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Abstract—Efficient design of integrated sensing and commu-
nication systems can minimize signaling overhead by reducing
the size and/or rate of feedback in reporting channel state
information (CSI). To minimize the signaling overhead when
performing sensing operations at the transmitter, this paper
proposes a procedure to reduce the feedback rate. We consider a
threshold-based sensing measurement and reporting procedure,
such that the CSI is transmitted only if the channel variation
exceeds a threshold. However, quantifying the channel variation,
determining the threshold, and recovering sensing information
with a lower feedback rate are still open problems. In this
paper, we first quantify the channel variation by considering
several metrics including the Euclidean distance, time-reversal
resonating strength, and frequency-reversal resonating strength.
We then design an algorithm to adaptively select a threshold,
minimizing the feedback rate, while guaranteeing sufficient
sensing accuracy by reconstructing high-quality signatures of
human movement. To improve sensing accuracy with irregular
channel measurements, we further propose two reconstruction
schemes, which can be easily employed at the transmitter in
case there is no feedback available from the receiver. Finally,
the sensing performance of our scheme is extensively evaluated
through real and synthetic channel measurements, considering
channel estimation and synchronization errors. Our results show
that the amount of feedback can be reduced by 50 % while
maintaining good sensing performance in terms of range and
velocity estimations. Moreover, in contrast to other schemes, we
show that the Euclidean distance metric is better able to capture
various human movements with high channel variation values.

Index Terms—802.11bf, 802.11ay pilots, communication wave-
form, human motion, sensing, target detection, threshold

I. INTRODUCTION

THE PARADIGM of integrated sensing and communi-
cation (ISAC), in which sensing and communication

systems are integrated to efficiently utilize congested radio
resources [1], [2], has received significant research interest
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in recent years. The ISAC paradigm is envisioned to utilize
common hardware and spectrum resources, as well as a
common signal, to perform both communication and sensing
tasks. This in turn improves spectral and energy efficiencies
without increasing the hardware and signaling costs towards
realizing the future pervasive intelligent networks in the sixth
generation (6G) systems. In particular, ISAC systems improve
efficiency by either realizing sensing-assisted communication
or communication-assisted sensing [3]. In the latter case, the
existing wireless networking infrastructure for the Internet
of Things (IoT) systems can be reused as a sensor network
to enable ground-breaking wireless sensing applications for
healthcare, enterprise, residential, retail, and hospitality indus-
tries [4] through the communication waveforms. In general,
communication-assisted sensing or sensing-assisted commu-
nication in ISAC systems can be realized by tracking the vari-
ation in the channel due to a changing physical environment
that alters the signal propagation paths. In ISAC systems, this
tracking is possible by utilizing the channel estimated using
the pilot sequences embedded in the data packets [5].

Recently, the IEEE has started an effort toward 802.11bf Wi-
Fi sensing, a new specification [6] that will turn most of the
existing 802.11 wireless local area network (WLAN) devices
into object sensors to measure the range, speed, and direction
of objects and people while maintaining the communication
functionality. In contrast to the broader wireless sensing
research effort, which focuses on building prototypes and
designing algorithms to provide better sensing solutions, the
development of the IEEE 802.11bf standards defines sensing
procedures and protocols to discover available devices for
sensing, forming sensing groups, defining required sensing
measurements, and feeding back sensing results [6], [7].

To realize these functionalities, several roles such as sensing
initiator, responder, transmitter, and receiver are defined in [6].

• Initiator: An initiator is a device that initiates the sensing
procedure and wants the sensing result.

• Responder: A responder is a non-initiator device that
participates in the sensing procedure to assist the initiator.

• Transmitter: A responder, which acts as a transmitter,
transmits packets for measurement.

• Receiver: A responder, which acts as a receiver, utilizes
the packets transmitted by a transmitter to obtain the
sensing measurements (e.g., raw channel state informa-
tion (CSI) or channel impulse response (CIR), received
waveform).
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A. Motivation and Related Work

An underlying condition for ISAC networks is that at least
one of the devices can perform sensing processing. If the
receiver has sensing processing capabilities, it can directly
process the sensing measurements and feed back the final
sensing result to the initiator after Doppler signal processing
(e.g., range-Doppler map, range-time map). In contrast, if only
the transmitter has the sensing processing capabilities, the re-
ceiver can send back over the air the requested measurements,
which enables the transmitter to obtain the final sensing result
after processing. In the latter case, the sensing accuracy at
the transmitting device strongly depends on the availability
and update rate of the sensing measurements, such as CSI or
CIR. As the IEEE 802.11bf re-uses the communication link,
sending and exchanging sensing information can be solely
seen as overhead from a Wi-Fi performance point-of-view,
reducing throughput and increasing latency. In this case, the
larger the overhead, the better the sensing accuracy will be at
the cost of a lower transmission data rate. Thus, an efficient
design of communication-assisted sensing in an ISAC network
must minimize the communication overhead associated with
transmitting sensing measurements while obtaining reasonable
sensing performance.

There are several sensing sources [5], e.g., received signal
strength (RSS), CSI, and the received waveform, i.e., the
measurement used to obtain sensing information, but in this
work we consider CSI. Assuming the CSI is used to perform
sensing, there are two main strategies that can minimize the
impact of the feedback. The first strategy consists in reducing
the size of the feedback. For instance, it is possible to report
a partial CSI, corresponding to the range of interest of the
entire CSI [8]. This scheme is known as truncated CIR-
based measurement and reporting, where only the subset of
complex samples corresponding to the range of interest of
the entire CIR is reported to the initiator or processor. A
second strategy consists of reducing the rate of the feed-
back. For example, in non-time sensitive applications such
as intruder detection, several measurements might be highly
correlated over a period of time and do not require frequent
and regular CSI feedback. To address this issue, 802.11bf
task group (TGbf) [6] recently introduced a threshold-based
sensing measurement and reporting (TSMR) procedure for
sub-6 GHz bands where the current CIR measurement can only
be feedback by the receiver if CSI variation is above a given
threshold [9]. However, a clear definition of CSI variation,
i.e., a metric quantifying the difference between the current
measured CSI and previously measured CSI as well as the
selection of threshold without understanding the definition of
CSI variation are missing [10]. Moreover, a clear explanation
of what should be done to capture the micro-Doppler signature
if we have irregular channel measurements at the transmitter
is also missing. Further, to the best of our knowledge, the
impact of this TSMR procedure on sensing performance has
not been investigated yet in the existing literature. To fill these
gaps as well as address the aforementioned issues, this paper
comprehensively analyzes the performance of threshold-based
sensing using the communication waveform. Particularly, we

utilize the channel estimated through pilot sequences [11]
while having a communication link between two nodes.

To summarize, the key contributions of this paper are as
follows.

• First, we describe the TSMR procedure, where we con-
sider one-bit feedback from the receiver to the transmitter
to indicate that CSI variation is above or below the
threshold. We consider three different metrics, namely
the Euclidean distance, time-reversal (TR) resonating
strength, and frequency-reversal (FR) resonating strength,
to analyze their impact on CSI variation under several
human movement conditions. If CSI variation is not
significant (i.e., CSI variation is below a threshold), the
transmitter reconstructs the missing CIR measurement at
the initiator. In this context, we propose two different
reconstruction schemes, i.e., previous measurement-based
reconstruction and linear interpolation-based reconstruc-
tion to develop high-quality or realistic micro-Doppler
signatures of human movements.

• Second, we propose an adaptive threshold scheme, which
can be considered at the initiator to update the threshold
adaptively by detecting the variations in the channel
through previously received CIR measurements. This
scheme results in improved sensing performance in com-
parison to the fixed threshold while reducing the number
of feedback messages.

• Third, we study various types of model- and
measurement-based human motion to leverage realistic
insight in development of the said algorithms. More
specifically, to analyze performance, we start with a
raytracing-based channel model and validate the results
with real channel measurements obtained through an
extensive channel measurement campaign, which we
recently conducted to enable analyzing the sensing
performance considering different human movements of
several human subjects in a more realistic scenario.

B. Organization

The organization of this paper is as follows. Section II
describes the Wi-Fi sensing system model including definition
of the transmitter and receiver signals, the channel model,
and all the ISAC processing required to analyze the system
performance. The complete TSMR procedure and adaptive
threshold-based scheme are described in detail in Section III
and Section IV, respectively, which utilizes the communication
waveform to transmit a packet including data and preamble
with pilot sequences. Based on the NIST raytracing-based
channel model for an indoor living room scenario with a
single human target and the NIST human tracking channel
measurement, performance evaluation results are presented in
Section V, followed by the conclusions in Section VI.

II. WI-FI SENSING SYSTEM MODEL AND SIGNAL
PROCESSING

This section begins with describing the Wi-Fi sensing
system model adopted for ISAC framework, including all
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the ISAC signal processing required to analyze the end-to-
end sensing performance in terms of range and velocity or
Doppler shift of the human target under channel estimation
and synchronization errors.

A. System Model with Imperfect Channel Estimates

Sensing can be achieved using the illumination offered by
communication signals, i.e., communication devices can act as
sensing nodes, using the principles of bi-static or multistatic
radar [12]. Hence, we consider an ISAC system, adopting a
conventional communication system model, consisting of a
single transmitting device and a single receiving device. From
a sensing perspective this system is referred to as a bi-static
model, as the transmitter and the receiver do not correspond
to the same device and they can be spatially separated, as in
the ISAC system presented in Fig. 1.

1) Transmit Signal: We consider a wideband single-carrier
(SC) system, where the transmitter transmits a total of Nburst
bursts continuously without any pause between adjacent bursts.
Each burst consists of M packets, which are transmitted to the
receiver over a period of time T with packet repetition interval
(PRI) TM . This implies that the time interval between the start
of adjacent bursts is just T , which equals MTM . The channel
during the time T is assumed to be quasi-static. The time T
is usually referred to as coherent processing interval (CPI), as
it enables the coherent processing of multiple receive packets.
Each of the packet is made of two main parts: the preamble
and the data. The preamble contains known pilot sequences,
e.g., Golay sequences, while the data contains modulated
information symbols. As in this paper we are focusing on a
sensing feature, for ease of exposition we provide the transmit
model of the preamble, containing pilot sequences. Denoting
s[n] as the nth symbol of the pilot with condition |s[n]|= 1,
the complex-baseband transmit symbols of the mth packet can
be written as

xm[k] =

N−1∑
n=0

s[n]δ(kTS − nTS −mTM ), (1)

where N is the length of the preamble sequence, k is the
sampling index, TS is the sampling interval in the delay
domain, also referred as fast-time, and TM is the PRI in time
domain, also referred as slow-time.

2) Channel: The channel of a static environment with
moving targets is modeled as a superposition of rays, some
describing the propagation of the signal in the environment,
the other describing the backscattering signal generated from
the target as shown in Fig. 1. The CIR considering the human
presence in the environment with fixed communicating nodes
can be expressed as

hm (τ) =

Nr∑
p=1

am,pexp(−j2πνm,pmTM )δ(τ − τm,p), (2)

where Nr is the total number of rays, am,p represents the
complex amplitude of the pth ray and the parameters τm,p

and νm,p are the delay and the Doppler shift of the pth ray,

respectively. The CIR hm(τ) in Eq. (2) describes the propaga-
tion channel, without including the effect of the system. It can
be converted into the system level CIR by applying antenna
effects, band-limiting filters and system rate re-sampling [13]
as

hm[k] =

Lm−1∑
l=0

am,lexp(−j2πνm,lmTM)δ(kTS−τm,l), (3)

where Lm is the length of the system level CIR hm =[
hm[0], hm[1], · · · , hm[Lm−1]

]T
, over which the mth packet

is transmitted.
3) Receive Signal: The transmit signal interacts with the

environment, including the moving targets. The kth receive
complex symbol of the preamble of the mth packet can be
expressed as

ym[k] =

Lm−1∑
l=0

hm[l]xm[k − l] + zm[k], (4)

where zm[k] ∼ N
(
0, σ2

)
is the additive white Gaussian noise

(AWGN) with variance σ2. We assume that the channel is
static during the transmission of a packet.

B. ISAC Processing

1) Synchronization (Sync): The preamble is first used for
temporal synchronization between the transmitter and the
receiver. Synchronization is achieved by cross-correlating the
known transmitted pilot symbols with the received symbols.
The magnitude of the cross-correlator output consists of a
sequence of large peaks – one for each delay bin in which
at least one ray falls –, and several small peaks due to AWGN
and imperfect auto-correlation properties. The synchronization
is then referenced to the delay bin in which the maximum
cross-correlation value falls. The fast-time index of this value
corresponds to the propagation delay of the direct line-of-
sight (LOS) path between transmitter and receiver. While in
a monostatic or quasi-monostatic configuration the synchro-
nization point can be used as the absolute propagation delay
reference, in a bi-static configuration the absolute value of
the propagation delay need to be estimated. Method for time
estimation have been proposed and standardized, for instance
IEEE 801.11-2016 standard incorporates a new protocol for
estimating the propagation time between devices, the so-
called fine time measurement (FTM) protocol [11]. We hence
assume that the propagation time between devices is known,
for instance, using time-stamping provided by FTM message
exchange.

2) CSI Acquisition and Feedback: The preamble is further
used at the receiver for obtaining the CSI, i.e. the time-domain
CIR, using a channel estimation procedure as described below.

The pilot sequence {s[n]} used in Eq. (1) consists of
two sets of 256-sample Golay complementary sequence pair,
denoted as Gu and Gv respectively [11, Section 28.10], with
Gu = [−b128 − a128 b128 − a128] and Gv = [−b128 a128 −
b128 − a128]. The length of the Golay sequence LG is 128,
and the length of the complementary Golay sequence (e.g.,
[−b128 − a128]), is denoted as LGC = 256. To obtain the
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Fig. 1: Schematic diagram of a bistatic ISAC system model consisting of a single transmitter and receiver pair.

channel, the received symbols are correlated with Gu and Gv ,
and the correlations are summed as the following

ĥm[k] =

1∑
j=0

RGu,ym
[k + j × LGC ]

+

3∑
j=2

RGv,ym [k + j × LGC ],

(5)

where RG,ym ,G ∈ {Gu,Gv} is the correlation between G
and ym and kth entry of RG,ym can be obtained as

RG,ym
[k] = (G ∗ ỹm)[k], (6)

where ỹm is the time reversed and conjugated version of ym.
After searching through ĥm and locating the peak index lm =
argmax

k
(|ĥm[k]|2), the final estimated channel ĥm ∈ CLG×1

is extracted directly from index lm with

ĥm =
1

2LGC

[
ĥm[lm], ĥm[lm + 1],

· · · , ĥm[lm + LG − 1]
]T

. (7)

In this paper, we consider that the transmitter corresponds
to the sensing processor, which is using CSI to sense the
environment. Hence, after CSI acquisition, the receiver feeds

back the estimated CSI in a sequential manner, exploiting the
channel reciprocity. Further, note that the receiver does not
store any previously estimated CSI measurements except the
last transmitted one. Thus, at the current time, the receiver
has only the current estimated CSI ĥm as well as previously
transmitted CSI ĥm−1 to quantify the variation in the channel.

3) Doppler Processing: From a sensing perspective, the
channel estimated using the preamble can be seen as echoes
from the targets and the environment. The CSI varies between
the reception of each packet, i.e. with the slow-time, due
to the phase changes induced by the Doppler shifts of the
targets. After receiving the feedback, the transmit sensing
processor can ideally build the sensing data matrix, collecting
the estimated CIR corresponding to each packet sent, in a
2-dimensional (2-D) matrix [ĥ1, ĥ2 · · · , ĥM ], i.e., the delay
and the evolution over the time. To obtain the Doppler of
the targets assuming the estimated CIRs corresponding to M
feedback, a discrete Fourier transform (DFT) is applied to each
delay bin along the slow-time dimension of the sensing data
matrix to obtain the Doppler matrix,

D[k, ν] =
1√
Nν

M∑
m=1

ĥm[k] exp(−j2πmTMν/Nν), (8)

where ν is the Doppler bin index and Nν is the DFT size.
Apart from this, the component with null frequency shifts are



IEEE INTERNET OF THINGS JOURNAL 5

considered static clutter, i.e., echoes coming from the static
environment, thus they are not relevant to remote monitoring
or sensing. They can be filtered out by removing the continu-
ous component along the slow-time dimension of the sensing
data matrix before obtaining range-Doppler map.

The obtained range-Doppler map is subject to de-noise
processing. For this purpose, the range-Doppler map is first
thresholded to eliminate the noise floor and low-pass filtered
with a 2-D Gaussian window. The threshold has been empir-
ically set to 10 dB below the strongest peak observed in the
range-Doppler map. After that, a peak detection algorithm is
performed by comparing each pixel of the range-Doppler map
to its neighbors. If the tested pixel has a higher value than
the surrounding pixels, the tested pixel is declared as the local
maximum. The local maxima are thus retained in the de-noised
range-Doppler map D̂[k, ν].

4) Target Detection: The detection of the target properties,
i.e., velocity and range, is performed using the de-noised
range-Doppler map, which is generated using the sensing data
matrix corresponding to a burst of M packets. To obtain the
velocity estimation, the range-Doppler map is summed over
the range dimension, obtaining the micro-Doppler spectrum
as µD =

∑
k D̂[k, ν]. The point with the highest intensity in

the micro-Doppler spectrum ν̂ = maxν(µD) is the estimated
Doppler shift, from which the velocity can be obtained as
v̂ = ν̂c/fc, where c and fc denote the speed of light and
carrier frequency, respectively. Similarly, the estimation of the
range relies on the sum of the range-Doppler map over the
Doppler domain, i.e. µR =

∑
ν D̂[k, ν] and the estimated

range is the highest value in the obtained range spectrum,
r̂ = maxk(µR). Finally, after processing the range-Doppler
maps corresponding to the transmissions of a total of Nburst
bursts, the range r̂ and velocity v̂ over a period of time can
be obtained by stacking r̂ and v̂, respectively.

III. THRESHOLD-BASED SENSING MEASUREMENT AND
REPORTING (TSMR) PROCEDURE

In this section, we first describe the possible sensing topolo-
gies or implementations involving two communicating devices
and subsequently present the TSMR procedure including sev-
eral CSI variation metrics and interpolation schemes for one
of the implementations.

A. Sensing Topologies

Fig. 2 depicts two possible sensing implementations, which
involve two devices or stations (STAs). In the first imple-
mentation, the initiator acts as a receiver and the responder
acts as a transmitter. In this uplink case, the initiator can
directly obtain the measurements using the packet transmitted
by the responder. In the second implementation, the initiator
acts as a transmitter and the responder acts as a receiver. In
this downlink scenario, feedback from the receiver is required
to report the CIR measurements to the initiator to perform
sensing. The rate of feedback in the second implementation
depends on the use case. Use cases, such as intruder detection,
require sensing the environment continuously; however, they
need to report feedback only when an event is detected.

Fig. 2: Sensing implementations involving two STAs where
the STA that supports sensing has the processing capability.

Otherwise, when no events are detected, the CSI is highly
correlated over time and thus it does not need continuous
feedback. The receiver needs to provide feedback only when
the CSI variation, i.e., the difference between the current
and previously measured CSI, becomes significant. For this
purpose, a threshold can be used in the reporting stage of the
sensing procedure, which is described below in detail.

A diagram of the TSMR procedure proposed in this paper
appears in Fig. 3, which is mainly composed of measurement
and reporting stages. In the measurement stage, a transmitter
sends a packet consisting of the data and pilot sequences, i.e.,
Golay sequences, while a receiver utilizes the pilot sequences
to estimate the channel for data detection. In the reporting
stage, the receiver can further feedback the estimated CIR to
the transmitter for sensing processing if it receives a feedback
request from the transmitter. This feedback request from the
transmitter may include the threshold for the receiver. After re-
ceiving the feedback request, the receiver subsequently checks
for the CSI variation criterion, and depending upon the result,
the receiver uses one-bit feedback to indicate whether they will
perform further feedback or not. For example, if a significant
change in the channel is detected, i.e., the CSI variation is
higher than the threshold, the receiver may send bit 1 and after
receiving bit 1, the transmitter asks the receiver to feedback the
estimated CIR measurement in the assigned resource unit1 as
shown in Fig. 3(a). On the contrary, the receiver transmits bit 0
if the criterion is not satisfied, and in this case, the transmitter
can reconstruct the missing measurement using the previously
received CIR measurements from the receiver, as depicted in
Fig. 3(b). It is worth noting that due to this CSI variation
criterion, some of the CIRs in the 2-D sensing data matrix may
be missing, and in that case, we first reconstruct the missing
CIRs and subsequently utilize them to build this matrix for
Doppler processing in (8).

B. Calculation of CSI Variation

Depending on the sensing applications, different devices can
employ different metrics to compute the channel variation.

1The resource unit can comprise multiple sub-channels within the channel
used by the transmitter.
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(a) When CSI variation is greater or equal to the threshold

(b) When CSI variation is less than the threshold

Fig. 3: TSMR procedure where the packet including data and
pilot sequence are used to estimate CIR for data detection
and the estimated CIR is subsequently used for sensing upon
receiving the feedback request from the initiator.

However, the computed CSI variation should normalize to a
closed interval [0, 1], where the value 0 represents that channel
at two different time instants is completely identical and the
value 1 represents that channel at two different time instants
is entirely different. This normalization is important so that
the initiator can decide the threshold within the range [0,1] for
each device. In this work, we consider the following metrics to
quantify the CSI variation between two consecutive CIRs ĥm

and ĥm−1 estimated using the mth and (m−1)th transmitted
packets.

1) Euclidean Distance: The normalized Euclidean distance
d(ĥm, ĥm−1) between two CIRs ĥm and ĥm−1 can be ob-
tained as

d(ĥm, ĥm−1) =

√
1

2
× var(ĥm − ĥm−1)

var(ĥm) + var(ĥm−1)
, (9)

where the factor 1/2 is used to bound d(ĥm, ĥm−1) between
0 and 1, and var

(
ĥ =

[
ĥ[l], ĥ[l + 1], · · · , ĥ[l + LG − 1]

])
is

defined as

var(ĥ) =
1

LG

LG−1∑
i=0

ĥ[i+ l]− 1

LG

LG−1∑
j=0

ĥ[j + l])

2

.

The CSI variation, denoted by ∆C, can be obtained as ∆C =
d(ĥm, ĥm−1). Note that if two CIRs are completely identical
(i.e., ĥm = ĥm−1), the normalized Euclidean distance would
be 0. On the other hand, the normalized Euclidean distance
would be 1 for ĥm = −ĥm−1.

2) Time-Reversal (TR) Resonating Strength: The CSI varia-
tion can be obtained as ∆C = 1−TRRS(ĥm, ĥm−1), where the
TR resonating strength TRRS(ĥm, ĥm−1) between two CIRs
ĥm and ĥm−1 can be derived as [14]

TRRS(ĥm, ĥm−1) =
1

∥ĥm∥∥ĥm−1∥
× max

ĩ=1,2··· ,2LG−1

∣∣Rĥm,ĥm−1
[̃i]
∣∣, (10)

where Rĥm,ĥm−1
[̃i], ĩ = 1, 2, · · · , 2LG − 1 represents the

cross-correlation between ĥm and ĥm−1.
3) Frequency-Reversal (FR) Resonating Strength: Similar

to TR resonating strength, the CSI variation can also be
obtained by maximizing the subcarrier correlation in the fre-
quency domain using the frequency-domain channel transfer
functions. We refer to this metric as FR resonating strength. In
this metric, the normalized CSI variation can be computed as
∆C = 1

2×{1−FRRS(Ĥm, Ĥm−1)}, where FRRS(Ĥm, Ĥm−1)
denotes the FR resonating strength between two frequency-
domain channel transfer functions Ĥm and Ĥm−1, which can
be computed as

FRRS(Ĥm, Ĥm−1) =
1

∥Ĥm∥∥Ĥm−1∥
× max

ĩ=1,2··· ,2NST−1

∣∣RĤm,Ĥm−1
[̃i]
∣∣, (11)

where NST is the number of subcarriers and RĤm,Ĥm−1
[̃i], ĩ =

1, 2 · · · , 2NST−1 represents the correlation between Ĥm and
Ĥm−1. The frequency-domain channel transfer function Ĥm,
defined as the Fourier transform of the impulse response ĥm

at subband center frequency fc,n, can be obtained as [15]

Ĥm[fc,n] =

LG−1∑
l=0

ĥm[l] exp(−j2πfc,nlTs), (12)

where Ts is the sampling period and l is the tap index. More-
over, for a given wideband channel of bandwidth B and its
center frequency fc, the center frequency of the nth subband
can be obtained as, fc,n = fc+n∆f , where the subband spac-
ing ∆f considering the number of NST subbands is computed
as, ∆f = B

NST
. Here n = −round

(
NST
2

)
+ 1, · · · ,floor

(
NST
2

)
,

where floor(x) rounds the elements of x to the nearest integers
towards −∞ and round(x) rounds towards the nearest decimal
or integer.

To analyze the impact of these metrics on the CSI vari-
ation, we consider two different human movement cases,
i.e., standing up and sitting down with four human subjects
of different heights. These movements corresponding to two
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(a) Subject 1: Standing up

(b) Subject 2: Sitting down

(c) Subject 5: Human walking

Fig. 4: Different human movements considered in the NIST measurement campaign.

human subjects, i.e., subject 1 and subject 2, which are
the part of the NIST measurement campaign2, are shown
in Figs. 4(a) and 4(b), respectively. Fig. 5 demonstrates the
Doppler shift3 and corresponding CSI variations4 with the
Euclidean distance, TRRS, and FRSS metrics for both the
movements of all four subjects. For comparison purposes, we
also include WiFi-based real-time human detection (WiSH)
based metric proposed in [16], where the CSI variation is
obtained as ∆C = 1 − c̄t exp(0.1c̄f ) and c̄t, c̄f denote the
median time and frequency correlations, respectively. Here,
median frequency correlation is calculated by using the Nsel

2The details of this channel measurement campaign are provided later on
in Section V.

3To obtain the micro-Doppler spectrum in Fig. 5, the range-Doppler
maps are summed over the range dimension, as described in Section II.B4.
Moreover, the Doppler shift is subsequently estimated by finding a point with
the highest intensity in the micro-Doppler spectrum.

4Note that the time on the x-axis in both the micro-Doppler spectrum
and the CSI variation plot depicts the total sensing duration across MNburst
sensing measurements. However, the time step in the CSI variation plot is
smaller than in the micro-Doppler spectrum. The time step in the CSI variation
plot equals the packet interval TM , while the time step in the micro-Doppler
spectrum is T since we have only Nburst range-Doppler maps or micro-
Doppler spectrum obtained using the MNburst sensing measurement feedback
during the total sensing duration.

subcarriers selected randomly out of NST subcarriers, whereas
c̄t is obtained by cross-correlating the complete CSI obtained
at two different time-instants. As shown on the left side of
each subfigure, our ISAC framework described in Section II-A
can identify different Doppler signatures in both standing
up and sitting down cases. It can be seen that standing up
movement results in positive Doppler shift since the human
body moves towards the receiver while standing up from
sitting down position, whereas sitting down movement has
negative Doppler shift since the subject moves away from
the receiver. Interestingly, these positive and negative Doppler
signatures are also consistent across all the subjects. On the
other hand, one can also observe that each metric results
in different normalized CSI variations, which can be seen
on the right side of each subfigure. More specifically, the
identical movements of subject 2 have significantly low CSI
variation values compared to other subjects. However, the
Euclidean distance metric, which quantifies the variation in
the difference between two CIRs, can capture the standing up
and sitting down motions of all human subjects with high CSI
variation values. On the contrary, TRRS and FRRS metrics
achieve almost identical CSI variation values most of the
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(a) Subject 1: Standing up
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(b) Subject 1: Sitting down
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(c) Subject 2: Standing up
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(d) Subject 2: Sitting down
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(e) Subject 3: Standing up
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(f) Subject 3: Sitting down
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(g) Subject 4: Standing up
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(h) Subject 4: Sitting down

Fig. 5: Sensing performance and normalized CSI variation considering channel measurements obtained from measurement
campaign, where the transmitter and receiver are placed such that normal of their arrays are forming 9◦ angle. Each subfigure
shows the Doppler and corresponding normalized CSI variation. For Doppler processing, we consider packet repetition frequency
(PRF) of 385 Hz, i.e., TM=2.6 ms , number of packets (M ) in CPI as 64, Doppler FFT length Nν as 512, Doppler FFT window
and window length as Blackman-Harris and 16, respectively.

time and both metrics, especially FRRS, have less variation
since the maximum amplitude of the entries of the cross-

correlation does not increase much in both human activities in
the scenario. It is also interesting to observe that in contrast to
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Fig. 6: Sensitivity of CSI variation metrics to channel changes
considering real channel measurements for human walking
scenarios. For WiSH, we consider Nsel = 64.

the WiSH metric, the Euclidean distance metric can capture the
motions with high CSI variation values, especially when the
human subject moves. In Fig. 6, we also analyze the sensitivity
of CSI variation metrics to channel changes under real channel
measurements for human walking scenarios with different
human subjects. One of the human walking cases is shown in
Fig. 4(c). In this result, we evaluate the changes in the channel
through the Euclidean distance for each CSI variation metric
and subsequently obtain the changes in the CSI variation. For
better understanding, we also added a linear fit to each of the
data. The slope of the linear fit indicates that the changes
in the CSI variation are higher for the Euclidean distance
metric in comparison to TRRS, FRRS and WiSH metrics.
It can be observed that out of these metrics, the Euclidean
distance metric is more sensitive to any small variations in
the scenario. Moreover, WiSH based metric is more sensitive
than FRRS since it leverages the cross-correlation in both time
and frequency domains.

Next, we present reconstruction schemes that can improve
sensing performance by reconstructing multiple CIR measure-
ments at the transmitter.

C. Reconstruction Scheme for Missing CIR Measurements

As described in Fig. 3, the initiator reconstructs the CIR
measurements for the time instants when the CSI variation
criterion is not satisfied. This reconstruction to build a sensing
data matrix for Doppler processing as shown in Fig. 1, is
important because missing observations can lead to inaccurate
sensing results at the initiator. Let ĥm−k and ĥm denote
the channel measurements or measurements in complex CIRs
received from the receiver corresponding to the (m−k)th and
mth packets transmitted by the transmitter, respectively. In this
work, we propose two reconstruction schemes which can be
considered at the initiator to reconstruct the missing channel
measurements, i.e., h̃m−k+1, h̃m−k+2, · · · , h̃m−1 in between
ĥm−k and ĥm.

1) Previous Measurement (No Interpolation) based Recon-
struction: In previous measurement-based reconstruction, the

missing channel measurements h̃m−k+i, i = 1, 2, · · · , k − 1
can be directly reconstructed once it receives bit 0 from the
receiver as

h̃m−k+i = ĥm−k, (13)

where ĥm−k represents the previously received measurement
at initiator. This is due to the fact that if the CSI variation
criterion does not satisfy, we assume that the channel at time
instant t does not change compared to the previous time instant
t− 1 since there is no movement detected in the scenario. In
case the initiator does not receive measurements in any of
the time instants, e.g., between the time instant 1 to m − k,
channel measurement h̃m−k+i would be identical to ĥ0 since
the channel measurement at the start of the sensing procedure
is always reported.

2) Linear Interpolation based Reconstruction: This scheme
is based on linear interpolation of the values in each respective
dimension, i.e., real and imaginary. More specifically, each
complex entry of missing CIRs is linearly interpolated using
the complex entries of received CIRs at time m− k and m as

h̃m−k+i = ĥm−k +
i

k
(ĥm + ĥm−k). (14)

In contrast to the previous reconstruction scheme, this scheme
additionally involves measurement estimated using the mth

packet. For the case when the initiator does not receive any
measurement corresponding to mth packet, it uses the previous
measurement as an interpolated one. Thus, for the scenario
when the CSI variation criterion does not satisfy at any of the
time instants e.g., m−k+1, · · · ,m−1,m,m+1, · · · ,M , the
linear interpolation reduces to the previous measurement-based
reconstruction utilizing the estimated measurement ĥm−k.

Next, we present an adaptive thresholding method, which
can be employed at the transmitter to update the CSI variation
threshold for the receiver in an adaptive fashion.

IV. ADAPTIVE THRESHOLD FOR CSI VARIATION
CRITERION

Determining an accurate threshold to flag human movement
is important. Note that if the transmitter sets this threshold as 0,
the receiver feeds back the estimated CIR measurement at each
time instant even if there is no movement in the environment.
On the other hand, if it sets this threshold as 0.5, it does not
mean that the transmitter will have feedback 50 % of the time.

This can be seen in the Figs. 5(a) and 5(b) for subject 1,
where the Euclidean distance metric assists the transmitter to
have only 199 and 87 feedback messages out of 1500 under
the standing up and sitting down cases, respectively. A similar
observation can also be made in the case of other subjects
when we set the threshold as 0.5. To capture the standing
up and sitting down movements of these human subjects, the
initiator should set the threshold lower than the normalized
CSI variation values obtained using the CSI variation metric.
For example, in the case of the Euclidean distance metric,
the initiator should set the threshold lower than 0.2. For other
TRRS and FRRS metrics, the CSI variation values are smaller
than the Euclidean distance metric, as shown in Fig. 5. Thus,
the threshold for TRRS and FRRS metrics should be lower



IEEE INTERNET OF THINGS JOURNAL 10

than the one used for the Euclidean distance to capture these
movements. To avoid this dependency, we propose an adaptive
threshold scheme that can be considered at the initiator to
update the threshold adaptively by detecting the changes
in the channel using the previously received measurements.
With the adaptive-threshold method, instead of determining
the minimum CSI variation for feedback, the objective is to
adjust the CSI-variation threshold dynamically to optimize the
sensing performance.

In this proposed method, the sensing duration is divided
into multiple time intervals and in each time interval, the
transmitter adaptively decides the threshold for the next time
interval after detecting the movement through Doppler pro-
cessing. It is worth noting that the duration of each interval
i.e., ∆T should be large enough such that the transmitter
can perform Doppler FFT with the required packets per CPI.
The parameter ∆T mainly depends on the Doppler processing
capability of the transmitter, which can be considered as ≥ T .
For the case when ∆T = T , it implies that the transmitter
adaptively decides the threshold after each burst transmission
of M packets. Note that if we consider a significantly higher
value for ∆T and the sensing duration is not large enough,
there is a possibility that the proposed method cannot follow
the trend of CSI variation over time and does not result
in a significant improvement over a fixed threshold scheme.
Thus, to follow the trend of CSI variation over time, ∆T
can be set as the minimum required value, i.e., T . This
adaptive threshold method for channel variation criterion is
described in Algorithm 1 where the entire sensing duration
for obtaining MNburst sensing measurements is divided into
multiple time intervals of duration ∆T . In this method, the
initiator first initializes the threshold as γ, and based on this
initial threshold setting, the receiver transmits the estimated
CIR measurements if it satisfies the CSI variation criterion,
i.e., CSI variation is higher than the threshold γ. On the
other hand, based on these CIR measurements feedback from
the receiver, the initiator first reconstructs the missing CIR
measurements if any, and subsequently performs Doppler
processing, as presented in Section II-B3. Finally, based on the
movement detection through detecting the peak, the initiator
increases or decreases the threshold γ with a step size5 of ∆γ
for the next duration of ∆T . More specifically, the initiator
increases the threshold to reduce the number of feedback
messages if there is no movement detected in the scenario.
It is also important to note that when no movement of the
target is detected for a long time, the initiator progressively
increases the threshold to γmax, and this high threshold value
would significantly reduce the number of feedback messages.
Furthermore, the parameter NF% in Algorithm 1 denotes the
number of feedback messages expected at the initiator in the
duration of ∆T if any human movement is detected. For the
case when the initiator detects the movement and the number
of received feedback is not within the expected limit, i.e., the
number of received feedback is less than the expected number

5The value of ∆γ plays an important role because for low value ∆γ,
the proposed adaptive threshold scheme reduces to a fixed threshold scheme.
On the other hand, for high value of ∆γ, proposed scheme may reduce the
number of feedback messages by approximately 50%.

Algorithm 1: Adaptive Threshold For Channel Varia-
tion criterion

Input: Initialize Threshold γ,
Threshold Step Size ∆γ,
Maximum Threshold Limit γmax if Human
Movement is not Detected,
Time Duration ∆T ,
Expected Number of Feedback Messages NF %
if Human Movement is Detected

Output: Threshold γ
for each time duration of ∆T do

Estimate the Doppler using the reconstructed
measurements when CSI variation ∆C < γ

if Peak is detected then
Calculate the percent of feedback (Feedback in
%) using the received number of feedback
messages

if Feedback > NF % then
γ ← γ +∆γ or γ ← γ;

else
γ ← γ −∆γ;
if γ < 0 then

γ ← 0
end

end
else

γ ← γ +∆γ
if γ > γmax then

γ ← γmax

end
end

end

of feedback messages defined by NF%, the initiator decreases
the threshold for the next duration of ∆T . This decrement
in threshold value can allow the transmitter to receive more
feedback in the next duration. In contrast, if it detects the
movement and the number of received feedback is within the
expected limit, the initiator can either increase the threshold
or keeps the same threshold value. Note that the expected
limit for NF% can be set as 50 − 100%, where NF = 50%
denotes that the initiator expects at least 50% feedback if
any movement is detected. For NF ≤ 50%, the number of
feedback messages keeps reducing which in turn affects the
overall sensing performance at the transmitter. On the other
hand, if the initiator expects NF = 100% CIR measurements
when there is a motion detected in the scenario, the algorithm
progressively reduces the adaptive threshold to 0.

Fig. 7 demonstrates the impact of adaptive threshold over
time considering sitting down and standing up movements of
human subjects 1, 2, and 3, as described in Fig. 5. Particularly,
in Figs. 7(a) and 7(b), we show the variation of adaptive
threshold with respect to CSI variation metrics considering a
fixed human subject, whereas in Figs. 7(c) and 7(d), we show
the variation of adaptive threshold with respect to subjects
considering a fixed CSI variation metric. It can be seen in Figs.
7(a)-7(d) that irrespective of the type of metric and subject, this
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(a) Subject 1: Standing up
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(b) Subject 1: Sitting down
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(c) Subjects 2 and 3: Standing up
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(d) Subjects 2 and 3: Sitting down

Fig. 7: Impact of adaptive thresholding over time for different CSI variation metrics and human subjects. For simulation, we
divide the total time duration into 15-time intervals and in each time interval, the receiver obtains 100 CIR measurements. The
other parameters in Algorithm 1 are set as, initial threshold γ = 0.3, step size ∆γ = 0.1, maximum threshold limit γmax = 1,
and we consider an increment of ∆γ if the number of received feedback is higher than NF = 95%.

method can optimize the sensing performance by dynamically
choosing the threshold less than the CSI variation values for
most of the times when there is a movement in the scenario.
Interestingly, one can also observe that the adaptive threshold
indirectly follows the trend of CSI variation over time, which
reduces the number of feedback messages and also allows the
transmitter to reconstruct the missing CIR measurements with
better accuracy by using the nearby received measurements.

V. PERFORMANCE EVALUATION OF TSMR PROCEDURE

We consider a single access point (AP) initiator that is
communicating via the SC waveform with a single responder
[17]. These devices also participate in a sensing session
considering the TSMR procedure, as described in Section
III-A. In this case, the initiator transmits M data packets in
a burst over a period of time T , and based on the channel
variation metric criterion, a total of K(≤ M) estimated CIR
measurements are required to feedback from the responder.
For the case when CSI variation criterion is not satisfied, the
initiator reconstructs the missing M −K CIR measurements
using the schemes described in Section III-C. Based on
these reconstructed measurements, the initiator can build the
two-dimensional sensing data matrix, i.e., the delay and the
evolution over time to get the desired results, e.g., compute
the range and velocity or Doppler shift for motion detection
after removing the clutter using a DC blocker, as described in
Section II-A. In this work, we implement a DC blocker with
a small recursive filter as described by a differential equation
below.

opm = inm − inm−1 + αopm−1,

where inm and opm are the current input and output samples,
whereas inm−1 and opm−1 are the previous input and output
samples, respectively. In the above equation, the parameter α
determines the corner frequency and can be set in between 0.8
and 1. Note that as α approaches 1, the filter notch at DC gets
narrower. In our evaluation, we consider α as 0.85.

In this paper, we consider an indoor room sensing use case
with a focus on the range and velocity estimation of a moving

target. Mainly, we analyzed the impact of the TSMR procedure
on the sensing accuracy, i.e., mean-squared error (MSE) of
range and velocity of the target. The MSE values for range
and velocity estimates are calculated as follows

MSEr(dB) =10 log10

(
1

Nburst
||rgt − r̂||2

)
, (15)

MSEv(dB) =10 log10

(
1

Nburst
||vgt − v̂||2

)
, (16)

where the parameters rgt and vgt are the reference for the
range and velocity of the target, respectively, whereas r̂ and v̂
denote the range and velocity estimates of the target that are
obtained after processing the Nburst range-Doppler maps. Note
that the reference for the range and velocity of the human
target is obtained without missing any CIR measurements. To
evaluate the performance of the TSMR procedure and also, to
generate insights into the system performance, the extensive
simulations are carried out using our open source NIST
ISAC-PLM [18], [19] with the sensing-related parameters as
mentioned in Table I. Moreover, we first utilize the NIST
raytracing-based channel realization software [20] in Section
V-A to generate the channel in the presence of a single
human target, and later in Section V-B we use real channel
measurements. Note that in both raytracing and real channel
measurement cases, we convert the rays into the system level
CIR6 (c.f. (3)) by utilizing the properties of each ray. Thus,
our framework can be easily extended to other channel models
or measurements if we can characterize each MPC in terms
of complex amplitude, delay, and Doppler shift. Further note
that in our evaluation, we consider burst transmissions, each
burst consists of M = 64 packets with repetition frequency
385Hz, to detect the maximum target velocity of ∼1 m/s in
all the indoor scenarios including the ones considered in real
channel measurements. The repetition frequency of packets
(PRF) determines the maximum velocity of the target that can
be detected unambiguously. However, the max PRF is set by
hardware limitations.

6The CIR generated is re-sampled at the system rate of 1.76 GHz.
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TABLE I: Doppler Processing Parameters

System Parameter Setting
Packet Repetition Frequency (PRF) 385 Hz
Packets in CPI (M ) 64
Doppler FFT Length (Nν ) 512
Doppler FFT Window Blackman-Harris
Window Length 16
Window Overlap 0

Fig. 8: Living room environment with the rays raytraced from
the environment shown in black and from the target shown in
blue.

A. Simulated Channel Measurement

To describe the environment and the interaction between
the signals and the target(s), we adopt a raytracing-based
channel model [21], which represents the human target using
the Boulic model with Nt = 17 scattering centers [22].
This channel model performs 3D raytracing on environmental
objects described by a 3D CAD model of the environment and
a human target [23], [24] and provides the magnitude, phase,
and time of arrival of individual propagation rays between
multiple points in space. Each of the scattering centers is
precisely raytraced, which can be seen in Fig. 8, to provide
consistency in both spatial and time domains. Spatial and
temporal consistency is a fundamental feature of a channel
model to enable the study of sensing applications, for instance,
to obtain realistic micro-Doppler description, which is the
most common signal processing technique for extrapolating
dynamic information such as the range and velocity of a
moving target.

We consider a square living room environment7 of size
7 m × 7 m with a ceiling height of 3 m, where a static AP
initiator is communicating with a static responder or receiver
over 60 GHz frequency band. The initiator is placed just
below the ceiling on the left wall, whereas the receiver is
attached to the right wall, as shown in Fig. 8 with red and blue
spheres, respectively. This node arrangement is useful when
the receiver is attached to the TV for receiving uncompressed
high-definition video from an AP or set-top box. Under this
setting, we generate 1000 different cases with the presence
of a single human target. Each of the cases has a different
channel variation since the target is randomly placed and has
a different trajectory and velocity.

The sensing performance of the TSMR procedure con-
sidering the Euclidean distance, TRRS, and FRRS with the
previous measurement based-reconstruction scheme under the
raytracing-based channel model is demonstrated in Fig. 9,
where the sensing accuracy is evaluated by considering the
transmissions of Nburst = 8 bursts, each with M = 64 packets,
over a sensing duration of 1.33 s for S = 1000 random human
walking cases in the scenario. Particularly, in Fig. 9(a), we
show the accuracy of the range and velocity estimates in terms

7The environment does not include the furniture and other objects to speed
up the raytracing process. However, it is worth noting that these objects do
not affect the sensing performance since we filter out the echoes from the
static environment using clutter removal, as shown in Fig. 1.

of MSE, whereas Fig. 9(b) shows the number of feedback
messages required for varying a threshold. Note that the MSE
and the number of feedback messages required are calculated
by averaging over S cases and the number of packets M
transmitted in each case. It can be seen in Fig. 9(a) that the
TRRS and FRRS metrics under human walking scenarios in
raytracing-based channel have identical performance, whereas
the Euclidean distance outperforms the TRRS and FRRS. This
improvement arises because the Euclidean distance metric
achieves high CSI variation values, which increase the num-
ber of feedback messages required for a given threshold as
demonstrated in Fig. 9(b). One can also observe in Fig. 9(a)
that after a certain threshold value, all the metrics experience a
floor since the receiver forwards only one CIR measurement at
the beginning. Fig. 9(c) also compares the MSE and number of
feedback messages required of an adaptive threshold scheme
with a fixed threshold for varying the threshold. Here, the
threshold value on the x-axis represents the initial value used
for the adaptive threshold, and the other parameters ∆γ and
NF% in Algorithm 1 are set as 0.1 and 90%, respectively.
Moreover, we consider the Euclidean distance metric and
previous measurement-based reconstruction scheme at the
receiver and transmitter, respectively. It can be observed in
Fig. 9(c) that the adaptive threshold with ∆T = 0.33 s
improves performance by reducing the MSE values for range
and velocity estimates while utilizing a comparable number
of feedback messages. One can notice that for threshold =
0.1, a slight increment in the number of feedback messages
for the adaptive threshold can improve the velocity and range
estimates with MSEs of −3.1 dB and −1.4 dB, respectively, in
comparison to −2.1 dB and 2 dB for fixed threshold. However,
this improvement is not significant since the adaption could
not keep up with the channel variation. It is because of the
fact that ∆T = 0.33 s with a total sensing duration of 1.33 s
allows the initiator to adapt the threshold four times. However,
the major improvement of adaptive threshold method over a
fixed threshold can be clearly seen when we reduce ∆T from
0.33 s to 0.16 s. This reduction allows the initiator to track the
channel variation in a better way by adopting the threshold
eight times.

B. Real Channel Measurement

In addition to analyzing the system through the raytracing-
based channel model, it is also analyzed with measurements
collected with our 28 GHz channel sounder [25], [26]. The
antenna beamwidth at both the transmitter and receiver is 90◦

in azimuth and 50◦ in elevation; given the limited beamwidth,
the antennas were pointed towards the targets of interest. The
channel sounder has an instantaneous bandwidth of 2.16 GHz,
equivalent to delay resolution of 0.5 ns (15 cm range). Per
delay bin, the complex amplitude of the receiver power was
recorded while maintaining phase synchronization between
both ends via an optical cable. In this measurement campaign,
the PRI of the probing signal was 2.6 ms, allowing a maximum
unaliased Doppler velocity of 1 m/s. Note that these measure-
ments are particularly useful to validate the results obtained
from the raytracing-based channel model and also, to develop
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Fig. 9: Evaluation of TSMR procedure, where the performance is evaluated by averaging over 1000 different cases using the
raytracing-based channel model and each case has random placement, trajectory, and velocity of the target. In Fig. 9(c), the
curves and axes are color-coded.

(a) Human walking trajectory (b) Estimated velocity over time with SNR 0 dB (c) Estimated range over time with SNR 0 dB

Fig. 10: Sensing performance evaluation, considering channel measurements obtained from measurement campaign. Here, to
show the upper bound on the end-to-end system performance, we do not employ the TSMR procedure and consider that the
receiver feeds back the measurements all the time to build a sensing data matrix for range and velocity estimation.

several interesting insights into the system performance in a
real environment, as described below.

The measurement campaign was conducted in a room of
size 14.1m × 7.1m × 3.3m, where the transmitter and the
receiver are considered at the height of 1.55 m and 1.53 m,
respectively. Based on this setup, the NIST is conducting
an extensive channel measurement campaign to enable and
analyze the sensing performance under various use cases or
applications. One of the human walking scenarios, which is
considered for evaluation unless otherwise stated, is described
in detail below.

This scenario considers the placement of the transmitter and
receiver such that the normal of their arrays intersect at a 45◦

angle. This can be seen in Fig. 10(a). Similar to the living room
scenario considered in the raytracing-based channel model, the
line-of-sight link in this setup is also available. Moreover, we
considered that the human target walks directly towards the
receiver and then turns 180◦ to walk away from the receiver
in a total duration of 5.2 s, as shown through the black arrows
in Fig 10(a). Fig. 10(b) depicts the micro-Doppler plot, which
shows the variation of detected velocity of human target over
time, whereas Fig. 10(c) shows the variation of the detected
range of human target over time with operating signal-to-noise

ratio (SNR) of 0 dB. In Figs. 10(b) and 10(c), we do not
employ the TSMR procedure and in that case, the receiver
is available to feedback the estimated channel measurements
all the time. Thus, the sensing performance at the transmitter
is always limited by channel estimation errors. Moreover, for
comparison purposes, the reference for velocity and range
is obtained by considering all the 2000 channel realizations
recorded during the 5.2 s and performed Doppler processing
with the parameters mentioned in Table I. These references are
consistent with the actual movement as described in Fig. 10(a).
Interestingly, it can be observed in Figs. 10(b) and 10(c),
that the Doppler processing can identify the movement of
the target using the conventional IEEE 802.11ay-based pilot
sequences [18]. Moreover, we can estimate the velocity and
range most of the time even operating in the low SNR regime.

1) Evaluation of variation metrics: In Fig. 11(a), we show
the variation of normalized CSI over time considering the
metrics described in Section III-B for one of the human
walking cases considered in our measurement campaign. For
comparison purposes, we also include the WiSH-based metric
proposed in [16], where Nsel is considered as 64. First, it
can be seen that similar to standing up and sitting down
motions in real channel measurements and human walking
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Fig. 11: Evaluation of TSMR procedure, considering real channel measurements for the human walking scenarios under different
CSI variation metrics. In Fig. 11(b), the perfect CSI is obtained assuming an ideal transmission without noise. The imperfect
CSI case is obtained by transmitting at SNR = 0 dB, such that the channel estimation is prone to errors due to noise.

in a raytracing-based channel model, the Euclidean distance
metric also achieves a higher normalized CSI variation value
for the human walking scenario considered in real channel
measurement. Second, one can observe that the FRRS metric
is less sensitive to the variations that occurred in the chan-
nel due to the motion of the human target. On the other
hand, TRRS and FRRS experience identical normalized CSI
variation values more than 50 % of the time and for both
metrics, the threshold value needs to be significantly low
to capture complete human motion throughout the time to
achieve better accuracy. Furthermore, one can also observe
that the normalized CSI variation values for the WiSH-based
metric are higher in comparison with FRRS since FRRS only
employs cross-correlation in the frequency domain, whereas
WiSH leverages cross-correlation in both frequency and time
domains. Fig. 11(b) further demonstrates the impact of the
threshold on the number of feedback messages required from
the responder to the AP initiator. For each metric, the number
of CIR measurements that need to be sent back reduces as the
threshold increases. Moreover, since the Euclidean distance
metric is more sensitive to any small variations in the scenario,
it will trigger feedback more often. On the other hand, one can
also observe that for a given threshold, the WiSH metric results
in a higher number of feedback in comparison with FRRS.
Moreover, for a low value of the threshold, i.e., γ < 0.2,
the WiSH metric results in a higher number of feedback in
comparison with TRRS, whereas for γ > 0.2, the TRRS
metric results in a higher number of feedback. Interestingly,
the channel variation value increases as the SNR decreases,
which can be seen in the sub-figure in Fig. 11(b). This is
due to the fact that in the low SNR regime, the channel
cannot be estimated accurately and due to the high estimation
error, the channel changes drastically which in turn results in
higher channel variation values. Therefore, if we consider a
low value of the threshold e.g., 0.2 in the low SNR regime,
the responder transmits CIR measurements in each time instant
and in this case, the sensing performance is always limited
by the channel estimation errors. Moreover, one can also
observe in Fig. 11(c) that each metric has a different number of
required feedback for a fixed value of the threshold, which in

turn results in different sensing performances. For example, if
the AP initiator sets the fixed threshold at 0.15, FRRS, TRRS,
WiSH, and Euclidean distance metrics estimate the velocity
with MSEs of 1.3 dB, -10.03 dB, -18.75 dB, and -18.7 dB with
the reduction in the number of required feedback by 93.75 %,
53.35 %, 9.1 %, and 9.4 %, respectively.

2) Evaluation of adaptive threshold: In contrast to Fig. 9(c)
where we considered the raytracing-based channel model,
Fig. 12 analyzes the sensing performance of the adaptive
threshold method and compares it against the fixed threshold
method under real human walking channel measurement. Sim-
ilar to Fig. 9(c), the threshold value on the x-axis in Figs. 12(b)
and 12(c) represents the initial value used for the adaptive
threshold, and the step size ∆γ in Algorithm 1 is set as 0.1.
Moreover, the receiver employs the Euclidean distance-based
CSI variation metric, whereas the transmitter uses the pre-
vious measurement-based reconstruction with the number of
expected feedback NF = 90 % if human motion is detected.
As described in Section IV, the proposed adaptive threshold
method optimizes the sensing performance by dynamically
setting the threshold less than the CSI variation values most of
the time when there is a movement in the scenario. Thus, for
the low value of the initial threshold e.g., γ = 0, the number
of feedback messages required in the adaptive threshold is
lower compared to the fixed threshold. However, the MSE
performance in terms of velocity and range estimates is
comparable, which can also be seen in Figs. 12(b) and 12(c).
On the other hand, as the threshold value increases, the number
of feedback messages required progressively reduces in the
case of a fixed threshold, which in turn deteriorates the sensing
performance. However, for the same initial threshold value,
the sensing performance can be enhanced in the case of an
adaptive threshold since it can dynamically follow the trend of
CSI variation over time and transmits more feedback messages
when there is a movement detected in the scenario. Further, as
seen in Fig. 12(a), the adaptive algorithm with initial threshold
γ = 0.25 progressively decreases the threshold in the second
and third duration since the initiator detects the peak and
the number of received feedback messages is less than the
expected number of feedback messages. However, the initiator
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increases the threshold in the fourth duration since, in the third
duration, the number of feedback messages received is higher
than expected. It is worth noting that this adaptive threshold
with initial threshold γ = 0.25 reduces the number of feedback
messages by approximately 50 %. However, it can estimate
the velocity and range with MSEs −11.2 dB and −5.4 dB, as
shown in Figs. 12(b) and 12(c), respectively.

3) Evaluation of step size: Fig. 13 further evaluates the
sensing performance for varying the step size under the
real channel measurement for the human walking scenario.
Particularly, in Fig. 13(a), we obtain the number of feedback
messages required by varying the step size and initial thresh-
old in the adaptive threshold method, where the number of
feedback messages required is color-coded. Subsequently, in
Fig. 13(b)-(c), we present their corresponding impact on the
sensing performance where MSE values are color-coded. It
can be clearly seen that except for small step sizes at a higher
initial threshold, the proposed adaptive threshold method can
track the channel variation most of the time and capture the
range and velocity of the target with lower MSE values by
utilizing more than 800 sensing measurements. For small step
sizes at a higher value of the initial threshold, the number of
feedback messages required is remarkably low since threshold
adaption with low step size cannot keep up with the channel
variation. However, as the step size increases with a high value
of the initial threshold, the number of feedback messages
increases, which in turn improves the sensing performance.
Apart from this, for varying initial threshold with a fixed value
of step size e.g., ∆γ = 0.1, increasing and decreasing behavior
of the number of feedback messages arise since based on the
initial threshold, the initiator tries to adjust the threshold to
receive at least NF% = 90% feedback and once it receives
NF% = 90% feedback, it increases the threshold that in turns
reduce the number of feedback messages. This increasing and
decreasing behavior of the number of feedback messages for
varying the initial threshold with a fixed step size can be
clearly seen in Fig. 12(b).

Table II analyzes the impact of adaptive threshold on
the sensing performance, considering different reconstruction
schemes under perfect and imperfect channel estimates. Note
that the first value in each column corresponds to channels
estimated at a high SNR regime with negligible noise, denoted
as perfect channel estimation as the performance degradation
due to added noise can be ignored, whereas the second value
corresponds to imperfect channel estimates with 0 dB SNR.
First, it can be observed that under perfect and imperfect
channel estimates, the Euclidean distance and TRRS metrics
perform better with significantly low MSE values for both
range and velocity estimations. Second, in contrast to a fixed
threshold where operating in the low SNR regime results in a
higher number of feedback messages required, the adaptive
threshold with the Euclidean distance metric reduces the
number of feedback required from 1781 to 1373. This is
due to the fact that the adaptive threshold algorithm set,
NF = 90% which increases the threshold by step size if
the initiator receives more than 90 % of the measurements.
However, this decrease in the number of feedback required
under the Euclidean distance metric does not degrade the

performance. On the other hand, TRRS and FRRS result in a
higher number of feedback messages required if we operate
in the low SNR regime. Similar to the Euclidean distance,
both the reconstruction schemes in TRRS perform well and
performance further improves under a low SNR regime due to
an increase in the number of feedback messages. However,
this increase in the number of feedback in the low SNR
regime does not significantly improve the performance in
FRRS considering these reconstruction schemes.

For a fair comparison of these interpolation schemes, we
also evaluate the sensing performance considering a fixed
number of feedback messages under perfect channel estimates
at high SNR. Here, we obtain the fixed number of feedback
messages by considering different threshold values for each
CSI variation metric. Interestingly, one can observe in Table III
that with a fixed number of feedback messages, all the schemes
result in significantly low MSE values, but linear interpolation
works better than the other two schemes across all the CSI
variation metrics. This observation can also be seen for the
adaptive threshold in Table II. This improvement arises since
the linear interpolation scheme uses previous and next received
CSI measurements for interpolation.

Further, to demonstrate the impact of different topologies
on the sensing performance employing the TSMR procedure,
we considered additional channel measurements recorded for
five different human walking cases. These five new cases
are shown in Fig. 14, where the transmitter is located at a
fixed location, whereas the receiver is situated in a different
location, and a human subject is moving towards it. As
mentioned earlier, if we employ the same CSI variation metric
e.g., Euclidean distance in a given scenario with a different
location of communicating nodes and target, CSI variation
values would be different. This can also be seen in Figs.
15(a) and 15(b), where CSI variation values in 90◦ case are
comparatively lower than the 9◦ case. Now, if we employ a
fixed threshold e.g., γ = 0.2, the sensing performance using
the TSMR procedure would be different in both cases. To
avoid this dependency, the TSMR procedure with an adaptive
thresholding scheme can be used, which can significantly
improve the sensing performance by following the trend of
CSI variation over time under any scenario or topology with
the arbitrary placement of communication devices and human
targets. To analyze this improvement, the performance of
the TSMR procedure with fixed and adaptive thresholding
methods under these five different topologies is presented in
Table IV, where γ in fixed and adaptive threshold methods is
set as 0.2. It can be observed that in comparison to the other
four cases, the 90◦ case only has 190 feedback messages (c.f.
Fig. 15(b)) and results in very poor sensing performance for a
fixed threshold. However, if an adaptive thresholding scheme
proposed in Section IV is employed, the sensing performance
in all five cases is significantly improved, which validates that
the TSMR procedure with an adaptive thresholding scheme
can be used for any scenario with the arbitrary placement of
communication devices and human target.

Finally, to evaluate the impact of sensing on communication
performance, we analyze the sensing overhead (OH) in Table
IV for both fixed and adaptive thresholding schemes in the
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Fig. 12: Sensing performance evaluation, considering TSMR procedure with adaptive threshold scheme under real channel
measurements
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Fig. 13: Impact of step size on the MSE performance and the number of feedback messages considering adaptive threshold
scheme in real channel measurements for human walking scenario.

TABLE II: Adaptive Threshold with fixed initial threshold = 0.3 where the first value in each column corresponds to perfect
channel estimates at high SNR, whereas the second value corresponds to imperfect channel estimates with 0 dB SNR

Reconstruction Scheme
Euclidean Distance TRRS FRRS

# Feedback Required=1781, 1373 # Feedback Required=1068, 1694 # Feedback Required=570, 1210
Range MSE Velocity MSE Range MSE Velocity MSE Range MSE Velocity MSE

Previous Measurement -8.08, -7.80 -16.50, -16.26 -2.35, -8.32 -7.90, -11.51 3.23, -1.10 0.55, -0.19
Linear Interpolation -8.99, -8.27 -16.99, -16.29 -2.59, -8.62 -10.93, -15.42 -0.20, -1.19 -0.40, -2.33

TABLE III: Impact of reconstruction schemes considering a fixed number of feedback messages = 1000 under perfect channel
estimates at high SNR

Reconstruction Scheme
Euclidean Distance TRRS FRRS
Threshold = 0.2633 Threshold = 0.134 Threshold = 0.09

Range MSE Velocity MSE Range MSE Velocity MSE Range MSE Velocity MSE
Previous Measurement -6.90 -10.6 -7.16 -9.78 -4.40 -6.02
Linear Interpolation -6.92 -10.93 -7.81 -9.95 -11.32 -6.15

TSMR procedure. Here, the sensing OH corresponding to the
transmissions of Nburst bursts, each consists of M packets with
the symbol rate 1/TS = 1.76× 109 symbol per second (sps),
is calculated as

OH(γ) =
1

NburstM
[OHfirst + OHsecond(γ)]× 100 %, (17)

where the sensing OH is a function of the threshold γ used
in the TSMR procedure. The first overhead term OHfirst in the
above expression, which does not depend on γ, is calculated
for the second and third messages exchanged between the

transmitter and receiver after transmitting the data packet with
pilot sequence (c.f. Fig. 3 in Section III-A) as

OHfirst = MNburst(Lmsg,1 + Lmsg,2)TS × PRF, (18)

and OHSecond(γ) is calculated for the fourth and fifth messages,
which are only exchanged for collecting the CSI measurements
when the CSI variation criterion is satisfied at the receiver, as

OHsecond(γ) = Nmet(Lmsg,3 + Lmsg,4)TS × PRF, (19)

where Nmet(≤ NburstM) denotes the number of times the
CSI variation criterion is met and Lmsg,i, i ∈ {1, 2, 3, 4}
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Fig. 14: Measurement setup for the human walking scenario
with five different topologies, where the human subject walks
towards the receiver in a straight line between the start and
end positions. This scenario considers the placement of the
transmitter and receiver such that the normal of their arrays
intersect at an angle α, where α is considered as 9◦, 22.5◦,
45◦, 67.5◦ and 90◦.

is the length of the ith message, which consists of data and
preamble fields of size 4096 and 560 bytes, respectively. For
simplicity, we consider the same size for the data fields in each
message. One can observe in Table IV that the OH introduced
to enable sensing with the TSMR procedure is below 3% for
both fixed and adaptive thresholding schemes. However, for
the case when Nmet = NburstM , i.e., the CSI variation criterion
is always met as shown in Fig. 3(a), the maximum resources
occupied by the sensing messages are 3.25% of the symbol
rate.

VI. CONCLUSION

In this paper, we considered the threshold-based sensing
measurement and reporting procedure which is recently intro-
duced by the IEEE 802.11bf task group to reduce the number
of feedback messages required to report the channel measure-
ments for sensing applications. We extended this procedure
using the IEEE 802.11ay SC communication waveform, which
enabled us to analyze threshold-based sensing performance
with channel measurements estimated using the conventional
IEEE 802.11ay pilot sequences. Furthermore, based on vari-
ous CSI variation and reconstruction schemes, we developed
several important insights into the system performance under
synthetic and real channel measurements where the Euclidean
distance-based CSI variation metric can best capture various
human movements. Apart from this, the linear interpolation
scheme results in a better performance. Furthermore, we
demonstrated that in contrast to a fixed threshold, the proposed
adaptive threshold at the initiator can further improve the
sensing performance. Finally, our experimental results showed
that the adaptive threshold can reduce the number of feedback
messages by approximately 50 %, while estimating the human

velocity and range with MSEs −11.2 dB and −5.4 dB, respec-
tively, under real channel measurements.

Future studies can now focus on several research directions.
For instance, researchers could investigate how the TSMR
procedure performs in the presence of multiple human targets,
which are often present in outdoor environments. Moreover,
optimizing the step size for each duration of ∆T in the
adaptive-threshold method may be beneficial to further im-
prove the sensing performance at the transmitter. One effective
way to achieve this is by leveraging the previously received
CIR measurements at the transmitter. Lastly, the CSI variation
criteria used in the TSMR procedure could be employed to
promote collaborative sensing, allowing multiple devices to
collaborate only when they observe a significant variation in
the channel. These research directions hold immense promise
in improving the effectiveness of the TSMR procedure and
can have a significant impact on various sensing applications.
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Fig. 15: Variation of adaptive threshold over time considering human walking scenario with two different topologies.

TABLE IV: Comparison of fixed and adaptive thresholding methods under various network topologies

Scenario Fixed Threshold Adaptive Threshold
# Feedback

Required
Range
MSE

Velocity
MSE OH # Feedback

Required
Range
MSE

Velocity
MSE OH

9◦ 1081 -3.7 -15.15 2.51% 1421 -10.8 -23.6 2.78%
22.5◦ 1421 -4.5 -17.42 2.78% 1573 -15.4 -25 2.91%
45◦ 1328 -2.9 -13.9 2.71% 1125 -7.8 -22.5 2.54%
67.5◦ 1014 -2.6 -14.16 2.45% 1254 -9.4 -24.3 2.65%
90◦ 190 7.3 4.6 1.78% 1149 -6.9 -18.65 2.56%
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