., QoS) of IoV, which can be characterized by
transmission delay, throughput, packet loss, bitrate, jitter,
and availability, directly affects the safety and security of
IoV applications, such as traffic management, autonomous
driving, and so on [13]. Hussain et al. [14] reviewed the
QoS challenges and issues that must be addressed to meet
users’ needs and prevent any packet loss that could lead to
catastrophic results in IoV scenarios. Hammoud et al. [15]
proposed the deployment of fog servers in federated learning
architecture to avoid QoS deterioration and secure IoV ser-
vices. To improve the QoS and securing IoV, Xu et al. [16]
utilized a real-time analysis mechanism based on the improved
cuckoo search (ICS) algorithm to predict the outage probabil-
ity (OP). Besides, Hou et al. [17] used an edge computing-
enabled software-defined IoV (EC-SDIoV) to provide low-
latency computing services through SDNs. Moreover, Zhai et
al. [18] proposed an offloading model based on fog computing
and SDNs to reduce the energy consumption of IoV.

Deep Reinforcement Learning in IoV: Due to the enor-
mous size of IoV, automated management and configuration
techniques, such as network intelligence, become the key
enablers for efficient and intelligent IoV. Deep reinforcement
learning techniques have been adopted for automatically con-
figuring smart-enabled devices and improving QoS [19]. To

be specific, Abbasi et al. [19] extensively surveyed deep
reinforcement learning schemes in the Medium Access Control
(MAC) layer to ensure QoS. Ning et al. [10] leveraged deep
reinforcement learning to conduct computational offloading
for energy efficiency considering QoS in intelligent IoV.
Likewise, Sodhro et al. [20] proposed an artificial intelligence
(AI)-enabled QoS optimization framework for IoV multi-
media communications. Moreover, Li et al. [21] proposed
an information-centric, network-based framework to integrate
IoV services.

III. SYSTEM MODEL

We consider an IoV communication network environment
of K vehicles within the communication area. Each vehicle
has a single antenna to communicate with other vehicles
or the RSU. RSUs are equipped with antennas on top of
base stations/access points deployed on the roadside. Also,
RSUs are connected to a high-performance computing server,
carrying out model training and analytics. We assume the
network connection between the RSU and the server has
sufficient network bandwidth to transmit all training data in
time reliably. To ensure that the RSU collects data effectively
without losing generality, we assume all the links between
RSU and vehicles are assigned orthogonal radio resources.

Considering that vehicles share spectrum resources while
conducting vehicle-to-vehicle (V2V) communications, we
denote the received signal-to-interference-plus-noise-ratio
(SINR) of vehicle k at channel m by γk[m] = ρk[m]Pkhk[m]

Ik[m]+σ2 ,
where γk[m] represents the SINR of vehicle k at channel m.
The Boolean variable ρk[m] indicates whether the channel
m is chosen by vehicle k. If the vehicle k chooses channel
m, we have ρk[m] = 1; otherwise, ρk[m] = 0. Denote
Pk as the transmission power of vehicle k and hk[m] as
the cross-channel power gain of vehicle k at channel m,
respectively. Also, denote σ2 as the noise power level of
the current communication environment. Finally, Ik[m], the
interference power level received by vehicle k at channel m
can be represented as, Ik[m] =

∑K
l ̸=k ρl[m]Plhl[m], which

is the cumulative interference of all other vehicles within the
communication range of vehicle k on channel m.

We assume each vehicle has several communication tasks
that must be completed within a time unit. Vehicles can
freely choose the modulation type, data rate, and transmission
spectrum to satisfy their tasks. In our case study, we assess
the QoS for a task using two factors: end-to-end delay and
packet delivery rate. End-to-end delay is the total time taken
from communication task creation to completion or task
discard. The packet delivery rate is defined as the ratio of
successfully transmitted packets to the total number of packets
sent. This definition applies to both our proposed centralized
and distributed training strategies.

To quantify the performance of communication services in
IoV, we design a QoS measure function as follows:

rtk =

{
wd∗(τt−dt

k)
τt

+
wp∗(pt

k−qt)
qt

, (dtk < τt) ∧ (ptk > qt)

0 (dtk > τt) ∨ (ptk < qt)
(1)
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Notations Parameters
τ Delay tolerance
γ SINR
m Communication channel number
Mo Modulation type
Dr Data rate
k Vehicle ID
ρ Channel Selection as boolean variable
σ Noise power level
P Transmission power
I Interference power level
h Cross channel power gain
R Reward function
r QoS measurement
t Communication task
d End-to-end delay
p Packet delivery rate
w Weight
S State
Q Q value
A Action
θ Neural network parameters
β Contribution rate of local node

TABLE I. List of key notations

Here, τt is the delay tolerance of communication task t. The
end-to-end delay of task t on vehicle k is represented by dtk.
Also, qt is the packet delivery rate tolerance of task t, and ptk
is the packet delivery rate of task t on vehicle k. Furthermore,
wd is the weight that we assign for the end-to-end delay in the
QoS evaluation function and wp is the weight that we assign
for the packet delivery rate in the QoS evaluation function.

We specifically consider vehicle communication and net-
work configuration. Based on the self-organization of VANET
and the speed of fast-moving vehicles, the network commu-
nication environment in IoV is very unstable and noisy. To
solve this problem, the IEEE proposed the IEEE 802.11p
protocol that supports vehicle-to-vehicle communication, and
we configure the IoVs based on this protocol. In detail,
based on the QoS, we optimize the selection of modulation
type, data rate, and communication channel among the possi-
ble options for IEEE 802.11p. The QoS-based optimization
problems for IoV network configuration is formulated by
max

∑
k r

t
k(i, j, k), where i ∈M (M = 1, 2, . . . ,m), j ∈Mo

( Mo = 1, 2, . . . ,mo, and k ∈ Dr (Dr = 1, 2, . . . , dr). Here,
i is the available communication channel, j is the possible
modulation type, and k is the achievable data rate.

IV. OUR APPROACH

A. Problem Space

The problem of applying machine learning techniques to
IoT is shown in Fig. 1. Here, the first dimension is the
application space, including different IoT applications (smart
transportation, smart grid, and smart city). The second dimen-
sion represents the three major categories of machine learning
techniques (reinforcement learning, supervised learning, and
unsupervised learning). The third dimension represents the
model training in a centralized or distributed manner. Given
the distributed nature of the IoV, RSUs are not always available
for vehicle connectivity (i.e., RSU not in range). Thus, we
should consider two scenarios: a centralized topology where

the RSU acts as a communication and computing center. The
other scenario is when no RSU is available, and the vehicle is
connected in a decentralized manner (i.e., communicate via
relay). To cover these two possible scenarios, we propose
two deep reinforcement learning-based strategies to conduct
model training for smart transportation applications. One uses
a centralized strategy to train the DQN, while the other uses a
distributed training strategy to train the DQN. Thus, we map
our work to the shadow region of the problem space in Fig. 1.
In the centralized training strategy, we train the DQN on an
RSU in a central location. In the distributed training strategy,
we train the DQN on vehicles locally.

Fig. 1. Problem Space for applying machine learning to IoT applica-
tions

B. Centralized Training Strategy

As shown in Fig. 2, we leverage deep reinforcement learning
and DNNs to configure the network settings in the IoV
environment automatically. The strategy consists of three key
phases: (i) Data Preparation Phase: The system generates
and collects data that train the DQN. The RSU randomly
assigns some tasks for vehicles in the covered area to generate
the training data. The vehicles collect observations of the
current communication environment and use a DNN to extract
key features. Then, the key features extracted from different
vehicles are aggregated by another DNN at the RSU server.
The aggregated features are used as the training data for the
DQN at RSU server. (ii) Centralized DQN Training Phase:
The DQN at the RSU server updates the weights of the DQN
and DNN during the training process. After several epochs
of training, the RSU forwards the current DQN and DNN
network parameters to all the vehicles in the covered area. The
vehicles use these neural network parameters to generate more
data. (iii) Local Vehicle Control Phase: The trained DQN is
forwarded to all the vehicles in the scenario as a decision
controller. The DQN then configures the network based on
observing the current communication environment.

1) Data Preparation: We assume that the RSU randomly
assigns different tasks to all the vehicles in the covered area.
The vehicles take random actions affecting the modulation
type, data rate, and selected channel to complete tasks. The
purpose of this step is to generate diverse training data. After-
ward, the vehicles record the local observation of the com-
munication environment, including the transmission power,
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Fig. 2. Centralized Automatic IoV Network Configuration Framework

current channel power gain, and the cross-channel power
gain of all channels. The kth vehicle knows the transmission
power (Pk) of itself. The kth vehicle’s current channel power
gain (hk[m]) and interference power from all other channels
(Ik[m]) can be accurately estimated by the receiver vehicle
and sent back to the transmitter vehicle. Thus, the local
observation at kth vehicle can be represented by the ordered
triple: ok = {Pk, hk, Ik}.

Because raw data from observations might be large with
many input values, transmitting raw data to the RSU is inef-
ficient and increases the computational overhead of training
DQN. To deal with this issue, as shown in Fig. 2, we use
a DNN at each vehicle to extract the key features of the
observations and only transmit the extracted features vk to
the RSU server for training the DQN. The extracted features
vk contain all relevant information, reflecting the current com-
munication environment around the kth vehicle. Another DNN
on the RSU server aggregates extracted features from different
vehicles to a central location. Thus, a complete estimation w
of the current communication environment can be obtained
by the aggregation DNN. If each vehicle only considers local
observations, it will naturally choose actions to maximize the
rewards of its tasks, which may cause other vehicles to take
similar actions to compete for limited spectrum resources.
As a result, the overall reward of the whole scenario will
not be maximized. Nonetheless, by considering the whole
communication environment, the DQN can use the set of K
sets of extracted features to determine how to maximize the
total rewards of all the vehicles in the IoV scenario.

2) Centralized DQN Training: In this phase, we train the
DQN based on the framework in Fig. 2 by using the aggregated
communication environment and extracted features of local
observations. The DQN implements a reinforcement learning
algorithm that aims to find the optimal actions to maximize the
total QoS over the K vehicles. In reinforcement learning, the
agent estimates the effectiveness of its actions by interacting
with the environment. At each discrete time slot t, after the
agent takes an action at, it drives the agent from the current
state St to another state St+1 with a transition probability p
and obtain a reward Rt+1.

In our case, the state s of the environment is the overall
combination of the communication environment w and the
set of local observations {vk}Kk=1. Recall the data preparation
phase, where the overall communication environment w is
extracted from all the local observations vk. Thus, the state
s is expressed as s = {v1, v2, . . . , vK , w}. Then, the action a
combines modulation type Mt, data rate Dr, and the selected
channel Sc. All vehicles use the same action space since they
inherit the same global model in the centralized training strat-
egy. The action a is expressed as: a = {Mtk, Drk, Sck}Kk=1.

Finally, we design the reward function for our DQN algo-
rithm, which is critical for the controller’s performance and
designed for fulfilling QoS requirements for different tasks
in the IoV environment. Thus, the reward function is the
cumulative reward of our proposed QoS measurement function
for all vehicles in the designated scenario. The reward R
can be represented as R =

∑K
k=1

∑T
t=1 r

t
k, where rtk is the

QoS measurement function that we mentioned in Section III.
Two parts construct this measurement, the end-to-end delay
tolerance of the communication and the packet delivery rate
tolerance. The reward becomes zero if the current delay
is greater than the maximum tolerance rate or the current
packet delivery rate is less than the minimum. Otherwise, the
weighted ratio of the current delay and the tolerated delay is
added to the weighted ratio of the current packet delivery rate
and the tolerance packet delivery rate. Also, K is the total
number of vehicles in the investigated scenario, and T is the
total number of tasks assigned to the vehicle.

The reinforcement learning problem is summarized as find-
ing an optimal policy π∗(a, s) that indicates the probability
of choosing the action a in the action space A at state s. To
solve the problem, we leverage the classic Q-learning scheme,
which computes the value of an action (q value) via well-
known Bellman equations. Here, the q value indicates the
expected reward returned for taking action a at state s and the
discounted cumulative reward for all subsequent states before
reaching the end state.

Mathematically, the q value can be updated by using the
following iterative equation, Q(S[t], A[t]) ← Q(S[t], A[t]) +
α[R[t+1]+ γmax

a
Q(S[t+1], a)−Q(S[t], A[t])] [22], where

α is the step-size parameter and γ is the discount factor.
Also, to choose the near-optimal action a at state s, some
exploration policies are leveraged to avoid the algorithm from
falling into the local optimal point. One of the most widely
used exploration policies is the ε-greedy policy. The ε-greedy
policy chooses the action a, which has the maximum q value
at state s with probability 1 − ε. It chooses a random action
at state s with probability ε, expressed by

A←

{
argmax

a
(s, a), probability 1− ε

random action, probability ε
(2)

Due to the exponential increase in computational complexity,
the classic Q-learning algorithm can only work with limited
state and action spaces. For large state and action spaces, a
function should be used to approximate the q value, instead
of storing all q values in a table. This can reduce the storage
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space to store all q values and estimate the q value of an
unseen state-action pair.

In our case, we adopt the DQN approach, which uses
a DNN to estimate the q value of a state-action pair. The
approximation function is represented by the network pa-
rameters θ of the DNN. The DQN also adopts ε-greedy
policy to explore the state-action space. After an action is
taken, the experience is stored in replay memory as a tuple
T = (S[t], A[t], R[t+], S[t + 1]). Within an individual time
step, a mini batch of stored experiences is sampled in a
uniform manner to train the DNN in the DQN, and update
the network parameters θ. Algorithm 1 shows the procedure
in Fig. 2 to update the network parameters.

Algorithm 1: Centralized DQN training
Input: DNN for each vehicle, Aggregation DNN, QoS-based reward
Output: DNN for each vehicle, Aggregation DNN, the optimal

policy π∗, network parameters θ
1 Initialize all parameters in DNNs and DQN model;
2 while episode i< maximum episode I & t< maximum simulation

time do
3 i ++;
4 Each vehicle collects local observations using its own DNN,

and sends the extracted features vk[t] to the Aggregated DNN;
5 The Aggregated DNN each vk[t] as input, and generates global

observation wt;
6 The DQN takes vk[t] and w[t] as input states;
7 The DQN generates action ak[t] with ε-greedy policy;
8 Each vehicle downloads the DQN model and executes the

action;
9 Each vehicle obtains the reward R[t+ 1] and new observation

ok[t+ 1];
10 Save the experience tuple data

{(ok[t], w[t]), a[t], R[t+ 1], (ok[t+ 1], w[t+ 1])} into
replay memory;

11 Sample a mini-batch of data from replay memory;
12 Use sampled data to train all DNNs and the DQN;
13 Each vehicle updates the local DNN every n steps;
14 t ++;
15 end

3) Local Vehicle Control Phase: After deploying well-
trained DQN to the local vehicles. The kth vehicle can use
the local observation ok and the extracted global features
w as inputs for its decision. As our DQN is trained while
considering the QoS of all vehicles within the covered area, the
optimal policy π∗ will maximize the cumulative QoS quantity
function. This means that our DQN is trained to find a policy
to satisfy the most QoS requirements in this scenario.

C. Distributed Training Strategy

As shown in Fig. 3, in the distributed IoV network con-
figuration automation, we train the DQN on vehicles locally,
consisting of three key phases: (i) Data Preparation Phase, (ii)
Distributed DQN Training Phase, and (iii) Local Vehicle Con-
trol Phase. As the data preparation and local vehicle control
phases are the same as what was discussed in Section IV-B,
we focus on the distributed DQN training phase in detail.

1) Distributed Training Phase: We train the DQN based
on the workflow in Fig. 3. The distributed strategy trains
the DQN on each vehicle locally. Consequently, using only
local observations to train the DQN leads to biased results
as vehicles cannot collect the global channel information. To

Fig. 3. Distributed IoV Network Configuration Automation

tackle this issue, we aggregate training models from different
local vehicles to improve the versatility and accuracy of the
DQN model.

Algorithm 2 describes the detailed procedure of realizing
this distributed training strategy. First, we initialize a global
model on the RSU, which, in addition to the sampled tuples
Tk that are sent to the kth vehicle, is transmitted to all
vehicles in the covered region. Recall that Tk is used by the
kth vehicle but has the same structure as the tuple defined
in Section IV-B2. The vehicles train this model with local
observations and update their local models.

We propose a weighted updating method using the following
policy to update the local DQN:

θ
′

k = ωθk + (1− ω)Θ. (3)

Here, ω is the update weight, θk is the set of local DQN model
network parameters, and Θ is the global DQN model network
parameters. The update weight ω lies in the unit interval,
[0, 1], representing the ratio of local network parameters to
global network parameters in the update process. The local
network parameters θk at the kth vehicle are produced by
training the local DQN model with local observations and the
tuple Tk. After updating the local DQN model for M steps,
the local nodes upload the network parameters of their local
DQN model to the RSU. The RSU updates the global DQN
model by aggregating the local parameters from each local
node by using

Θ =
∑
k∈K

βkθk. (4)

Here, βk is the local node k contribution rate to the global
DQN model. The contribution rate of local node k can be
derived via

βk = r̄k/
∑
i∈K

r̄i, (5)

where r̄k is the average reward of a local DQN model during
M steps of training. The contribution rate is the ratio of the
average reward of a local DQN model to the sum of the
average rewards of all local DQN models in the designated
scenario.
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Then, the RSU broadcasts the new global DQN model and
the new tuple to local nodes and repeats the training process.
We add part of the global channel information to the local
DQN model through this weighted update method by adopting
a partial global model.

Algorithm 2: Distributed DQN training
Input: DNN for each vehicle, Aggregation DNN, QoS-based reward
Output: DNN for each vehicle, Aggregation DNN, the optimal

policy π∗, network parameters θ
1 Initialize all parameters in DNNs and DQN model;
2 while episode i< maximum episode I & t< maximum simulation

time do
3 i ++;
4 Each vehicle collects local observations using its own DNN,

and sends the extracted features vk[t] to the Aggregated DNN;
5 The Aggregated DNN takes each vk[t] as input, and generates

global observation w[t];
6 if episode i % M==0 then
7 Global model sends global parameters Θ, random tuple Tk

to local node k;
8 Local node k updates the local DQN model using

Equation (3);
9 The local DQN generates action ak[t] with ε-greedy

policy;
10 Each vehicle obtains the reward R[t+ 1] and new

observation ok[t+ 1];
11 else
12 Local node k updates the local DQN model using a local

gradient;
13 The local DQN generates action ak[t] with ε-greedy

policy;
14 Each vehicle obtains the reward R[t+ 1] and new

observation ok[t+ 1];
15 end
16 Local nodes send local parameters θ to the global model;
17 Global model is updated using Equation (4);
18 Save the experience tuple data

{(ok[t], w[t]), a[t, R[t+ 1], (ok[t+ 1], w[t+ 1])} into
replay memory;

19 t ++;
20 end

D. Complexity Analysis

We use the basic DDQN model as our DQN architecture for
the general complexity analysis. We construct our DQN model
with full connect layers, and in DDQN architecture, we have
two identical DQN models. The computational complexity of
each training step for one DQN model is O(

∑B
b=1 Wb−1Wb),

where Wb−1 is the neural size of the b-th layer, and B is the
total number of FC layers. Since in DDQN, the target DQN
only conducts the computation during the forward propagation
and gets updated by duplicating the other DQN every few
steps, the total computational complexity of our framework
for one node is O(3I

∑B
b=1 Wb−1Wb), where I is the total

training steps for one node.
For the centralized training strategy, a DNN is trained

to extract the local observations’ key parameters, and an
aggregation DNN is trained. Considering they are all using
FC layers, similarly, the total computational complexity will be
O(3I

∑B
b=1 Wb−1Wb + 2

∑C
c=1 Xc−1Xc + 2

∑D
d=1 Yd−1Yd),

where Xc−1 is the neural size of the c-th layer in local DNN,
and Yd−1 is the neural size of d-th layer in aggregation DNN.
For the distributed training strategy, as local nodes need to con-

duct the training for DNN and local DQN, the computational
complexity is O(3I

∑B
b=1 Wb−1Wb + 2

∑C
c=1 Xc−1Xc).

V. PERFORMANCE EVALUATION

A. Methodology

We evaluate our proposed approach in two scenarios: (i)
urban scenario and (ii) highway scenario. In the urban sce-
nario, we limit the maximum speed of vehicles to 8.9 m/s
(20 miles per hour). In the highway scenario, we limit the
maximum speed of vehicles at 29 m/s (65 miles per hour). We
consider a 300 m × 300 m area with a maximum height of
50 m as the simulation area for each scenario. The simulation
ran on a PC using the Windows 10 OS, 32 GB of memory,
and an AMD 2700 CPU1. We used the simulation platform
we proposed in our prior work [23], combining OMNET++
network simulator and SUMO traffic simulator. An Extensible
Markup Language (XML) file defines any moving object’s
behavior in the IoT scenario. SUMO simulates the traffic flow,
containing source location, destination location, vehicle speed,
vehicle type, drivers’ behavior, etc. of mobile objects. The
source and destination are randomly generated. The traffic
model is the default vehicle following model in SUMO.

We use IEEE 802.11p [24] as our communication protocol
for all the vehicles in the simulated network. The total number
of vehicles in the simulation varies from 5 to 50 vehicles,
in increments of 5 vehicles. There is one RSU inside the
simulation area. We use a 10 Mhz bandwidth with a carrier
frequency of 5.9 Ghz as recommended in IEEE 802.11p. The
noise level is set to −114 dBm (dBm is power level expressed
in decibels (dB) regarding one milliwatt (mW)). We set the
maximum end-to-end delay tolerance τt to 90 ms, meaning
that a task is not completed within 90 ms, it is considered
a failure. The vehicles can choose 4 different modulation
types and 4 different data rates. The modulation type and
data rate combinations follow the standard recommendations
in IEEE 802.11p. The modulation types and data rates, and
additional simulation parameters are shown in Table II. The
action space we use in this paper is all combinations of
possible modulation types, data rates, and available channels.
Recall from Section IV-B2 that the reward function that we use
in this simulation is R =

∑K
k=1

∑T
t=1 r

t
k, where rtk is the QoS

measurement function that we mentioned in Section III. Also,
K is the total number of vehicles in the simulation scenario,
ranging from 5 to 50. T is the total number of tasks assigned
to the vehicle. We set 10 tasks for each vehicle, meaning T
varies from 50 to 500.

The specific architecture of the DNN and DQN are sum-
marized in Table III. The number of inputs for the local DNN
is 3, corresponding to power, channel power gain, and cross-
channel power gain. We use Fully Connected (FC) layers as
our hidden layers. As there is no theoretical basis to find
the optimal number of hidden layers and neurons quickly,

1Certain commercial equipment, instruments, or materials are identified in
this paper to specify the experimental procedure adequately. Such identifica-
tion is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the
purpose.
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TABLE II. Simulation Parameters

Parameter Value
Number of Users 5,10,15,20,25,30,35,40,45,50
Number of RSU 1
Carrier frequency 5.9 GHz
Bandwidth 10 MHz
Number of channels 10
Transmit Power 10 mW per 1 MHz
Noise power -114 dBm
Time constraint of IoV transmission 90 ms
Payload size [1,2,...] x 1060 bytes
Vehicle speeds 8.9 m/s, 29 m/s
Vehicle following model Urban, Highway
RSU antenna height 25 m
User antenna height 1.5 m
Modulation type BPSK, QPSK, 16-QAM, 64-QAM
Data rate 3 Mbit/s, 6 Mbit/s, 12 Mbit/s, 27 Mbit/s

we use parameter-tuning mechanisms to determine the neural
network’s structure. We chose these parameters by running
multiple simulation trials with different values in each hidden
layer. During the tuning phase, we try the range of hidden
layers from 3 to 6. We run each simulation 20 times to
determine our scenario’s optimal number of hidden layers.
Also, in each simulation run, we ran 3500 epochs. Considering
that the aggregated DNN takes all the key features extracted
from the local DNN as input, the number of inputs for the
aggregated DNN is assumed to equal the sum of all the output
quantities of each local DNN. However, the DQN uses data
that contains the local key features and aggregated global key
features for training. Thus, the number of inputs for the DQN
should be the number of outputs of aggregated DNN plus the
number of outputs of a local DNN.

We define the two baseline approaches for performance
comparison: (i) Random selection approach where each ve-
hicle randomly configures the IoV network settings without
considering the current communication environment, and (ii)
Single DQN Approach: that trains a local control DQN for
each vehicle in the IoV scenario, only using local observation
key features as input.

We investigate the performance of our proposed DQN
approach from two perspectives: (i) communication that repre-
sents how well our proposed approach addresses the automatic
network configuration problem, and (ii) learning effectiveness
that shows how long it takes the DQN to complete the training
process. From the communication perspective, considering our
proposed approach focuses on improving QoS of the entire
IoV scenario, we employ three metrics: (i) packet delivery
rate computed by dividing the number of successfully received
packets by the total number of packets sent, (ii) end-to-end
delay referring to the time taken for a packet to be sent
from the transmitter to the receiver, and (iii) task satisfaction
rate that is a qualitative measurement for identifying com-
munication service satisfaction, to compare the performance
between the random action, the single DQN, and our proposed
DQN approach. We estimate this by dividing the number of
successfully completed tasks by the total number of assigned
communication tasks. Each communication task has a different
packet delivery rate and delay requirement. Only when both
requirements are fulfilled, the task is considered satisfied;
otherwise, the task is viewed as a failure.

We use the loss function to indicate how the DQN converges

TABLE III. DNN and DQN architecture

DNN Aggregated DNN DQN
Input layer 4 K*Nd Nq+Nd

Hidden layers 3 FC layers
(16,32,16)

3 FC layers
(800,500,300)

3 FC layers
(120,240,120)

Output layer Nd Nq 160

during training. According to the q value update method
that we state in Section IV-B2, the loss can be computed
by L(θ) = [Rt+1 + γmax

a
Q(St+1, a; θ

−) − Q(St, At; θ)]
2,

where θ is the set of the network parameters of the training q
neural network. Within every few time steps, parameters are
frozen to avoid short-term oscillations. Another target q neural
network will duplicate the network parameters of the training
q neural network and store them as the parameter set θ−. By
minimizing the square error of the q value estimated by these
two deep neural networks using the stochastic gradient descent
method, we can obtain a convergent DQN after sufficient
training epochs.

B. Results

1) Centralized Training: Urban Scenario Performance:
Fig. 4 illustrates the performance of the packet delivery rate
using the two DQN approaches and the random baseline as the
number of users increases in the urban scenario. When there
are only five users in the IoV scenario, all three approaches can
achieve a high packet delivery rate, and both DQN approaches
achieve close to 100 % packet delivery rate when up to
K = 15 vehicles are present. This is because, under such a
situation, there are enough spectrum resources for all the users
to complete their communication tasks. The packet delivery
rate of the random selection approach begins to decrease when
there are 10 users present and thus is lower than the packet
delivery rates of both DQN schemes. This is because the
random selection approach cannot avoid the packet collision
problem when the number of users increases. Packet collision
occurs when two packets are transmitted simultaneously on
the same channel. The single DQN approach can handle
the collision problem better than the random approach over
the range of values for the number of users. Because the
single DQN approach leverages local observation to make
the decision, it chooses the available channel with the largest
bandwidth, only maximizing the QoS score for its own tasks.
When the number of users increases, the density of vehicles
also increases. As a single DQN is only trained through local
observations, vehicles compete for spectrum resources. When
vehicles choose to transmit the packets on the same channel,
some packets will be dropped due to high collision probability
and SINR.

Our proposed DQN approach outperforms two other base-
line approaches. The main reason is that our DQN approach
considers the QoS of the entire IoV scenario, and our DQN is
trained using the global communication key factor w. When
there are less than 15 users, our proposed DQN approach
achieves a near-perfect packet delivery rate. Even when the
number of users increases to 30, our proposed DQN approach
can maintain a packet delivery rate of about 80 %, while the
other two approaches drop to about 50 %. When there are
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Fig. 4. Packet Delivery Rate of Centralized
DQN in the Urban Scenario

Fig. 5. End-to-End Delay of Centralized
DQN in the Urban Scenario

Fig. 6. Task Satisfied Rate of Centralized
DQN in the Urban Scenario

Fig. 7. Packet Delivery Rate of Centralized
DQN in the Highway Scenario

Fig. 8. End-to-End Delay of Centralized
DQN in the Highway Scenario

Fig. 9. Task Satisfied Rate of Centralized
DQN in the Highway Scenario

Fig. 10. Loss of Centralized DQN
Approach in the Urban Scenario

Fig. 11. Loss of Single DQN Ap-
proach in the Urban Scenario

Fig. 12. Loss of Centralized DQN
Approach in the Highway Sce-
nario

Fig. 13. Loss of Single DQN Ap-
proach in the Highway Scenario

many users, the packet delivery rate of our proposed DQN
approach also drops. This is because there are not enough
network resources to support all communication tasks in such
circumstances.

Fig. 5 represents the end-to-end delay performance for three
approaches when the number of users increases. Even when
there are 50 users, our proposed DQN approach can keep
the end-to-end latency around 50 ms. Fig. 6 shows the task
satisfaction rate for all approaches when the number of users
increases. Recall that our proposed DQN approach is trained
to maximize task satisfaction to be superior to the other two
approaches concerning satisfaction rate. By combining the
results from Fig. 4 and Fig. 6, it can be seen that our proposed
DQN approach intentionally drops some packets to maximize
the task satisfaction rate. This is because we use the cumulative
QoS function of all users within the covered area as the reward
function to train DQN.

Figs. 10 and 11 show the change of DQN loss vs. the
training epochs when the number of users is 5 and the speed
of vehicles is limited to 8.9 m/s (25 miles per hour). This result
confirms the convergence of the DQN and the time taken to
reach the state of convergence. As we can see in comparing

Fig. 10 to Fig. 11, compared to the single DQN, our proposed
DQN approach has a smaller loss, a faster convergence pro-
cess, and experiences smaller fluctuations during training. This
is because our proposed DQN approach is trained with data
from different vehicles. In contrast, a single DQN approach
only relies on the data it generates, and it is difficult for a DQN
trained with partial information to learn about the surrounding
environment correctly. Thus, the overall performance of the
single DQN approach is worse than that of our proposed DQN
approach.

Highway Scenario Performance: Fig. 7 shows the per-
formance of the packet delivery rate as the number of users
increases in the highway scenario using the centralized DQN
approach. In the highway scenario, the communication en-
vironment changes more rapidly, increasing communication
difficulty in the IoV scenario. As seen in Fig. 8, all three
approaches in the highway scenario led to a lower packet
delivery rate than those in the urban scenario. When there
are 5 users, the packet delivery rate of the random selection
approach drops to around 65 %, and the packet delivery rate
of the single DQN approach drops to around 90 %. At the
same time, our proposed DQN approach only drops 2 % for
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Fig. 14. Packet Delivery Rate of
Distributed DQN in the Urban
Scenario

Fig. 15. End-to-End Delay of Dis-
tributed DQN in the Urban Sce-
nario

Fig. 16. Task Satisfied Rate of
Distributed DQN in the Urban
Scenario

Fig. 17. Loss of Distributed DQN
Approach in the Urban Scenario

Fig. 18. Packet Delivery Rate of
Distributed DQN in the Highway
Scenario

Fig. 19. End-to-End Delay of Dis-
tributed DQN in the Highway
Scenario

Fig. 20. Task Satisfied Rate of
Distributed DQN in the Highway
Scenario

Fig. 21. Loss of Distributed DQN
Approach in the Highway Sce-
nario

the packet delivery rate.
Fig. 8 illustrates the end-to-end delay performance for the

centralized DQN approach and the two baseline approaches in
the highway scenario. The random selection approach reaches
the 90 ms tolerance limit at 25 users, and the single DQN
approach reaches the tolerance limit at 40 users. In contrast,
our proposed approach can keep the end-to-end delay at 50 ms
when there are 50 users in the IoV scenario. Finally, as shown
in Fig. 9, our proposed DQN approach drops around 20 % for
the task satisfaction rate with 50 users.

Figs. 12 and 13 show the change of DQN loss as the train-
ing epochs increase when there are 50 users and the vehicle
speed is limited to 29 m/s (65 miles per hour). Comparing
Fig. 10 to Fig. 12, we can see a steady drop in the loss
until 2500 training epochs for the proposed centralized DQN
approach, with convergence behavior persisting after 3500
training epochs. In contrast, after 3500 training epochs, the
single DQN approach fails to achieve convergence. This is
because the volatility of the environment hinders the DQN’s
capacity to estimate the transition probability with only partial
information, as we discussed in Section IV-B2.

2) Distributed Training: Urban Scenario Performance:
Fig. 14 shows the performance of the packet delivery rate
as the number of users increases in the urban scenario. Our
approach with the distributed training strategy outperforms
the random selection approach and the single DQN approach.
The performance of the distributed training strategy is slightly
better than the centralized training strategy.

Fig. 15 illustrates the performance of the end-to-end delay
for all approaches in the urban scenario. With fewer than
20 users, centralized and distributed DQN approaches have
similar average delays. When there are more than 20 users,
our distributed DQN approach has a smaller delay than the
centralized DQN approach. Specifically, when there are 25
users, the distributed DQN approach has an average delay

of 2 ms less than the centralized DQN. This gap gradually
increases to about 10 ms as the number of users grows. Also,
Fig. 16 illustrates the average task satisfaction rate of our
distributed DQN approach in the urban scenario. When there
are between 20 and 45 users, our distributed DQN has a higher
average task satisfaction rate than the centralized DQN. With
50 users, it achieves almost the same task satisfaction rate as
the centralized DQN results shown in Fig. 7.

Fig. 17 shows the result of training and the evolution of
DQN loss for the distributed DQN approach in the urban
scenario. Compared with the centralized DQN, the loss of the
distributed DQN drops faster in the early stages of training.
Around 250 training epochs, the loss of the distributed DQN
approach drops more slowly, but the final average loss of the
distributed DQN is slightly smaller than that of the centralized
DQN. This is because the distributed DQN has multiple local
nodes to train the DQN simultaneously. Thus, there is an
advantage in the early exploratory stage of the training process.
When the loss drops to a certain level, because each local
node’s training set is different in updating the global model,
the gradient drops in different directions, canceling parts out.
As the distributed strategy uses more machines to train the
DQN, the finalized DQN model is more accurate.

Highway Scenario Performance: Fig. 18 shows the per-
formance of the packet delivery rate as the number of users
increases in the highway scenario when we use the distributed
DQN. Unlike the centralized DQN, in a volatile environment,
the distributed DQN does not significantly reduce the per-
formance of the packet delivery rate. This is because the
simultaneous training of multiple local DQN models makes
the global model more versatile initially, so it can quickly
stabilize even in a volatile environment. Compared with the
results in Fig. 14, the packet delivery rate only drops 1 % when
the number of users reaches 50.

Fig. 19 illustrates the end-to-end delay performance of our
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approach, with the distributed DQN and the two baseline
approaches in highway scenarios. Our approach with the
distributed DQN can keep the end-to-end delay at 45 ms,
which is 5 ms lower than the centralized DQN with 50 users
in the IoV scenario. As shown in Fig. 20, with 50 users, the
average task satisfaction rate of the distributed DQN in the
highway scenario is about 6 % lower than that in the urban
scenario. Nonetheless, in the highway scenario, the average
task satisfaction of the distributed DQN is still 3 % higher than
the centralized DQN. Fig. 21 shows the training evolution of
DQN loss for the distributed DQN in the highway scenario.
Due to rapid environment changes in the highway, the loss
value of the DQN model drops slower compared to the urban
scenario. Nonetheless, the distributed DQN can still reach
convergence after 3500 training epochs.

VI. FINAL REMARKS

This paper proposed a deep reinforcement-based approach
with centralized and distributed training strategies for au-
tomating IoV network configurations. The centralized training
strategy suits road sections with considerable server computing
power, such as those covered by RSU. The distributed training
strategy is suitable for road sections where RSU cannot be
selected and only surrounding vehicles are available. In the
centralized DQN strategy, we used local DNNs on vehicles
to convert local observations into key communication fea-
tures. Next, the aggregation DNN on the RSU server takes
all the key features from different vehicles and aggregates
them into a global communication environment. Afterward,
the RSU server trains the control DQN using the global
communication environment and local observation features.
Finally, all vehicles in the communication area download the
trained DQN as the network configuration controller. In the
distributed DQN strategy, we designed a weighted update
method to aggregate the local DQN models trained by each
IoV vehicle, improving the DQN models’ accuracy. Based on
local observations and the global communication environment,
the control DQN automatically generates the optimal network
configurations, considering the QoS for the entire IoV sce-
nario. The evaluation results show that the centralized DQN
and distributed DQN strategies have desirable performance
concerning packet delivery rate, end-to-end delay, and task
satisfaction rate on two classical IoV scenarios.
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