
Structure-Aware Graph Neural Network Based Deep Trans-
fer Learning Framework For Enhanced Predictive Analytics
On Diverse Materials Datasets

Vishu Gupta1, Kamal Choudhary2,3, Brian DeCost2, Francesca Tavazza2, Carelyn Campbell2,

Wei-keng Liao1, Alok Choudhary1, Ankit Agrawal1,∗

1Department of Electrical and Computer Engineering, Northwestern University

2Material Measurement Laboratory, National Institute of Standards and Technology,

Gaithersburg, MD,20899, U.S.A.

3DeepMaterials LLC, Silver Spring, MD 20906, U.S.A.

*Correspondence and requests for materials should be addressed to Ankit Agrawal

(email: ankitag@eecs.northwestern.edu).

Modern data mining methods have demonstrated effectiveness in comprehending1

and predicting materials properties. An essential component in the process of2

materials discovery is to know which material(s) will possess desirable properties.3

For many materials properties, performing experiments and density functional4

theory computations are costly and time-consuming. Hence, it is challenging5

to build accurate predictive models for such properties using conventional data6

mining methods due to the small amount of available data. Here we present a7

framework for materials property prediction tasks using structure information8

that leverages graph neural network-based architecture along with deep-transfer-9
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learning techniques to drastically improve the model’s predictive ability on di-10

verse materials (3D/2D, inorganic/organic, computational/experimental) data.11

We evaluated the proposed framework in cross property and cross materials class12

scenarios using 115 datasets to find that transfer learning models outperform the13

models trained from scratch in 104 cases, i.e., ≈ 90 %, with additional benefits14

in performance for extrapolation problems. We believe the proposed framework15

can be widely useful in accelerating materials discovery in materials science.16

Introduction17

Accurate materials property prediction using crystal structure occupies a primary and often18

critical role in materials science, particularly when screening through a near-infinite space of19

candidate materials for desirable materials performance. Upon identification of a candidate20

material, one has to go through either a series of hands-on experiments or intensive density21

functional theory (DFT) calculations which can take hours to days to even months depending22

on the complexity of the system. Hence, the ability to accurately predict the properties of23

interest of the material prior to synthesis can be extremely useful to prioritize available24

resources for simulations and experiments, which can significantly accelerate the process of25

materials exploration and discovery. Owing to significant advances in materials theory 1–3
26

and computational power, it has become possible to compute several materials properties27

of a compound using DFT. This has led to the creation of large DFT databases 4,5 which28

when combined with various advanced data mining techniques have extensively contributed29
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to enhanced property prediction models 6–13 and catalyzed the development of the field of30

materials informatics 14–20.31

Since the size of data available for training the model has a significant impact on the32

quality of the predictive models 21–23, reliable and accurate models are still limited to a33

few selected materials properties that are relatively easy to compute. Several works have34

attempted to improve the performance of the model for small datasets 24–28. However, the35

quality of the prediction for these studies rely on the materials property specific feature36

engineering performed prior to training the model, making it less applicable for generalized37

use across various properties. Alternatively, transfer learning (TL), an advanced data min-38

ing technique is often applied for scarce data problems which utilizes the knowledge learned39

from a large collection of historical data 29–35. For instance, it can use the knowledge of a40

model for a given property trained on a large DFT dataset to build a model of the same41

property but on a small experimental dataset. However, the absence of a large collection42

of historical data for most of the materials properties prohibits the broad application of43

this same-property transfer learning, i.e., where both source and target properties are the44

same. Gupta et al. 36–38 attempt to address this by introducing cross-property transfer learn-45

ing, which allowed training models on target properties for which corresponding big source46

datasets may not be readily available. However, the models were confined to only taking47

composition as input. Although composition-only based predictive models can be helpful for48

screening and identifying potential material candidates without the need for structure as an49

input, they are by design not capable of distinguishing between structure polymorphs of a50
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given composition, which would end up being duplicates in the data, and thus would need51

to be removed before ML modeling. This prevents us from applying transfer learning in52

cases where the datasets contain large amounts of structure polymorphs, and the removal of53

duplicate entries might result in significantly less data available for model training. It might54

also prevent the implementation of cross materials class transfer learning, thereby limiting55

the application of transfer learning to the same materials class only. Thus composition-based56

models may have limited applicability in the materials discovery process, as structure in-57

formation is critical to define the material and to perform DFT computations and further58

experiments for validation. Further, composition-only based models could potentially have59

substantial errors in the predicted values as compared to ground truth, as different structure60

polymorphs of a given composition can have drastically different properties. These short-61

comings of models trained on composition-based inputs can be mitigated by incorporating62

structure-based inputs, and hence structure-based modeling presents bigger opportunities63

than composition-based modeling to advance the discovery process in the field of materials64

science.65

In this work, we present a framework that combines advanced data mining techniques66

with a structure-aware graph neural network (GNN) to improve the predictive performance67

of the model for materials properties with sparse data. The overall workflow of the pro-68

posed framework is shown in Figure . Here, we first apply a structure-aware GNN-based69

deep learning architecture to capture the underlying chemistry associated with the existing70

large data containing crystal structure information. The resulting knowledge learned is then71
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transferred and used during training on the sparse dataset to develop reliable and accurate72

target models. For simplicity, we call the large body of available data as the source dataset,73

the model trained on the source dataset as the source model, the sparse data as the target74

dataset, and the model trained on the target dataset as the target model. The transfer of75

information can be performed by either fine-tuning or feature extraction methods. Fine-76

tuning uses the weights from the pre-trained model as the preliminary weight initialization77

for the network, which are further refined using the target dataset. In the feature extraction78

method, we treat the pre-trained model as a feature extractor to extract robust features for79

the target dataset and use them to build the target model using representation learning. In80

this work, we use structure-aware GNN-based model, ALIGNN 39 as the source model archi-81

tecture, as it has been shown to significantly outperform several other contemporary models82

(SchNet 40, CGCNN 41, MEGNet 31, DimeNet++ 42) on materials property prediction task83

across a wide variety of datasets (MP 4, QM9 43, JARVIS 5) with upto 52 solid-state and84

molecular properties of different data sizes using crystal structure information as the model85

input. Interested readers can refer to the publication 39 for more details. We implement86

fine-tuning based TL for ALIGNN and design a ALIGNN-based feature extractor for feature87

extraction based TL using atom, bond, and angle based features. Therefore, all the models88

developed in this work are structure-aware which facilitates better screening and identifi-89

cation of the potential material candidates, making it easier for the domain scientists to90

perform follow-up DFT-computations and experiments, thereby saving time and resources91

in the process of future materials discovery. We compare models obtained using the proposed92
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framework with models trained from scratch (SC). Note that the proposed framework can93

be easily adapted to the ever-increasing datasets and ever-advancing data mining techniques94

to improve the models further. The significant improvements gained by using the proposed95

framework are expected to be useful for materials science researchers to more gainfully uti-96

lize data mining techniques to help screen and identify potential material candidates more97

reliably and accurately for accelerating materials discovery.98

Results99

Datasets We use nine datasets of DFT-computed and experimental properties in this work:100

Materials Project (MP) 4, Joint Automated Repository for Various Integrated Simulations101

(JARVIS) 3D with 46 properties and 2D with 32 properties 5, Flla 44 with three properties,102

Dielectric Constant (DC) 45 with five properties, Piezoelectric Tensor (PT) 46 with two prop-103

erties, Experimental Formation Energy (EFE) 47 with one property, Kingsbury Experimental104

Formation Energy (KEFE) 48 with one property, Kingsbury Experimental Bandgap (KEB) 49
105

with one property, and Harvard Organic Photovoltaic Dataset (HOPV) 50 with 24 properties.106

MP dataset was downloaded from 39, JARVIS-3D (https://figshare.com/collections/107

ALIGNN_data/5429274), JARVIS-2D (https://ndownloader.figshare.com/files/26808917)108

and HOPV (https://ndownloader.figshare.com/files/28814184) from their respective109

figshare links and the rest of the datasets were obtained using Matminer 51.110

A model trained on the formation energy of the MP dataset 39 is used as the source111
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model to perform fine-tuning and feature extraction based transfer learning as formation112

energy has shown to lead to meaningful representations from large source datasets 36 which113

can then be applied during the model training on the smaller target datasets to improve114

their predictive performance. The rest of the datasets are used to perform target model115

training followed by materials property prediction and evaluation. The target datasets are116

randomly split with a fixed random seed into training, validation, and holdout test sets in117

the ratio of 80:10:10. The data size for every materials property in each of the datasets are118

shown in Supplementary Table 1, 2 and 3, and modifications made to some of the target119

dataset’s materials properties to suit the model input are shown in Supplementary Table 4.120

We use mean absolute error (MAE) as the primary evaluation metric for all models. We also121

incorporate a ‘Base’ model, which always uses the average property value of all the training122

data provided to it as the predicted property of a test compound as a naive baseline for123

comparison with scratch (SC) and transfer learning (TL) methods. Note that due to the124

large number of materials properties investigated in this work and the limited computational125

resources, we do not investigate the aleatoric uncertainty caused by random initialization of126

the models.127

ALIGNN-based Feature Extractor We use a structure-aware GNN-based architecture,128

ALIGNN 39 as our base architecture for training the source models, performing transfer129

learning using fine-tuning method, and extracting structure-based features, as it has shown130

to significantly outperform other known GNN models 31,40–42,52 for materials property pre-131

diction across a wide variety of datasets with different data sizes 39 using crystal structure132
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information as the model input. For the initial set of input features used to train ALIGNN,133

please refer to the publication 39. To extract structure-based features from ALIGNN, we134

design a ALIGNN-based Feature Extractor, which is shown in Figure .135

The structure file containing information on lattice geometry and the ionic positions136

of a compound is divided into atom, bond, and angle based features before feeding into137

ALIGNN-based Feature Extractor where we perform feature extraction. As the graph neu-138

ral network (ALIGNN) used for extracting features comprises of an intricate arrangement139

of layers, simply extracting features from every layer would yield nearly 100 variations of140

possible features without any definite meaning. If each of these sets of features is used as141

model input to perform deep learning based model training, it will make the entire process142

too costly and time-consuming. Hence, we define several analytical checkpoints, mainly af-143

ter the ALIGNN layer and GCN layer, each containing two edge-gated graph convolution144

layers 53 and one edge-gated graph convolution layer respectively to extract features instead145

of extracting features from every layer in order to design a more generalized mechanism for146

performing feature extraction based TL, which is both meaningful as well as helps save time147

and resources to carry out the model training for the proposed framework. After performing148

feature extraction from the pre-defined analytical checkpoints, we obtain 9 sets of atom-149

based features, 9 sets of bond-based features and 5 sets of angle-based features, each with a150

different 256-vector representation of the compound. We also test the effect of features on151

the performance of the model by combining atom-bond and atom-bond-angle features from152

the same checkpoint. Moreover, as it is known that features extracted from the last layer153
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of a given architecture are also helpful when performing transfer learning (also known as154

TL based on freezing method 54), we also combine the last set of atom, bond, and angle-155

based features (called atom-bond-angle features(last)) to see its effect on the performance.156

Note that we do not try all possible combinations of atom, bond and angle based features157

extracted from different checkpoints in order to facilitate further generalizability of the work-158

flow. Due to the nature of the source model architecture, all the features extracted from the159

feature extractor are structure aware. For a detailed explanation of the pre-processing of the160

structure-based features associated with the feature extractor, please refer to the methods161

section. Next, we perform model training using the above-defined set of features as input162

for the deep neural network where we use a 17-layered neural network comprising of stacks163

of fully connected layers and ReLU as the activation function inspired from 21,22,55 as the164

base architecture and formation energy of JARVIS-3D dataset as the materials property for165

property prediction task, the results of which are shown in Table 1. In this work, we use a166

very basic deep neural network to perform model training on the extracted features to see167

the potential of the extracted features to predict the materials properties.168

Table 1 shows that, in general, feature representations containing structure-aware atom-169

based features tend to perform better as compared to only bond or angle-based features.170

Moreover, the combination containing the last set of the atom, bond, and angle-based fea-171

tures, called atom-bond-angle features(last), performs the best among the 38 sets of features172

used for the analysis. Hence, for the rest of the analysis, we only atom-bond-angle fea-173

tures(last) as the feature set to perform feature extraction based TL for generalizability.174
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Moreover, we use the model with the least validation error only (among fine-tuning and175

atom-bond-angle features(last) based TL models) to perform model testing on the holdout176

test set to have a fair comparison with the SC model, i.e., both the TL and SC models look177

at the holdout test set only once during testing.178

JARVIS-3D Database Here, we demonstrate the performance of TL models on different179

target materials properties in the JARVIS-3D dataset. We compare the performance of180

TL models with the SC models, i.e., ALIGNN trained directly on the target dataset from181

scratch. Table 2 presents the prediction accuracy of the best SC and best TL model on the182

test set for each of the 48 target properties.183

Table 2 indicates that TL models outperform the SC models in 42/46 cases, i.e., in ≈184

91 % of the cases. We observe higher percent error improvement in the TL model for materials185

properties with less number of data points (below ∼19000 data points). Supplementary186

Table 5 shows that among the TL models, fine-tuning based TL model performed the best187

for 27/42 target properties, and feature extraction based TL model performed the best for188

15/42. The results illustrate the benefit of using the proposed framework even when the189

materials properties of the source datasets and target datasets are different using structure-190

based features as model input. We believe this is because the source model was able to learn191

and extract useful and widely-applicable features during the model training on the source192

data.193
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Other DFT-based Databases In the previous section, we only used a single DFT-computed194

dataset to perform the model training using the proposed framework to improve the perfor-195

mance of the target model. However, as various DFT-computed datasets are calculated using196

different computational settings and can show significant discrepancies across each other 56,197

these differences may affect the performance of the target model when applying TL. Hence,198

here we investigate the effect of using the same source model trained on the formation energy199

of MP dataset on other small DFT-based databases.200

Table 3 indicates that TL models outperform the SC models in 10/10 cases, i.e., in201

100 % of the cases. Supplementary Table 6 shows that among the TL models, fine-tuning202

based TL model performed the best for 2/10 target properties, and feature extraction based203

TL model performed the best for 8/10. It is interesting to see that on smaller DFT databases,204

not only the feature-extraction based TL gives the more accurate model for a large fraction205

of evaluated properties, but the best TL model is also quantitatively much more accurate206

than the best SC model, underscoring the power of structure-aware feature-extraction based207

TL for small datasets.208

JARVIS-2D Database In the previous sections, we used different DFT-computed datasets209

containing 3D materials to perform the model training using the proposed framework to210

improve the performance of the target model. However, there also exist a class of materials211

that exhibit plate-like 2D shapes whose physical and chemical properties may differ in nature212

from that of 3D materials. Hence, here we investigate the effect of using the same source213
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model trained on 3D materials dataset with TL to build target models on datasets containing214

2D materials. Table 4 presents the prediction accuracy of the best SC and best TL model215

on the test set for each of the 34 target properties in JARVIS-2D database.216

Table 4 indicates that TL models outperform the SC models in 27/32 cases, i.e., in217

≈ 84 % of the cases. As most of the materials properties have a small number of data points,218

we observe even larger improvement in the performance of the TL model. Supplementary219

Table 7 shows that among the TL models, fine-tuning based TL model performed the best for220

5/27 target properties, and feature extraction based TL model performed the best for 22/27.221

The results demonstrate that our proposed framework is able to improve the performance of222

the predictive model even when the source model trained on 3D materials is applied to 2D223

materials across different materials properties.224

Other Materials Class Data So far, we have observed the advantages of using the pro-225

posed framework on a variety of materials properties from different DFT-computed datasets226

of crystalline solids where TL models typically outperform SC models. However, as there are227

different classes of materials available, it would be interesting to see if the knowledge learned228

from one class of materials can be helpful in building a more accurate model on another class229

of materials. Hence, in this section, we explore the effectiveness of our proposed framework230

by applying it on datasets comprised of molecular properties.231

Table 5 indicates that TL models outperform the SC models in 22/24 cases, i.e., in232

≈ 92 % of the cases. We also observe for some specific materials properties, improvement233
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in the performance is always very little such as scharber jsc, scharber pce, and scharber234

voc. It would be interesting to see if it is possible to analyze and quantify possible relations235

between materials properties from different materials classes which can lead to possible236

improvement in the performance of the target model for cross-property transfer learning237

scenarios in future work. Supplementary Table 8 shows that among the TL models, fine-238

tuning based TL model performed the best for 7/22 target properties, and feature extraction239

based TL model performed the best for 15/22. It is quite encouraging to observe that the240

proposed TL models outperform the SC models even when using properties from another241

materials class as the target properties for most of the cases. This shows that the ALIGNN242

model is able to successfully and automatically capture relevant atom, bond, and angle based243

domain knowledge features from source data and effectively and appropriately apply that244

information for building improved predictive models for a variety of target properties on245

small target datasets across different materials classes using the proposed structure-aware246

TL framework.247

Experimental Data Here, we demonstrate the performance of our proposed framework on248

experimental datasets with formation energy and band gap as materials properties.249

Table 6 indicates that TL models outperform the SC models in 3/3 cases, i.e., in 100 %250

of the cases. Supplementary Table 9 shows that among the TL models, fine-tuning based251

TL model performed the best for 1/3 target properties, and feature extraction based TL252

model performed the best for 2/3. It is very encouraging to observe the improvement in253
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performance not only for computational datasets but also for experimental datasets. This254

along with the other results demonstrates that the proposed framework can significantly and255

consistently help improve the prediction of the materials properties across various domains256

and classes, thereby potentially saving time and resources in the process of future materials257

discovery.258

Discussion259

In this paper, we presented a framework that combines structure-aware GNN architecture260

with advanced data-mining techniques to build a powerful source model whose information is261

then used to build significantly and consistently accurate target models on various materials262

properties from smaller datasets for enhanced materials property prediction across various263

domains and materials classes. To show the benefit of the proposed approach, we built264

source models using a structure-aware GNN-based architecture called ALIGNN on the MP265

dataset by using only formation energy as the source materials property. This trained model266

was then used to perform transfer learning on 115 different dataset-property combinations267

to find that the proposed framework yields highly accurate and robust models even when the268

source property and target property are different, which is expected to be especially useful269

in building predictive models for properties for which big datasets are not available. We270

compare the performance of the TL models with ALIGNN model trained from scratch.271

To check the robustness of the proposed framework even further, we perform empirical272
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and statistical analysis to examine the performance difference between SC and TL models.273

First we describe empirical analysis, where we perform training size based and extrapolation274

based analysis using formation energy as materials property (as it is one of the most studied275

property) from JARVIS dataset. For training size based analysis we perform model training276

with different training data size using the same test set (10 % of the total data size) to277

create a learning curve with prediction error as a function of the training set size. Figure278

shows that TL model outperform SC model for all the training sizes for formation energy279

prediction.280

For extrapolation based analysis, we divide the whole dataset into different splits, where281

data points corresponding to the bottom 10 % of formation energy values were set aside as282

the ‘Extrapolation test set’, and the remaining data was divided into training, validation,283

and test split (as ‘Interpolation test split’). The lower values for formation energy indicate a284

more stable compound, and it is desirable to have a model that can predict the lower values285

accurately and even extrapolate. The scatter plot of the prediction error for ‘Extrapolation286

test set’ and ‘Interpolation test set’ is shown in Figure . It shows that the best TL model (in287

this case, fine-tuning based TL model) performs better as compared to the best SC model288

for both the test splits.289

Next, we perform statistical analysis where we perform uncertainty and statistical sig-290

nificance analysis using different materials properties. For uncertainty analysis, we perform291

9-fold cross-validation (as the datasets were divided into 8:1:1 ratio) for SC and proposed292
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TL model with the best modeling configuration using formation energy and bandgap (as293

they are widely studied materials properties) of JARVIS 3D, JARVIS 2D, and Experimen-294

tal datasets. Supplementary Table 10 shows the distribution of performance for the models295

across different train/test splits, where we observe that TL outperforms SC in terms of MAE296

for all six cases. Additionally, to see if the observed MAE is statistically distinguishable from297

one another, we perform a corrected resampled t-test 57 and obtain p-value<0.01 for all cases.298

This shows the MAE obtained using the proposed TL model is statistically distinguishable299

from the MAE obtained using the SC model at α=0.01. For statistical significance analysis,300

we estimate a one-tailed p-value to compare the test MAEs obtained on 115 target datasets301

(out of which TL models outperformed SC models on 104 target datasets) in order to see302

if the observed improvement in the accuracy of TL models over SC models is significant303

or not. Here, as we are dealing with different properties obtained from different datasets,304

whose differences in MAE may not be directly comparable 58, we use the Signed Test 59 to305

estimate the one-tailed p-value. Here, the null hypothesis is ‘TL model is not better than306

the SC model’ and the alternate hypothesis is ‘TL model is better than the SC model’. Af-307

ter performing the statistical testing using a sign test calculator 60, we get the p-value <308

0.00001, thus rejecting the null hypothesis at α=0.01. This suggests that the difference in309

test MAE between SC and TL models is unlikely to have arisen by chance, and thus we can310

infer that in general the proposed TL models perform significantly better than SC models.311

Additionally, we train ALIGNN on multiple materials properties simultaneously for both the312

source and target models to examine its performance as compared to training the source and313
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target models with just a single property, as performed in this study. We use the formation314

energy and bandgap as the materials properties where the source model is trained on the315

MP dataset, and the target model is trained on the JARVIS 3D dataset. Supplementary316

Table 11 shows the test MAE of the SC model and proposed TL model when the source and317

target models are trained on single and multiple materials properties. When training the318

model on single materials property, we observe that using the corresponding source model319

as well as formation energy as the source property helps improve the performance of the320

model. When training the model on multiple materials properties, we observe a decrease in321

model accuracy for formation energy and negligible difference in accuracy for bandgap. This322

suggests that training models on multiple materials properties simultaneously for both the323

source and target datasets is not beneficial for improving the accuracy of the model.324

We also observe that out of 115 materials properties analyzed in our work, the SC325

model performed the best for 11 properties, fine-tuning based TL model performed the best326

for 42 properties, and feature extraction based TL model performed best for 62 properties327

(Supplementary Figure 1). We observe that in general, fine-tuning based TL models perform328

better for larger target datasets, and feature extraction based TL models perform better for329

smaller target datasets, which is consistent with a previous study on composition-based330

cross-property TL 36. Additionally, we plot the percent error improvement of the TL model331

against the SC model as a function of dataset size with a histogram in Supplementary Figures332

2 and 3 and observe larger improvement in the model accuracy for smaller datasets as com-333

pared to larger datasets. The mean±standard deviation, 1st quartile, median, 3rd quartile,334
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minimum and maximum percent error improvements are -11.95±20.23, -15.16, -5.48, -2.54,335

-96.09 and 34.97 respectively. Although we only used formation energy as the source material336

property to train the feature extractor (source model) and a basic deep neural network to337

build target models using the extracted features, feature extraction based TL was found to338

perform better for more number of materials properties as compared to fine-tuning based TL339

for small datasets. This shows the powerful ability of the feature extractor to learn relevant,340

robust, and versatile sets of features that can be leveraged even with relatively simple data341

mining techniques, thereby providing flexibility and interoperability. We also observe that342

transfer learning works not only for classical quantities such as Deltae (5.25%) but also for343

electronic properties such as bandgap (6.19 %) equally well. The TL-based improvements344

are also mostly isotropic, e.g., improvements in Meps (x,y,z) components are similar. While345

some properties like PMDiEl show substantial improvements, the underlying reasons for this346

remain unclear. A potential future utility could involve a GNNExplainer-like tool 61 for347

ALIGNN architecture. Hence, the proposed method can help improve the robustness and348

accuracy of the target model on small datasets by incorporating the rich set of hierarchical349

features that can be learned using the ever-increasing data and ever-improving data mining350

techniques. The proposed framework is thus flexible and can leverage state-of-the-art data351

mining techniques to improve upon the performance and can be applied to other materials352

properties across various domains and materials classes for which enough source data may353

not be available. Although transfer learning is not always effective for all kinds of mate-354

rials properties with varying data sizes, we observe that the benefit of transfer learning is355
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more for materials properties with smaller number of data points, transferring knowledge356

from periodic (e.g., crystalline) to non-periodic (e.g., molecular) properties, i.e., performing357

cross materials class transfer learning to increase the accuracy of the target model is possi-358

ble when using structure-based modeling (albeit with smaller benefits), and there is larger359

improvement in performance for ‘extrapolation’ than ‘interpolation’ problems. Further, the360

proposed framework is expected to be easily adaptable to other scientific domains beyond361

materials science. The presented framework is conceptually easy to implement, understand,362

use, and build upon. For future work, it would be interesting to explore the effect on the363

performance of the target model when materials properties other than formation energy are364

used as the source material property and GNN architecture other than ALIGNN is used365

for training the source model. Although in the current study, we have used DFT-relaxed366

structures, which hold origin one way or another in experimental crystal structures, we plan367

to use such TL models for crystal generative models as well 62 where property predictions368

and pre-screening with TL-performance boosted models will be useful. It would also be369

interesting to explore the uncertainty associated with the materials property prediction by370

incorporating neural network components that help perform uncertainty estimation, such as371

dropout within the network architecture, or by creating an ensemble model using multiple372

graph neural networks and/or input from multiple checkpoints. One can also explore dif-373

ferent sets of features to train the neural network or use more sophisticated neural network374

architectures for the target model in a bid to boost the performance of the target model for375

a specific materials property.376
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Methods377

Scratch and Transfer Learning Models In this work, we implement a scratch (SC)378

model and two types of transfer learning (TL) models. For SC models, the model training379

is performed directly on the small target dataset without providing the model with any380

form of knowledge from source data. We use the graph neural network model, ALIGNN,381

as the model architecture for the SC model. For TL models, we use a model pre-trained382

on the MP dataset with formation energy as the materials property using ALIGNN as the383

model architecture. The TL techniques comprise of traditional fine-tuning and a feature384

extraction method from a graph neural network. Fine-tuning uses the weights from the385

pre-trained model as the preliminary weight initialization for the network (which is the same386

architecture as used during source model training) and is further refined using a small dataset.387

In the feature extraction method, we treat the pre-trained model as the feature extractor and388

extract atom, bond, and angle based features from a given layer, each containing a variable389

number of rows depending on the number of the atom, bond, and angle information present390

in the input file and 256 columns as features for each row. For example, let us consider a391

hypothetical compound AaBbCc where a + b + c = x, number of bonds = y and number of392

angles = z (generally, number of angles > number of bonds > number of atoms) and we393

extract the features from a checkpoint. Then, the dimensions of the extracted vectors will394

be (x, 256) for atom-based features, (y, 256) for bond-based features, and (z, 256) for the395

angle-based features. In order to pre-process them into a form that can be given to the deep396

learning (DL) model, which takes a one-dimensional vector as input, we take the mean of397
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all features across each column. This creates a (1, 256) vector representation for each of the398

structure-based features (atom, bond, and angle) for a given compound of the target dataset.399

The extracted feature from a given layer can then be either concatenated or used separately400

as an input for any DL model. For example, if we use atom based features from a given layer401

as the materials representation, each compound will be represented as a 256-dimensional402

feature vector. Similarly, for atom+bond based features it will be a 512-dimensional feature403

vector, and for atom+bond+angle based features it will be a 768-dimensional feature vector404

representation. For our analysis, we only use atom+bond+angle (last) as the set of features405

for the feature extraction based TL. The ‘Base’ model used in this work always uses the406

average property value of all the training data provided to it as the predicted property of a407

test compound as a naive baseline for comparison with SC and TL methods.408

Network Settings and Model Architecture ALIGNN was implemented using Pytorch409

and a 17-layered neural network (NN-17) was implemented using TensorFlow 2 (with Keras).410

Detailed configurations for the network architecture is [FC1024-Re x 4]-[FC512-Re x 3]-411

[FC256-Re x 3]-[FC128-Re x 3]-[FC64-Re x 2]-[FC32-Re]-FC1 where the notation [...] repre-412

sents a stack of model components comprising a sequence (where FC: fully connected layer,413

Re: ReLU activation function). The number of layers for the neural network was decided414

based on the analysis performed in 55, where they investigate the performance of deep learn-415

ing models of different depths in model architecture and show that the error improves with416

the number of layers up to 17 layers, after which the accuracy stagnated. The hyperparame-417

ters used in the ALIGNN comprise of the following: Sigmoid Linear Unit (SiLU) as the base418
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activation function, Adaptive Moment Estimation with decoupled weight decay (AdamW)419

as the optimizer with normalized weight decay of 10−5, mini-batch size of 64 (32 or 16 where420

the holdout test set is small or the size of the input files is larger than the available GPU421

memory), and learning rate as 0.001. We train all ALIGNN models for 300 epochs with a422

fixed random seed as done in the original work 39. The hyperparameters used in the NN-423

17 comprise of the following: rectified linear activation unit (ReLU) as the base activation424

function after each layer (except for the last layer), Adaptive Moment Estimation (Adam) as425

the optimizer, mini-batch size as 64 with a learning rate of 0.0001. We used early stopping426

with a patience of 200 to stop the model training if the validation loss does not improve427

for 200 epochs to prevent overfitting. All NN-17 model training used a fixed random seed.428

Readers interested in in-depth hyperparameter settings for ALIGNN and NN-17 models are429

referred to those publications 22,39,55 for details. We use mean absolute error (MAE) as the430

loss function as well as the primary evaluation metric for all models. We use DFT-relaxed431

or experimentally determined structures as input for all the models trained in this study.432

Data availability The datasets used in this paper are publicly available from the correspond-433

ing websites- MP 4 from https://materialsproject.org/, JARVIS 5 from https://jarvis.434
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Table 1: Prediction performance benchmarking for the prediction task of ‘Atomistic Line Graph

Neural Network (ALIGNN) based Feature Extractor’ on formation energy of JARVIS-3D dataset.

The table shows the test mean absolute error (MAE) of the best model for each feature type

(selected based on validation MAE) when run on features extracted from different layers.

Table 2: The table shows the test MAE of the SC model, proposed TL model, and % error change

for each of the target materials properties for the prediction task of ‘JARVIS-3D Database’. The

lowest MAE values in each row are highlighted in bold.

Table 3: The table shows the test MAE of the SC model, proposed TL model, and % error change

for each of the target materials properties for prediction task of ‘Other DFT-based Databases’.

The lowest MAE values in each row are highlighted in bold.

Table 4: The table shows the test MAE of the SC model, proposed TL model and % error

change for each of the target materials properties for prediction task of ‘JARVIS-2D Database’.

The lowest MAE values in each row are highlighted in bold.

Table 5: The table shows the test MAE of the SC model, proposed TL model and % error change

for each of the target materials properties for prediction task of ‘Other Materials Class Data’.

The lowest MAE values in each row are highlighted in bold.

Table 6: The table shows the test MAE of the SC model, proposed TL model and % error change

for each of the target materials properties for prediction task of ‘Experimental Data’. The lowest

MAE values in each row are highlighted in bold.
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Figure 1 Outline of the proposed framework. First, a data mining model (e.g., Atomistic

Line Graph Neural Network (ALIGNN) 39 comprised of ALIGNN layers and Graph Convolutional

Network (GCN) layers is trained from scratch on a big source data set (e.g., Materials Project

(MP) 4) using structure files (e.g., atomic positions for the Vienna Ab initio Simulation Package

(POSCAR)) to produce knowledge model. Next, the data mining model is trained on smaller

target datasets (e.g., Joint Automated Repository for Various Integrated Simulations 5 (JARVIS))

with different properties by using available information contained within the knowledge model to

improve the predictive ability of the model further.

Figure 2 Outline of the ALIGNN-based feature extraction method. Blue color indicates atom-

based features, orange color indicates bond-based features and green color indicates angle-based

features.

Figure 3 Training curve for predicting formation energy in JARVIS dataset for different training

data sizes on a fixed test set.

Figure 4 Prediction error analysis with mean absolute error (MAE) as error metric for predicting

formation energy in JARVIS dataset using best scratch (SC) and best transfer learning (TL)

model.
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