
1
JETCAS-2022-0110

 *

Device Modeling Bias in ReRAM-based Neural
Network Simulations

Osama Yousuf, Imtiaz Hossen, Matthew W. Daniels, Martin Lueker-Boden, Andrew Dienstfrey, Gina C. Adam

Abstract—Emerging technologies based on resistive switching
(ReRAM) devices promise to improve the speed and energy
efficiency of next generation machine learning accelerators, but
further research is required for achieving commercial maturity.
System-level prototyping with emerging devices is costly, and
algorithmic investigations require hardware neural network
modeling which often deviates from experimental reality. In this
work, the concept of modeling bias is proposed as a way to
quantify this deviation and support reliable evaluation of device
populations in the context of neural network algorithms. While
applicable to other device modeling techniques, modeling bias is
investigated here using jump tables - a promising physics-less
technique to model emerging memory devices for hardware
networks. Questions about the fidelity of these tables in relation to
stochastic device behavior are answered. Two methods of jump
table modeling – binning and a novel Optuna-optimized binning -
are explored using synthetic data with known distributions for
benchmarking and experimental data obtained from TiOx
ReRAM devices for practical testing. Novel device metrics are
proposed, and it is shown that these metrics can present crucial
insights on the device population prior to training the hardware
network. Results on a multi-layer perceptron trained on MNIST
show that device models based on binning deviate from target
network accuracy at a low number of points and high switching
noise in the device dataset. The proposed approach opens the
possibility for device-algorithm co-design investigations into
statistical device models with better performance, as well as
experimentally verified modeling bias in different in-memory
computing and neural network architectures.

Index Terms—Hardware Neural Networks, ReRAM,

memristors, Device Modeling, Modeling Bias.

I. INTRODUCTION
RTIFICIAL INTELLIGENCE is exploding and is resource-
hungry, with advanced neural networks requiring
hundreds of thousands of computing chips. At such
large scales, traditional computing cores exhibit
excessively high data movement and energy demands

owing to the von-Neumann bottleneck, bringing us closer to
hitting the “power wall” [1]. Thus, there is a growing need for
investigating technologies with non-von Neumann
architectures. Such alternatives can serve as building blocks for

*This work was supported in part by NIST under grant 70NANB22H018,
by Western Digital under grant ECNS21932N and the GW Cross-
Disciplinary Research Fund. Corresponding author: Gina C. Adam (e-mail
ginaadam@gwu.edu). Official contribution of the National Institute of
Standards and Technology; not subject to copyright in the United States.

faster and more efficient neural network accelerators that
exploit near- or in-memory computation to minimize data
movement. Non-volatile resistive switching devices promise
both dense storage and energy-efficient analog processing,
making them suitable for in-memory computing for artificial
intelligence applications [2], [3].

Hardware-based neural networks based on emerging non-
volatile memory devices can exploit underlying physical
phenomena to efficiently implement matrix-vector
multiplication – a critical operation in neural networks. In
particular, ReRAM or memristor devices can be used as highly
energy-efficient physical implementations of artificial synaptic
weights for neural networks owing to their non-volatility and
fast switching characteristics [4], [5]. However, these devices
exhibit complex multi-physics behavior leading to performance
degradation in prototype networks. As with many other
emerging technologies, the impact of these device non-
idealities on the network performance needs to be further
studied and resolved before they can be used to realize large-
scale analog accelerators.

Despite significant progress in the past two decades [4], the
study of hardware neural networks based on ReRAM devices is
facing several major barriers. First, a purely experimental
approach is unfeasible since commercial ReRAM tape-outs
have long timelines and significant design and fabrication costs
[6]–[8]. Secondly, before hardware prototyping can be
practically motivated, results from hardware-aware simulations
are needed to reliably predict the promising performance of
these systems and optimize their end-to-end behavior across all
levels – from underlying devices to neural networks. Therefore,
suitable modeling of ReRAM devices is a key consideration for
hardware neural networks investigations and in-memory
computing systems based on ReRAM devices in general.

A broad range of models has been proposed. Atomistic
models focus entirely on simulations from first principles in an
effort to capture the multi-physics dynamics of filament
formation and their conductance characteristics. These models
may be used to provide insights needed for material and device
design optimization [9]–[12]. Compact models needed for
circuit design use physically inspired parametrizations which

Osama Yousuf, Imtiaz Hossen, and Gina C. Adam are with the George
Washington University, Electrical and Computer Engineering Department,
Washington, DC, 20052. Matthew W. Daniels is with the National Institute
of Standards and Technology, Gaithersburg, MD, 20899, USA and Andrew
Dienstfrey is with the National Institute of Standards and Technology,
Boulder, CO, 80305 USA. Martin Lueker-Boden is with the Western Digital
Technologies, San Jose, CA, 95119, USA.

A

mailto:ginaadam@gwu.edu

2
JETCAS-2022-0110

are tuned to match experimental current vs. voltage
characteristics [13], [14]. While both classes of models are
appropriate for their respective purposes, they rely on
computationally expensive systems of equations and are
therefore not well-suited for scaling to neural network
simulations. Additionally, these models require investigating
underlying physical phenomena such as the shape of the
filament [15]–[17] for new devices, which is a time-consuming
process that can delay algorithmic investigation.

Due to these limitations, for the following study we propose
to investigate jump table models to characterize ReRAM device
irregularities. Such models consist of lookup tables that specify
the probability of moving from one conductance state to another
as a function of present conductance state and applied pulse
(and potentially other measurement parameters). In contrast to
the physics-based and semi-empirical models discussed above,
these models are derived solely from experimental data without
reference to underlying physical mechanisms. While these
physical mechanisms are important for device design, they
impact the neural network performance only indirectly at the
level of device population. A large-scale neural network can
require thousands to millions of individual conductance updates
per training epoch depending on the network architecture. Since
physics-based and semi-empirical models can be too
computationally intensive due to the use of numerically
complex equations, a data-driven jump table model provides a
more lightweight modeling approach and a faster solution via
look-up tables while being able to exhibit better experimental
realism across a broad range of parameters. It is known that
variability in the switching of ReRAM devices leads to weight
dispersion, which can potentially negatively impact the
accuracy and performance of the overall system [18], [19].
Therefore, accurate device modeling is needed for providing a
realistic estimate of the training characteristics of analog
neuromorphic systems implemented with real ReRAM devices.

In this paper, we introduce and study modeling bias as a
useful concept to evaluate the fitness of a device model in the
context of neural network simulations. The choice of the
network architecture, the problem, and the quantization regime
detailed in Section II is motivated by our vision for an open-
source end-to-end device-algorithm co-design and prototyping
platform for device benchmarking [20] intended to bridge
efforts in the emerging device research community and the
computer science and engineering community. We investigate
the impact of two methods for creating jump table-based device
models: the traditional binning and interpolation method
proposed in [21], and a novel iterative hyperparameter
optimization method based on the Optuna framework [22]. For
benchmarking purposes, we synthesize ReRAM jump tables
using an assumed closed-form model for device switching and
investigate the convergence of our interpolation methods, as
detailed in Section II A. These distributions are inspired by the
“Real Device” model from the NeuroSimV3.0 simulator [23].
Trends in network metrics are compared with trends in the
goodness-of-fit for the device to systematically analyze the
performance of the interpolation methods for device modeling
in the context of neural network simulations. We also present
the training performance and methods to estimate the modeling
bias when experimental jump tables are used. These are jump

tables based on experimental data obtained from TiOx ReRAM
devices, for which the underlying distributions for signal mean
and switching noise are not known.

The remainder of this paper is organized as follows. Section
II covers the methods used in our analysis including details on
jump table modeling, device datasets, neural network structure
and training routines, and metrics for inferring data
interpolation quality. Section III presents comparative neural
network results using (a) synthetic datasets, where we
investigate the impacts of the number of input data points,
device cycle-to-cycle variation, and device non-linearity on
modeling bias, and (b) experimental datasets, where we present
an iterative approach for jump table modeling based on
hyperparameter optimization and show how the modeling bias
performance could potentially be estimated without
experimental apparatus. Section IV is a discussion highlighting
the limitations and opportunities in emerging device modeling
for large-scale neural network simulations. We wrap up with
conclusions in Section V.

II. METHODS

A. Jump table modeling
A jump table is a set of cumulative distribution functions

(CDFs) that define the stochastic change in device conductance
per voltage pulse as a function of the current conductance state
(i.e., the distribution of ΔG per pulse as a function of G) [18],
[21], [24]. We define a jump table device model 𝑥𝑥 as a series of
distributions as follows:

x = {XG1 , XG2 , … , XGm} , (1)
where each XGi is a normal distribution with mean μi and
standard deviation σi, and m is the total number of distributions.
The mean profile μ(G) refers to the ordered list of μi’s, and
likewise, the standard deviation profile σ(G) for σi’s.

Jump tables provide a single model to encompass both the
stochastic nature of device programming and the non-uniform
conductance response ΔG as a function of conductance G. The
cycle-to-cycle variability of a device is represented by the
standard deviation around the ΔG mean. An alternative
representation in the resistance space (ΔR vs. R) [25] is also
possible. Here, we opt to work in (G,ΔG)-space since
conductances map naturally to matrix weights in a neural
network implemented with real ReRAM devices.

During training, a desired weight update is determined by the
gradient of the loss, and programming pulses are applied to each
device to adjust its conductance according to this update [18].
Due to ReRAM physics, conductance increases and decreases
are not always symmetrical. Thus, two jump tables are needed
– one for potentiation (increase in G), and another for
depression (decrease in G), referred to as the SET and RESET
tables respectively.

Jump tables are constructed from sampled data. For example,
a dataset could consist of ReRAM measurements of n
experimentally sampled points (G1,ΔG1), … , (Gn,ΔGn), where
for a given i, Gi is the initial device conductance and ΔGi is the
conductance change resulting from a single pulse at a fixed
voltage. Alternatively, one may construct a synthetic dataset by
sampling an arbitrary number of (Gi,ΔGi) data points from a
given mean and standard deviation profile. Given this discrete

3
JETCAS-2022-0110

data, various interpolation methods can be used to create a
continuous model of the underlying mean and standard
deviation profiles.

The binning jump table device modeling algorithm is
outlined in Algorithm 1. The inputs are a dataset D comprising
of (Gi,ΔGi) pairs, and the number of bins Gbins,ΔGbins. The
outputs are the binning model’s mean and standard deviation
profiles μ(G) and σ(G). In brief, the (Gi,ΔGi) data is grouped
into bins of specified count. From each G bin in this binned data,
the mean and standard deviation information for the ΔGi are
computed. The mean and standard deviation values are then
linearly interpolated across the G bins to obtain the jump table
model.

It has been observed that binning and interpolation can
introduce unwanted errors and artifacts in modeling such as
edge effects, empty bins, excessive smoothing, and rugged
predictions of the underlying mean and standard deviation [26].
To avoid such artifacts, parameters Gbins and ΔGbins for
Algorithm 1 are optimized for each input dataset individually,
in line with our previous work [27]. This is done to ensure that
comparisons between different binning models remain fair
relative to one another.

Algorithm 1. Binning Jump Table Device Modeling
1 procedure BinningModel (in D, Gbins,ΔGbins; out μ,σ)
2 hist, edges = Hist2D(D, Gbins,ΔGbins) // 2D binning
3 Gaxis,ΔGaxis = GetMean(edges) // average G,ΔG per bin
4 C = []
5 for i in range(hist) do
6 C[i] = ToCDF(hist[i]) // calculate CDF(ΔG) per G bin
7 end for
8 μ,σ = fit(C, Gaxis,ΔGaxis) // Gaussian fit, interpolated
9 end procedure

Details of the Optuna model are presented separately in

Section II E. To summarize, both the binning and Optuna
modeling schemes attempt to predict the underlying mean and
standard deviation profile of the input conductance data based
on data interpolation.

B. Device Datasets
Cycle-to-cycle switching variability present in ReRAM

devices is a non-ideality that can significantly hamper the
performance of neural networks based on ReRAM devices [28].
Significant efforts in the community focus on engineering
devices with lower variability [29] and providing algorithmic
approaches to manage this device variability at the neural
network level [21], [30]. For this work, we are focused only on
exploring the impact of cycle-to-cycle variability on the
modeling bias at the network level. Different formalisms exist
in the literature to quantify device non-idealities. For example,
[23] expresses cycle-to-cycle switching variation as an overall
percentage of the underlying conductance range, [31] expresses
this variability in terms of the ratio between the standard
deviation and device resistance, and [32] proposes the use of a
stochastic translator which uses a bitwise-AND operation in
place of multiplication to capture this switching noise. We
model the cycle-to-cycle variability by a random variable with
distribution given by the CDF within a jump table.

The underlying distribution and noise profile are unknown in
experimental data. Therefore, for the purposes of testing the
proposed methodology, we use synthetic target distributions.
Synthetic Gaussian datasets are generated with pre-determined
underlying mean and standard deviation profiles μ(G) and σ(G)
over a given conductance range G ∈ [Gmin, Gmax] with fixed
minimum and maximum bounds. A synthetic jump table can be
created either from these target or ground truth mean and
standard deviation profiles, called a target jump table, or from
interpolated predictions of these profiles. In the case of binning
interpolation, the jump table is referred to as a binning jump
table.

In this work, we focus on a family of synthetic distributions
for which the random variable representing ΔG per pulse has a
mean profile μ(G) that is linear in G, and the standard deviation
profile σ(G) is a constant. This was chosen to match the
experimentally derived “Real Device” model from the
MLP+NeuroSim V3.0 framework [23], which we refer to as the
analytical device model hereafter.

The jump table for this analytical model was synthesized
using the theoretical equations for the conductance vs. applied
pulse behavior from NeuroSim. We first set the cycle-to-cycle
variation (and all other device variations) to zero, keeping only
the non-linearity values for potentiation and depression as 2.4
and −4.88 respectively (which are the default values for Ag:Si-
based ReRAM model in NeuroSim). The maximum number of
conductance levels was set to 500. We use this model to extract
(Gi,ΔGi) data points for potentiation as well as depression. This
analytical model of exponential interpolation between Gmin and
Gmax mathematically translates into a linear function of the
change in conductance per pulse vs. the conductance state, as
defined in (2) and (3) respectively as follows:

G(p) = B �1 − e−
p
A� + Gmin , (2)

ΔG / pulse ≈ dG

dp
= 1

A
(B − G + Gmin) , (3)

where A and B are constants, and p is the applied pulse
number. Thus, for our case, the equivalence was achieved by
modeling the derivative mean profile as linear, with
μ(Gmin) = 0.161 nS, μ(Gmax) = 0.022 nS for SET, and
μ(Gmin) = −0.002 nS, μ(Gmax) = −0.346 nS for RESET.
We then repeated this data gathering process at different values
of cycle-to-cycle variation, and then performed fitting to
determine the equivalent standard deviation profile for the jump
table model. It was found that the cycle-to-cycle variation
parameter of the analytical model, C2C, precisely related to the
constant standard deviation profile, σ, of the jump table model
as follows:

σ(G) = C2C ⋅ (Gmax − Gmin) , (4)
where Gmin and Gmax are physical minimum and maximum
bounds on the device conductance values, fixed at 3 nS and
38 nS respectively. In essence, the standard deviation relates to
the cycle-to-cycle switching variation as a percentage of the
conductance switching range.

With the extracted mean profile μ(G) and the standard
deviation σ(G) using (4), we can sample ΔG vs. G datasets for
any given analytical device model containing an arbitrary
number of points at a specific cycle-to-cycle variation.

4
JETCAS-2022-0110

Algorithm 2. Synthetic Data Generation
1 procedure GenerateSyntheticData (in n, G, μ,σ; out D)
2 f = LinearInterpolate(𝐱𝐱 = G,𝒚𝒚 = μ)
3 g = LinearInterpolate (𝐱𝐱 = G,𝒚𝒚 = σ)
4 for i in range [1, n] do
5 Gi = RandomUniformFloat(min(G), max(G))
6 μi = 𝐟𝐟(Gi),σi = 𝐠𝐠(Gi)
7 ΔGi = RandomNormalFloat(μi,σi2) satisfying (5)
8 D[i] = (Gi,ΔGi)
9 end for
10 end procedure

The synthetic device data generation algorithm used is

outlined in Algorithm 2. The inputs are the number of points to
synthesize n, conductance dynamic range G, and the mean and
standard deviation profiles μ(G) and σ(G). The output is a
synthetic dataset D comprising (Gi,ΔGi) pairs. Due to physical
device constraints, for all pairs (Gi,ΔGi) recorded
experimentally, we also require that

Gmin ≤ Gi + ΔGi ≤ Gmax , (5)
that is, the jump table may not push a device beyond its minimal
or maximal conductances. For any conductance update that
exceeded these bounds, the conductance is clipped to the
corresponding extreme value in order to eliminate non-physical
device behavior. Additional constraints may be imposed to
further reflect physical realism.

Fig. 1a depicts the one-to-one matching between the
conductance trajectories for both SET and RESET phases of the

analytical model and the corresponding target jump table
model. The Ag:Si analytical ReRAM model from NeuroSim
has a cycle-to-cycle variation of 3.5 %, whereas our equivalent
target jump table model has a standard deviation of 1.2 nS. Fig.
1b shows the overlapping raw conductance data of the two
models, indicating that our synthetic model is able to generate
(Gi,ΔGi) data points in a dynamic range which matches the
analytical model.

In this work, we also use experimental ΔG vs. G data from a
10 nm device with 2.5 nm Al2O3 / 15 nm TiOx / 5 nm Ti / 30
nm Pt. The data were obtained utilizing a semiconductor
parameter analyzer and pulse programming (Fig. 1c). Before
programming, the devices were formed with monotonically
increasing voltage pulses to reach a high conductance state. The
data were collected after forming and then cycling between SET
and RESET 30 times. A device is first programmed to a random
conductance value within a given range. Then a write pulse
voltage with 500 ns high time, 100 ns rise and fall time, and
voltage amplitude randomly selected from among {±1.35 V,
±1.5 V, ±1.65 V, ±1.8 V} is applied. The conductance state is
read and the change is recorded into a dataset corresponding to
the selected voltage amplitude via a subsequent pulse of 100
mV applied 100 μs after the write pulse; during the intermediary
time, the device is held at 0 V. This process is repeated until
either all pulses in the list have been applied or the device
conductance exceeds some defined limit, then the algorithm
restarts from a random conductance value. The end result is a
separate (G,ΔG) dataset for every voltage amplitude (Fig. 1d).
The exploration of pulse amplitudes is purposely random:
typical approaches that use monotonically increasing or
decreasing write pulse voltage steps may result in sparse data
sets for high write voltages, since the device typically switches
before the higher voltages are applied. By comparison, our
resulting data sets for each write pulse voltage have roughly the
same number of points (≈10,000). This is critical for the jump
table modeling of this device data.

C. Neural Network Details
A 2-layer perceptron network with 324 neurons in the input

layer, 50 neurons in the hidden layer, and 10 neurons in the
output layer, with no biases, was used. The network was trained
for image classification on a reduced version of the MNIST
dataset, which consists of 18 × 18 pixel images (center-
cropped from the original 28 × 28 pixel images) of handwritten
digits labelled 0 through 9 [33]. Inputs to the network were first
normalized by subtracting a constant (0.1307) and dividing the
difference by a fixed scale factor (0.3801). This shift and
scaling were determined as the mean and standard deviation of
all pixels in the 60,000 images of the original, uncropped
MNIST training set. A sigmoidal activation function was used
for each hidden neuron, and a softmax activation was used for
the output layer. Mean squared error was used as the loss
function for training. The weights were initialized uniformly at
random from −√𝑘𝑘 to √𝑘𝑘, where 𝑘𝑘 is the reciprocal of the
number of input features for a given layer (thus 𝑘𝑘 = 1

324
 and

𝑘𝑘 = 1
50

 for the input and output layers respectively), clamped
between [wmin, wmax] = [−1, 1]. Mini-batch gradient descent
was used based on previous investigations [30], [34], [35] of its

Fig. 1. Overview of device data used in our modeling.
Synthetic: (a) Device conductance trajectories and (b)
associated ΔG vs. G data of the analytical and target jump table
device models at 3.5 % cycle-to-cycle variability and 1.2 nS
standard deviation respectively, with Gmin = 3 nS and
Gmax = 38 nS. Experimental: (c) ReRAM devices used for
experimental data gathering showing I-V characteristics, and
(d) ΔG vs. G data at different pulse amplitudes.

RESET

SET

ba

RESET

SET

Jump table model Analytical model

SET

c

d

50

-50
0

Δ
G

 /
pu

ls
e

(μ
S)

100

20
10

0 G (μS)

30
40

50

-50
0

100

20
10

0 G (μS)

30
40

20 µm

ReRAM

RESET

5
JETCAS-2022-0110

performance benefits when training a network with non-ideal
synaptic weights, and the batch size was fixed at 4096. In
addition, stochastic rounding was used for the pulse coding of
the gradient (6). Furthermore, all network-level quantities such
as layer weights, gradients, activations and errors were
quantized to 6-bit fixed-point precision using the QPyTorch
library [36] to match realistic hardware operation. The choice
of network architecture, batch size, loss function, optimizer,
and quantization scheme are all motivated by the specifications
of our future hardware prototype [20]. The current network
under investigation would require at least 16,700 ReRAM
devices using a one-device-per-synapse scheme for a potential
prototype. Software weights trained in the range [wmin, wmax]
would be linearly mapped to device conductances in the
dynamic range [Gmin, Gmax]. For on-chip training, a co-
processor could be envisioned to implement streaming batch
gradient decomposition and program the ReRAM array in a
pipelined fashion.

Fig. 2 presents background on how a feed forward neural
network can be implemented using ReRAM devices in
hardware, and on their modeling via jump tables. A single
ReRAM device behaves like an artificial synapse, and ReRAM
device crossbars can physically implement densely connected
synaptic weight matrices, with weights wij of a network layer
represented as device conductances Gij in the memristive
crossbar array. For inference, pixels of an input image are
converted to voltages on the input wires of the ReRAM
crossbar, as shown in Fig. 2a. As a result of resistive circuit
physics (Ohm’s and Kirchhoff’s Laws), these voltages induce
currents on the layer-output wires whose values are equal to the
matrix-vector product of synaptic weights times input voltages.
These currents are then converted into numerical values using
an analog-to-digital conversion. The nonlinear activation
function is computed using digital logic. This result is fed as a
voltage applied to the inputs of the following network layer, and
so on until the final output layer is reached.

For backpropagation, traditional minibatch gradient descent

can be used to update the conductances of the crossbar array.
For a conductance Gij at minibatch iteration k, firstly the total
number of pulses pij to be applied is determined by:

pij = 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 �pmax . �∇w
(k)L�

ij
� , (6)

where ∇w
(k)L is the gradient of the loss function averaged over

all minibatch inputs at iteration k, and pmax is the device
dynamic range, defined as the total number of pulses required
to either SET the device from Gmin to Gmax, or alternatively,
RESET the device from Gmax to Gmin. For our synthetic models,
pmax was 500, and for our experimental models, pmax was 64.
pij takes on the sign prescribed by the gradient: a positive sign
means that Gij is to be SET and a negative sign means that Gij
is to be RESET. It is thus important to retain this sign
information in order to correctly determine the update for each
device in the crossbar. In hardware, the pij pulses would
physically be applied to the conductance Gij directly. However,
in our jump table training regime, the following algorithm is
employed to update Gij due to the train of applied pulses pij:
Based on the sign of pij, the appropriate jump table is selected
and a random number uk is generated between 0 and 1. The
corresponding conductance change for a pulse is the inverse of
the CDF for a device at conductance Gij applied to u, ΔG =
CDF−1(u). The device conductance is updated to Gij + ΔG and
this cycle is repeated for all pulses. These jump table
conductance updates intrinsically quantize and model the
conductance update behavior of real devices.

We implemented jump table-based neural network training
in PyTorch [37]. In our simulations, the synaptic weights for
each network layer are represented in the conductance space as
a crossbar array via the CDF given by a pair of SET and RESET
jump tables (Fig. 2b). While the scope of our work is modeling
neural networks based on ReRAM devices, our framework can
easily be extended to model other emerging analog memory
technologies such as phase change memories, magnetic tunnel
junctions, or photonic modulators [18], [38]. Additionally, this

Fig. 2. Inference and training in a ReRAM-based multi-layer perceptron network. (a) Inference: ReRAM conductances implement
matrix-vector multiplication in hardware as a consequence of electrical circuit physics (Ohm’s and Kirchoff’s Laws). Atomic Force
Microscopy picture of a representative crossbar matrix of individual ReRAM devices is also shown. (b) Training: For all ReRAM
devices in the network, the derivative of the loss function with respect to the synapse is converted to the number of voltage pulses
to be applied to the corresponding device. The change in conductance resulting from these pulses is modeled by two jump tables,
one for SET and one for RESET, samples of which are also shown.

Gij

voltage coding
of the inputs

conductance coding of
the synaptic weights

i1

ReRAM
device

ReRAM
array

to the next layer

in2
current coding
of the outputs

Activation function

n pixels

n
pi

xe
ls

v1

v2

v3

vn2

Gij

pulse coding of the gradient

Jump table device model
for conductance update

RESETSET CDF
1

0

𝐆 𝐆

𝚫𝐆
pe

r p
ul

se

a b

50 nm

-30 nm

6
JETCAS-2022-0110

work is entirely focused on training and investigating modeling
bias using device models during training. Once programmed,
the ReRAM device weight behaves like a fixed and relatively
stable circuit element, so any small read noise and relaxation
effects were considered negligible for the inference phase.

Training characteristics of hardware neural networks
implemented with emerging synaptic devices can widely
depend on their switching characteristics and statistics. A
network implemented using devices with high switching
variability would have different optimal training
hyperparameters than a network implemented using nearly-
ideal devices, due to different evolution of the respective weight
distributions [34]. It is thus of utmost importance to isolate this
phenomenon in the context of modeling bias. To address this, a
learning rate optimization was implemented using a grid-search
for every individual target model. In brief, 10-epoch training
was carried out using learning rates sampled on a logarithmic
scale covering a wide range. The optimal learning rate was
defined as that which gave the highest test accuracy averaged
over these training epochs. The impact of randomness in the
network weight initializations, mini-batching shuffling, and the
random number generation in the stochastic jump-table weight
update was explored by repeating this optimization under
various conditions. The results show consistency of the optimal
learning rate for a given target jump table model. The modeling
bias of a given interpolated jump table model was investigated
using 100-epoch simulations computed for 20 iterations at only
the optimal learning rate corresponding to each target model.
Since each accuracy comparison between a target and an
interpolated model is done after an initial learning rate
optimization phase, any differences and thus resulting modeling
bias arise solely due to misestimations during the device
modeling and not as a result of a poor choice of network
hyperparameters.

D. Metrics for Evaluating Modeling Quality
In order to quantify the quality of the device model in the

context of the neural network training, the following metrics are
employed at the network and device levels.

D.1. Modeling Bias

Given that ReRAM conductance updates have a stochastic
character, any single training simulation and its attendant
accuracy should be viewed as an instance of a random variable.
Different models for the ReRAM devices have different
distributions in accuracy, and it is sensible to compare their
means. We define modeling bias (MB) as the amount that the
network’s average modeled test accuracy (Mean Acc.model) –
the accuracy when the synaptic weights are represented by
ReRAM devices using an interpolated jump table model –
differs from the average target test accuracy (Mean Acc.target).
These averages are computed for each epoch as shown in (7).
Note that the target test accuracy can have a different meaning
based on the type of data we used for modeling. For synthetic
data, it is the accuracy when the synaptic weights are modeled
by ReRAM devices using the synthesized target jump table
model. For experimental data, it is the experimental test
accuracy that would be obtained in a physical implementation

based on the real behavior of the device population used for
creating the jump table models.

Since modeling bias is a function of the training epoch, a
good device model is one that has lower modeling bias
throughout training. Formally, we define

MB(i) = Mean Acc.model (i) – Mean Acc.target (i) (7)
as a function of epoch number i. The bias can either be positive,
when the modeled accuracy is too optimistic and overpredicts
the target accuracy, or negative, when the modeled accuracy
underpredicts it. For the results shown below, mean network
accuracies required by (7) were determined by averaging over
20 instances of network training for a given device model.

D.2. Switching Sign Discrepancy and Overlapping Error

To estimate the quality of a device model, we propose the use
of two device-level error metrics: switching sign discrepancy
(SSD) and overlapping error (OVLE). At the network level, the
switching direction of ReRAM devices plays a pivotal role in
effective training. As an example, suppose the target mean
values for a given jump table model were all positive across the
entire range of the G parameter with minimal variance, as is the
case with some of our SET tables. If an interpolated model
regularly predicts negative ΔG updates for many of the
corresponding G indices, the result would be a weight that is
changed in the opposite direction of what is prescribed by the
corresponding gradient. These updates with inverted signs
would almost certainly lead to a degradation in training
performance. The same argument applies to the RESET tables.
To measure the presence of this failure mechanism, we define
the switching sign discrepancy (SSD) as:

SSD(x, y) =
1
n
��P�XGi < 0� − P�YGi < 0��
n

i=1

 , (8)

where XGi and YGi are distributions of device models x and y
respectively, n is the total number of distributions within these
models (assumed to be the same for both models), and P(XGi <
0) is the probability that the i-th distribution of model x
produces a negative variate. For our jump table models with
Gaussian distributions, this is computed as:

P�XGi < 0� = �PDFXGi dG =
1
2

erfc �
μi

σi√2
� ,

0

−∞

 (9)

where PDFXGi is the probability density function of XGi, erfc(.)
is the complementary error function, and μi,σi are the mean and
standard deviation of XGi. The SSD quantifies the average
signed agreement between two device models in terms of their
switching behavior. The SSD of a device model with itself is 0
since the agreement is maximum and is 1 when there is no
signed switching agreement between two models.

Along similar lines, the overall overlap between device
model distributions is also important. For this, we make use of
the complement of the overlapping coefficient from [39] and
define the overlapping error (OVLE) between two device
models x and y as follows:

OVLE(x, y) =
1

2n� � ��PDFXGi − PDFYGi��dG
+∞

−∞

n

i=1

 . (10)

7
JETCAS-2022-0110

The OVLE of a device model with itself is 0 since the overlap
is maximum and is 1 in the case of no overlap between two
models.

These device metrics can potentially present insights about
the modeling bias performance of a given device model, prior
to carrying out expensive neural network experiments, and can
thus save significant time. Additionally, these metrics can also
serve as a tool for device designers to quickly quantify
disagreement (or agreement) between different devices at the
level of device switching. As an example, different jump table
models could be extracted from experimental (Gi,ΔGi) datasets
obtained from different devices, and these error metrics could
be computed and compared across device populations.

D.3. Kolmogorov-Smirnov test

For experimental data where the underlying statistics are
unknown, the SSD and OVLE cannot be directly calculated.
The two-sample Kolmogorov-Smirnov test (or a similar non-
parametric two sample test) can be used instead. The
Kolmogorov-Smirnov test can provide a probabilistic estimate
of two datasets being drawn from the same underlying
distribution. The test value reports the largest absolute
difference D between two distribution functions I(x) and J(x)
as given by (11).

D = sup
x

| I(x) − J(x)| , (11)

where sup denotes the supremum. A lower test value
corresponds to a better fit, meaning that the probability of the
two datasets having been drawn from the same distribution is
higher. Since our experimental device data is two-dimensional
(Gi,ΔGi), we use a two-dimensional variant of the
Kolmogorov-Smirnov test, as specified in [40]. Our
methodology is as follows: First, the experimental data is
transformed to reflect a compliance current to limit switching
between Gmin and Gmax using (5). Second, the data is randomly
split into non-overlapping modeling and testing subsets. The
modeling subset is used to generate binning and Optuna jump
table models. We then use these models to synthesize a
�Gj,ΔGj� dataset. Finally, we apply the Kolmogorov-Smirnov
test on the initial testing subset and each of the two synthesized
datasets. As a baseline for comparison, we also report the
Kolmogorov-Smirnov test values between the two
experimental subsets in our results.

E. Optuna modeling
We propose a method to explore the network modeling bias

in the absence of experimental apparatus and/or experimental
network accuracies. Ideally, the experimental data includes a
complementary set of experimental device (Gi,ΔGi) datapoints
and the corresponding network train / test accuracies obtained
from a prototype network physically implemented with these
devices. In such case, different device modeling methods, their
device- and network-level metrics, and respective network
simulation results could be tested against the experimental
reality directly to determine if the device model needs to be
further optimized. However, prototyping neural networks in
emerging hardware is challenging, expensive and time
consuming. Therefore, for a given emerging device technology,
only experimental device (Gi,ΔGi) data might be available to

benchmark both the device model and the network simulation
results. Nevertheless, the question remains if the device model
utilized is sufficient to obtain a realistic network accuracy or if
there is space for optimization in the device model.

To address this challenge, this paper presents a device
model optimization methodology based on Optuna [22], an
automated hyperparameter optimization framework. The
algorithm employs a derivative-free optimization strategy to
push the limits of device modeling towards experimental
realism. As an optimization metric, the Kolmogorov-Smirnov
test is used. Algorithm 3 details our developed Optuna
algorithm. The input is an experimental dataset D comprising
of (Gi,ΔGi) pairs, conductance range G, polynomial degrees m
and n to use for modeling mean and standard deviation profiles
respectively, objective function f, and a termination value e to
be optimized. In our case, the objective function is the two-
dimensional two sample Kolmogorov-Smirnov error between
the testing subset of the experimental dataset, and synthesized
Optuna dataset. However, this can easily be replaced with an
alternate metric as needed. e is chosen as the binning test error,
which is the Kolmogorov-Smirnov error between the testing
subset of the experimental dataset and a synthesized binning
dataset. The outputs are Optuna mean and standard deviation
profiles μ′(G) and σ′(G), the test error of which is better than
the corresponding binning model by iterative optimization.

Algorithm 3. Optuna Jump Table Device Modeling
1 procedure OptunaModel (in D, G, m, n, f, e; out μ′,σ′)
2 𝑒𝑒′ = ∞ (Initialize Optuna error as inf.)
3 μparams ← Initialize m + 1 coefficients for μ(G) profile
4 σparams ← Initialize n + 1 coefficients for σ(G) profile
5 while 𝑒𝑒′ ≥ 𝑒𝑒 do
6 μ′ = EvaluatePolynomial(G, μparams)
7 σ′ = EvaluatePolynomial(G,σparams)
8 GenerateSyntheticData(in length(D),G,μ',σ'; out D')
9 e′ = 𝐟𝐟(D′, D)
10 μparams ← Update m + 1 coefficients for μ(G) profile
11 σparams ← Update n + 1 coefficients for σ(G) profile
12 end while
13 end procedure

In essence, Optuna iteratively learns the mean and standard

deviation profiles of an input experimental dataset consisting of
(Gi,ΔGi) points recorded at a certain voltage by fitting two
separate polynomials (of degrees m and n) on the input dataset
– one for the mean profile over G, and another for the standard
deviation profile over G. The m + 1 coefficients for the mean
profile, and the n + 1 coefficients for the standard deviation
profile serve as hyperparameters for optimization. Since the
algorithm is iterative, there is no guaranteed upper-bound on its
time complexity. In comparison with binning, it is fairly more
time-consuming in terms of runtime because of having to
sample from a mn-dimensional space a large number of times.

For our datasets, hyperparameters were initialized based on
direct polynomial fitting over binning mean and standard
deviation profiles. Successive sampling was done by the tree-
structured parzen estimator – a Bayesian optimization strategy.
For all RESET voltage pulse amplitudes from our experimental

8
JETCAS-2022-0110

datasets, the termination criterion was achieved using parabolic
modeling of the mean and standard deviation profiles, and for
all SET voltages, it was achieved using linear modeling of the
mean and standard deviation profiles.

III. RESULTS

A. Impact of number of data points
Identifying the optimal number of (G,ΔG) data points for

jump table modeling is of significant interest to provide a highly
representative simulation result at the network level, while
keeping the device measurement time to a minimum.

To study this, we generated series of jump tables following
the linear mean, constant standard deviation profiles from Fig.
2 (equivalent to 3.5 % cycle-to-cycle variability of the
analytical device model) with an increasing number of points in
the raw dataset, ranging from 40 to a total of 10,000 data points.
Neural network simulations using these jump table models were
run at their respective optimized hyperparameters and the
modeling bias as well as SSD and OVLE metrics were
determined.

The results in Fig. 3 show a potential correlation between the
quality of the device model and the quality of the network
simulation based on this device model. As the number of data
points increases, conductance trajectories of the binning models
align more with the target model (Fig. 3a, b). Additionally,
device-level metrics SSD and OVLE of the binning models
both decrease, and so does the modeling bias of the
corresponding binning jump table models (Fig. 3c, d). This
occurs because the binning algorithm is able to more effectively
capture the underlying target mean and standard deviation
profiles given rich data, leading to overall good network-level
estimation of the target models (Fig. 3e).

There is minimal benefit in terms of modeling bias upon
increasing the points from 4,000 to 10,000. The remainder of

the jump tables generated in this work are thus based on 4,000
samples of (Gi,ΔGi) points, where these samples are drawn
from target Gaussian distributions with known mean and
standard deviation profiles in the synthetic case and are
experimental measurements when working with real devices.

B. Impact of Cycle-to-Cycle Variability
To investigate how the device cycle-to-cycle variability

impacts the device modeling and network simulation
respectively, we synthesized variants based on the analytical
device model at increasing values of the underlying standard
deviation, sampled in a range from 0.2 nS to 12 nS,
corresponding roughly to cycle-to-cycle variations from 0.5 %
to 34 % of the underlying conductance range. The mean profile
was not altered, and the number of (G,ΔG) data points was fixed
at 4,000.

Fig. 4 presents an analysis of the overall performance of
these models. As the cycle-to-cycle variability of target devices
increases, the target conductance trajectories become noisier.
As a consequence, the corresponding binning models find it
harder to predict the underlying mean and standard deviation
profiles. This manifests in binning conductance trajectories
deviating from target trajectories (Fig. 4a).

At the network level, the increase in cycle-to-cycle
variability translates to an overall degradation of the training
capability of target devices, evident from narrower learning rate
training windows in Fig. 4b and the decline in optimal target
accuracies in Fig. 4c. Additionally, it can be observed that the
optimal learning rate values – shown in cyan markers in Fig. 4b
– inversely decrease with the increase in device cycle-to-cycle
variability. This suggests that in order to optimally train a
ReRAM-based hardware network, smaller gradient steps
proportional to the cycle-to-cycle variability of the underlying
ReRAM devices may be required. Fig. 4a also highlights the
importance of performing a learning rate optimization. This is

Fig. 3. Impact of the number of points for device modeling and respective network simulations. (a) Synthesized (G,ΔG) datasets
for SET modeling with 500 and 10,000 points, and (b) corresponding conductance trajectories of the target device model and
interpolated binning model for 500 applied pulses. (c) Overlapping Error and Switching Sign Discrepancy of different binning
jump table models. (d) Network training curves of the 500 point and 10,000-point models, and (e) average absolute modeling bias
of the different binning jump table models, indicating that the modeling bias performance improves as the number of points
increase. The batch size used is 4096 and optimized network learning rate is 0.1 for all models.

SET
RESET

c

Target models
Binning models

a

500 points

10,000 points

b

500 points

10,000 points

SET (Gi,ΔGi) data

ed

500 points

10,000 points

Target models
Binning models

Binning models

9
JETCAS-2022-0110

because modeling bias results at unoptimized learning rates can
be potentially misleading.

Finally, network simulations of binning models show that
the network modeling bias tends to increase with the increase
in noise, as captured in Fig. 4d. It can also be observed that the
network results are largely unreliable in terms of the sign of
modeling bias – with some cases over-estimating target
accuracy, and others under-estimating target accuracy. Overall,
we conclude that the binning algorithm fails to effectively
capture target mean and standard deviation profiles when the
standard deviation in the input dataset is high given a fixed
number of data points, i.e., beyond 2 nS given 4,000 (G,ΔG)
data points.

C. Impact of Non-Linearity
The impact of the device non-linearity on modeling bias is

investigated using variants of the analytical model at different
device non-linearity values. The chosen parametrization for
non-linearity is formulated as follows: given a base jump table
model with mean profile μ(G), the corresponding model at non-
linearity k – where k is a positive integer – is the model with
mean profile kμ(G) = {kμ1, kμ2, … kμn}. Note that the standard
deviation profile is unaltered, though the multiplication of the
mean profile by a constant can lead to a change in the net
coefficient of variation (defined as dispersion around the mean).
Fig. 5 summarizes our analysis on device non-linearity.

Fig. 5a shows the conductance trajectories of target and

binning models at different non-linearities. Contrary to Fig. 4a
where target devices get noisier, here we see that target devices
show less noise under our chosen scheme of increasing non-
linearity. This is due to the net coefficient of variation
decreasing with the increase in device non-linearity.
Additionally, it can be observed that binning modeling is able
to better model target devices with high non-linearity and low
cycle-to-cycle variability, compared to target devices that have
low non-linearity and high cycle-to-cycle variability. This
improvement is manifested in the OVLE and SSD device
metrics shown in Fig. 5b, which are consistently significantly
lower compared to devices from Fig. 3c. As the non-linearity
increases, we make the following two observations at the
network level. Firstly, the optimal accuracy of target models
increases. Secondly, the modeling bias performance of
corresponding binning models improves, as captured in the
thinning gray region in Fig. 5c. The convergence curves in Fig.
5d reinforce these observations. Our device metrics do not seem
to fully capture modeling bias characteristics, contrary to Fig. 3
where target profiles were unaltered. We hypothesize that this
happens because of significant changes to switching behavior
from one non-linearity model to another, and acknowledge that
our device metrics need to be further refined to better capture
device switching intricacies.

Fig. 5. Impact of device non-linearity on device modeling and
respective network simulations. (a) Conductance trajectories of
target and binning jump table models with increasing non-
linearity for up to 64 applied pulses for clarity. At higher non-
linearity, devices saturate faster. (b) Overlapping error and
switching sign discrepancy of the binning models. (c)
Comparative optimal accuracies at different levels of device
non-linearity. (d) Corresponding optimized network training
curves at different levels of non-linearity. The batch size was
4096, the optimal learning rates for non-linearity 2, 8, and 24
were 0.31, 0.31, and 0.1 respectively, and the jump table
standard deviation was constant at σ = 1.2 nS for all three
models.

SET
RESET

SE
T

R
ES

ET

Target models
Binning models

Non-Linearity 8 Non-Linearity 24Non-Linearity 2a

b

d

Target models
Binning models

Non-Linearity 8 Non-Linearity 24Non-Linearity 2

c

Target models
Binning models
Modeling Bias

Fig. 4. Impact of the cycle-to-cycle variability on device
modeling and respective network simulations. (a) Conductance
trajectories of target and binning jump table models at different
levels of standard deviation for up to 64 applied pulses for
clarity. (b) Training windows of target models at the
investigated batch size of 4096. Cyan markers indicate optimal
learning rates. (c) Comparative optimal accuracies of target and
binning models. Traces in (b) correspond to target models of
the same shade in (c). (d) Convergence curves corresponding
to the device models in (a).

a

d

c

Target models
Binning models

R
ES

ET
SE

T

σ = 1.2 nS

Target models
Binning models

σ = 0.2 nS σ = 2 nS

σ = 1.2 nSσ = 0.2 nS σ = 2 nS

b

0.2 nS
12 nS

Target models
Binning models

10
JETCAS-2022-0110

D. Experimental Model Verification

 While prior sections investigated synthetic datasets, this
section summarizes the modeling results on experimental data.
We use our experimental datasets (Fig. 1c, d) to derive jump
table models using the approach described in Section II D.3.

Fig. 6a shows Kolmogorov-Smirnov test error values for
the different SET and RESET datasets for the binning and
Optuna models, computed using our methodology detailed in
Section II D.3. To illustrate the room for optimization in these
models, we also plot the test error between the experimental
model and experimental test subsets. These values are the
lowest as expected, as the two are indeed drawn from exactly
the same distribution. The subsampling of the experimental
datasets, the binning modeling, and the error calculations were
repeated for a total of 20 iterations for maintaining statistical
significance. An error bar indicates one standard deviation.

 There is a performance gap between what the binning
models can do to approximate the experimental data, as
observed by the gap between the cyan and gray points in Fig.
6a. This is line with the results from Fig. 4. Our proposed
Optuna-based algorithm for optimization produces (G,ΔG) data
is significantly closer to the experimental reality compared to
the binning models in all investigated cases, with lower K-S
values. Since Optuna models still exhibit a performance gap
from the experimental data, better interpolation methods still
need to be explored. Nevertheless, network simulations of the
Optuna models seem to represent experimental reality closer
than corresponding binning models. End-to-end experimental
verification is left for future work.

Fig. 6b shows the normalized difference of the mean and
standard deviation profiles between binning and Optuna
models. In all cases, it can be observed that differences in the
standard deviation profile are higher than the differences in the
mean profile. A negative bar links to a binning profile
underestimating the corresponding Optuna profile, and it can be
seen that binning tends to generally underestimate the standard
deviation. This underestimation of the device noise directly
manifests in the network convergence curves shown in Fig. 6c,
where binning models over-promise the test accuracy that
would be obtained by a ReRAM network implemented using
our devices compared to Optuna models.

IV. DISCUSSION
These results point to the need to understand the goodness of

a device model in connection with the experimental reality of
ReRAM hardware for in-memory compute and neural network
accelerators. In hardware implementations, the obtained
accuracy depends on the underlying distribution of the device
population used for implementation. While this underlying
distribution is unknown and can only be approximated
indirectly via electrical measurements, a good statistical model
of the device based on these measurements should be able to
predict the target accuracy that a hardware prototype would
achieve – if available. The value of the accuracy is not of critical
consideration here per se; the modeling bias, defined as the
difference between simulated accuracy and target accuracy, is
more relevant. For example, a software simulation based on a
given device model may achieve an accuracy higher than the
target model, supposing such a hardware model exists for
comparison. This outcome would be undesirable since the
simulation results overpromise on the particular device
technology proposed. For our investigation at the network level,
we are only interested in how well a statistical model can
approximate the underlying target distribution of the device
population, which does not have to be the model that achieves
the highest network training accuracy.

To support these co-design efforts in the absence of
experimental network data, this work has proposed the use of
automatic optimizers such as Optuna to estimate network
convergence as the benchmark for estimating the modeling bias
performance of corresponding experimentally derived device
models. While this approach does not replace the need of
experimentally obtaining network performance estimates and
studying exact device performance, it could be used as a short-
term solution to support iterative device and network co-
optimization, particularly when experimental results of network
training might be difficult to obtain. Considering the device
yield capabilities of emerging device technologies, the
proposed network and evaluation methodology represents a
relevant step for the device research community and the
computer science and engineering community to jointly
benchmark the performance of emerging hardware against.

We have shown that there are limitations to binning models
in approximating synthetic target model convergence.
Specifically, binning models exhibit poor device modeling and
a high modeling bias when a) the input dataset is scarce –
having fewer than 4,000 data points, and b) when the device
cycle-to-cycle variability is high – beyond 2 nS in our chosen

Fig. 6. Experimental Model Verification. (a) Kolmogorov-
Smirnov test errors of the experimental test dataset with the
experimental model dataset and synthesized datasets from the
binning and the Optuna-optimized binning models. (b)
Normalized difference (%) between mean and standard
deviation profiles of the binning models with the Optuna
models. (c) Optimized network training curves investigated
pulse amplitudes. The batch size was 4096, and the optimal
learning rates for voltage amplitude 1.35 V, 1.5 V, 1.65 V, and
1.8 V were 0.1, 0.031, 0.01, and 0.01 respectively.

RESETSET

Binning

Experimental
Optuna

a

1.35 V 1.5 V 1.65 V 1.8 V

c

b

RESET

SET

Optuna
Binning

11
JETCAS-2022-0110

network training regime. These limitations mean that exploring
other interpolation methods in the context of jump table-based
device modeling is promising. Our prior work in device
modeling with Gaussian Process Regression methods, such as
ordinary Kriging [27] hints at a potential method that will be
investigated in the future for network training.

It is important to point out that this initial investigation is
restricted to Gaussian interpolation methods applied mostly to
linear mean and constant standard deviation profiles. In reality,
emerging devices can follow various profiles, e.g., piecewise
linear profile [21], parabolic mean and constant standard
deviation [19], etc. Moreover, these Gaussian interpolation
methods can be insufficient if the underlying data is skewed due
to physical bounds and limitations based on the parasitic
resistance of the device. More general interpolation methods,
e.g., based on skew normal distribution, could better predict
complex device behavior and possibly neural network behavior
more accurately and consistently. We plan to explore in future
work how various interpolation modeling methods compare to
one another in terms of corresponding network modeling bias
where the underlying distributions are complex and non-trivial.
Another limitation of the jump table model is that it does not
explicitly capture the evolution of a device’s statistics across a
population of devices under different experimental conditions.
Future work will thus explore multi-dimensional jump tables
where the ∆G / pulse response is a function of not only the
initial conductance of the device, but also the switching cycle
number, pulse width, pulse height, device location in the array,
etc. A more comprehensive methodology to model all of these
additional dependencies in the context of neural network
simulations at varying architectures will be evaluated.

Since our device metrics and modeling bias results both
monotonically decrease (e.g., Fig. 3), we hypothesize that these
metrics could be the first step towards having a mechanism to
predict modeling bias performance of different device models
relative to one another. However, before such a link could be
established, these metrics need to be further investigated and
refined to fully understand their connection with modeling bias.
Network parameters such as the learning rate, loss function, and
network dimensionality would have to be studied in
conjunction with device training statistics such as the number
of times SET and RESET tables are used over training, number
of SET or RESET pulses applied, etc. This is left for future
work.

V. CONCLUSIONS
This paper proposes the concept of “modeling bias” as a

useful metric to quantify the goodness of a device model at the
neural network level. To exemplify this concept, the binning
interpolation method was used for modeling ReRAM device
jump tables and its applicability in predicting neural network
convergence behavior was investigated. For testing, a wide
range of synthetic Gaussian datasets with linear mean and
standard deviation profiles as well as experimentally obtained
datasets were used, in conjunction with proposed metrics at the
device and network level. The results show that device models
based on binning can lead to unreliable modeling bias behavior,
sometimes over-promising and sometimes under-promising the
network accuracy. Better interpolation methods that have lower

bias than binning, particularly at high device switching noise
and low number of data points will be investigated in the future.
Promising device metrics seem to have a similar trend with
modeling bias at the network level, but additional investigations
are needed for more complex device switching profiles and
more difficult image classification datasets. Additionally,
simulated accuracy results will be experimentally verified.
Finally, the proposed Optuna algorithm for device modeling
will be further refined by exploring other, more application-
friendly error metrics beyond the Kolmogorov-Smirnov test.
This work highlights the need for additional correlated efforts
in device / network modeling and prototyping for in-memory
computing and neural networks.

ACKNOWLEDGMENT
We thank Mark Anders and Lin Wang for prior useful

discussions. The authors acknowledge the use of high-
performance computing clusters, advanced support from the
research technology services, and IT support at The George
Washington University and NIST.

REFERENCES

[1] P. Bose, “Power Wall,” in Encyclopedia of Parallel Computing, D. Padua,
Ed. Boston, MA: Springer US, 2011, pp. 1593–1608. doi: 10.1007/978-
0-387-09766-4_499.

[2] S. Channamadhavuni, S. Thijssen, S. K. Jha, and R. Ewetz, “Accelerating
AI Applications using Analog In-Memory Computing: Challenges and
Opportunities,” in Proceedings of the 2021 on Great Lakes Symposium on
VLSI, Virtual Event USA, Jun. 2021, pp. 379–384. doi:
10.1145/3453688.3461746.

[3] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang,
and P. Deaville, “In-Memory Computing: Advances and Prospects,”
IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019, doi:
10.1109/MSSC.2019.2922889.

[4] Y. Chen, “ReRAM: History, Status, and Future,” IEEE Transactions on
Electron Devices, vol. 67, no. 4, pp. 1420–1433, Apr. 2020, doi:
10.1109/TED.2019.2961505.

[5] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H.
Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-
Based Analog Computation and Neural Network Classification with a Dot
Product Engine,” Advanced Materials, vol. 30, no. 9, p. 1705914, 2018,
doi: 10.1002/adma.201705914.

[6] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang,
T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, Y.-R. Chen, T.-H. Hsu,
Y.-K. Chen, Y.-C. Lo, T.-H. Wen, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-
T. Tang, and M.-F. Chang, “15.4 A 22nm 2Mb ReRAM Compute-in-
Memory Macro with 121-28TOPS/W for Multibit MAC Computing for
Tiny AI Edge Devices,” in 2020 IEEE International Solid- State Circuits
Conference - (ISSCC), Feb. 2020, pp. 244–246. doi:
10.1109/ISSCC19947.2020.9063078.

[7] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn,
and W. D. Lu, “A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations,” Nat Electron, vol.
2, no. 7, pp. 290–299, Jul. 2019, doi: 10.1038/s41928-019-0270-x.

[8] A. Valentian, F. Rummens, E. Vianello, T. Mesquida, C. L.-M. de
Boissac, O. Bichler, and C. Reita, “Fully Integrated Spiking Neural
Network with Analog Neurons and RRAM Synapses,” in 2019 IEEE
International Electron Devices Meeting (IEDM), Dec. 2019, p. 14.3.1-
14.3.4. doi: 10.1109/IEDM19573.2019.8993431.

[9] S. Menzel, “Comprehensive modeling of electrochemical metallization
memory cells,” J Comput Electron, vol. 16, no. 4, pp. 1017–1037, Dec.
2017, doi: 10.1007/s10825-017-1051-2.

[10] S. Aldana, P. García-Fernández, R. Romero-Zaliz, M. B. González, F.
Jiménez-Molinos, F. Gómez-Campos, F. Campabadal, and J. B. Roldán,
“Resistive switching in HfO2 based valence change memories, a
comprehensive 3D kinetic Monte Carlo approach,” J. Phys. D: Appl.
Phys., vol. 53, no. 22, p. 225106, Apr. 2020, doi: 10.1088/1361-
6463/ab7bb6.

12
JETCAS-2022-0110

[11] E. Abbaspour, S. Menzel, and C. Jungemann, “Studying the switching

variability in redox-based resistive switching devices,” J Comput
Electron, vol. 19, no. 4, pp. 1426–1432, Dec. 2020, doi: 10.1007/s10825-
020-01537-y.

[12] A. Padovani, D. Z. Gao, A. L. Shluger, and L. Larcher, “A microscopic
mechanism of dielectric breakdown in SiO2 films: An insight from multi-
scale modeling,” Journal of Applied Physics, vol. 121, no. 15, p. 155101,
Apr. 2017, doi: 10.1063/1.4979915.

[13] C. Bengel, A. Siemon, F. Cüppers, S. Hoffmann-Eifert, A. Hardtdegen,
M. von Witzleben, L. Hellmich, R. Waser, and S. Menzel, “Variability-
Aware Modeling of Filamentary Oxide-Based Bipolar Resistive
Switching Cells Using SPICE Level Compact Models,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12,
pp. 4618–4630, Dec. 2020, doi: 10.1109/TCSI.2020.3018502.

[14] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor
SPICE model and crossbar simulation based on devices with nanosecond
switching time,” in The 2013 International Joint Conference on Neural
Networks (IJCNN), Aug. 2013, pp. 1–7. doi:
10.1109/IJCNN.2013.6706773.

[15] G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A.
Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and
M. Nafría, “Metal oxide resistive memory switching mechanism based on
conductive filament properties,” Journal of Applied Physics, vol. 110, no.
12, p. 124518, Dec. 2011, doi: 10.1063/1.3671565.

[16] D. Ielmini, F. Nardi, and C. Cagli, “Physical models of size-dependent
nanofilament formation and rupture in NiO resistive switching
memories,” Nanotechnology, vol. 22, no. 25, p. 254022, May 2011, doi:
10.1088/0957-4484/22/25/254022.

[17] G. González-Cordero, J. B. Roldan, F. Jiménez-Molinos, J. Suñé, S. Long,
and M. Liu, “A new compact model for bipolar RRAMs based on
truncated-cone conductive filaments—a Verilog-A approach,” Semicond.
Sci. Technol., vol. 31, no. 11, p. 115013, Oct. 2016, doi: 10.1088/0268-
1242/31/11/115013.

[18] S. Sidler, I. Boybat, R. M. Shelby, P. Narayanan, J. Jang, A. Fumarola, K.
Moon, Y. Leblebici, H. Hwang, and G. W. Burr, “Large-scale neural
networks implemented with Non-Volatile Memory as the synaptic weight
element: Impact of conductance response,” in 2016 46th European Solid-
State Device Research Conference (ESSDERC), Lausanne, Switzerland,
Sep. 2016, pp. 440–443. doi: 10.1109/ESSDERC.2016.7599680.

[19] M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J.
Niroula, S. J. Plimpton, E. Ipek, and C. D. James, “Multiscale Co-Design
Analysis of Energy, Latency, Area, and Accuracy of a ReRAM Analog
Neural Training Accelerator,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 8, no. 1, pp. 86–101, Mar. 2018, doi:
10.1109/JETCAS.2018.2796379.

[20] B. Hoskins, W. Ma, M. Fream, O. Yousuf, M. Daniels, J. Goodwill, A.
Madhavan, H. Tung, M. Branstad, M. Liu, R. Madsen, J. Mclelland, G.
Adam, and M. Lueker-Boden, “A System for Validating Resistive Neural
Network Prototypes,” in International Conference on Neuromorphic
Systems 2021, Knoxville TN USA, Jul. 2021, pp. 1–5. doi:
10.1145/3477145.3477260.

[21] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S.
Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and H.
Hwang, “Experimental Demonstration and Tolerancing of a Large-Scale
Neural Network (165 000 Synapses) Using Phase-Change Memory as the
Synaptic Weight Element,” IEEE Transactions on Electron Devices, vol.
62, no. 11, pp. 3498–3507, Nov. 2015, doi: 10.1109/TED.2015.2439635.

[22] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-
generation Hyperparameter Optimization Framework,” in Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, New York, NY, USA, Jul. 2019, pp. 2623–
2631. doi: 10.1145/3292500.3330701.

[23] Y. Luo, X. Peng, and S. Yu, “MLP+NeuroSimV3.0: Improving On-chip
Learning Performance with Device to Algorithm Optimizations,” in
Proceedings of the International Conference on Neuromorphic Systems,
New York, NY, USA, Jul. 2019, pp. 1–7. doi: 10.1145/3354265.3354266.

[24] J. Niroula, S. Agarwal, R. Jacobs-Gedrim, R. L. Schiek, D. Hughart, A.
Hsia, C. D. James, and M. J. Marinella, “Piecewise empirical model
(PEM) of resistive memory for pulsed analog and neuromorphic
applications,” J Comput Electron, vol. 16, no. 4, pp. 1144–1153, Dec.
2017, doi: 10.1007/s10825-017-1107-3.

[25] S. Stathopoulos, A. Serb, A. Khiat, M. Ogorzałek, and T. Prodromakis,
“A Memristive Switching Uncertainty Model,” IEEE Transactions on

Electron Devices, vol. 66, no. 7, pp. 2946–2953, Jul. 2019, doi:
10.1109/TED.2019.2918102.

[26] J. van Leeuwen, J. B. J. Smeets, and A. V. Belopolsky, “Forget binning
and get SMART: Getting more out of the time-course of response data,”
Atten Percept Psychophys, vol. 81, no. 8, pp. 2956–2967, Nov. 2019, doi:
10.3758/s13414-019-01788-3.

[27] I. Hossen, M. A. Anders, L. Wang, and G. C. Adam, “Data-driven RRAM
device models using Kriging interpolation,” Sci Rep, vol. 12, no. 1, Art.
no. 1, Apr. 2022, doi: 10.1038/s41598-022-09556-4.

[28] T. Dalgaty, N. Castellani, C. Turck, K.-E. Harabi, D. Querlioz, and E.
Vianello, “In situ learning using intrinsic memristor variability via
Markov chain Monte Carlo sampling,” Nat Electron, vol. 4, no. 2, Art. no.
2, Feb. 2021, doi: 10.1038/s41928-020-00523-3.

[29] S.-O. Park, H. Jeong, J. Park, J. Bae, and S. Choi, “Experimental
demonstration of highly reliable dynamic memristor for artificial neuron
and neuromorphic computing,” Nat Commun, vol. 13, no. 1, Art. no. 1,
Jun. 2022, doi: 10.1038/s41467-022-30539-6.

[30] Y. Gao, S. Wu, and G. C. Adam, “Batch Training for Neuromorphic
Systems with Device Non-idealities,” in International Conference on
Neuromorphic Systems 2020, Oak Ridge TN USA, Jul. 2020, pp. 1–4. doi:
10.1145/3407197.3407208.

[31] E. Ambrosi, A. Bricalli, M. Laudato, and D. Ielmini, “Impact of oxide and
electrode materials on the switching characteristics of oxide ReRAM
devices,” Faraday Discuss., vol. 213, pp. 87–98, 2019, doi:
10.1039/C8FD00106E.

[32] T. Gokmen and Y. Vlasov, “Acceleration of Deep Neural Network
Training with Resistive Cross-Point Devices: Design Considerations,”
Frontiers in Neuroscience, vol. 10, 2016, Accessed: Mar. 21, 2022.
[Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2016.00333

[33] L. Deng, “The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web],” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141–142, Nov. 2012, doi:
10.1109/MSP.2012.2211477.

[34] J. Zhao, S. Huang, O. Yousuf, Y. Gao, B. D. Hoskins, and G. C. Adam,
“Gradient Decomposition Methods for Training Neural Networks With
Non-ideal Synaptic Devices,” Frontiers in Neuroscience, vol. 15, p. 1524,
2021, doi: 10.3389/fnins.2021.749811.

[35] A. Laborieux, M. Bocquet, T. Hirtzlin, J.-O. Klein, E. Nowak, E.
Vianello, J.-M. Portal, and D. Querlioz, “Implementation of Ternary
Weights with Resistive RAM Using a Single Sense Operation per
Synapse,” arXiv, arXiv:2007.14234, Oct. 2020. doi:
10.48550/arXiv.2007.14234.

[36] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning with Limited Numerical Precision,” in Proceedings of the 32nd
International Conference on Machine Learning, Jun. 2015, pp. 1737–
1746. Accessed: Dec. 13, 2021. [Online]. Available:
https://proceedings.mlr.press/v37/gupta15.html

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L.
Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems, 2019, vol. 32. Accessed: Nov. 06, 2021. [Online].
Available:
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f
7012727740-Abstract.html

[38] N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-
Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D.
Englund, “Linear programmable nanophotonic processors,” Optica,
OPTICA, vol. 5, no. 12, pp. 1623–1631, Dec. 2018, doi:
10.1364/OPTICA.5.001623.

[39] H. F. Inman and E. L. Bradley, “The overlapping coefficient as a measure
of agreement between probability distributions and point estimation of the
overlap of two normal densities,” Communications in Statistics - Theory
and Methods, vol. 18, no. 10, pp. 3851–3874, Jan. 1989, doi:
10.1080/03610928908830127.

[40] J. A. Peacock, “Two-dimensional goodness-of-fit testing in astronomy,”
Monthly Notices of the Royal Astronomical Society, vol. 202, no. 3, pp.
615–627, Mar. 1983, doi: 10.1093/mnras/202.3.615.

13
JETCAS-2022-0110

Osama Yousuf (Student Member, IEEE)
received a B.S. degree in computer science
with a minor in mathematics from Habib
University, Karachi, Pakistan in 2020. He is
currently pursuing a Ph.D. degree in
computer engineering at the George
Washington University, Washington, DC,
USA in the Adaptive Devices And

Microsystems (ADAM) group as a research assistant. He also
works as a research associate at the National Institute of
Standards and Technology (NIST), Gaithersburg, MD. His
research interests include robust neural network training
algorithms, modeling emerging non-volatile memory devices,
and prototyping ReRAM-based accelerators.

Imtiaz Hossen (Student Member, IEEE)
received the B.Sc. degree in electrical and
electronic engineering from the University
of Dhaka, Dhaka, Bangladesh, in 2016, and
the M.Sc. degree in electrical and computer
engineering from Marquette University,
Milwaukee, WI, USA, in 2020. He is
currently pursuing a Ph.D. degree in

electrical engineering at the George Washington University,
Washington, DC, USA in the Adaptive Devices And
Microsystems (ADAM) group as a research assistant. His
research interests are nano-scale fabrication and testing of novel
memory devices, device modeling, heterogeneous integration
of ReRAM in CMOS foundry chips, ultra-high resolution
temperature sensors and RF/microwave sensors.

Matthew W. Daniels is a research physicist
in the Alternative Computing Group at the
National Institute of Standards and
Technology (NIST), Gaithersburg, MD. He
received a B.S. in physics with a minor in
mathematics from Clemson University in
2012 and a Ph.D. in physics from Carnegie
Mellon University in 2017. His dissertation

work was on topological physics and theoretical
antiferromagnetic spintronics. His current research program
seeks to build a theory of hardware neural networks and
neuromorphic systems. He currently works on understanding
how time and stochasticity can be effectively utilized as
primitive encodings for computing systems and on designing
digital architectures that use the spectrally-biased, low-rank
properties of neural network gradients to accelerate their
training in hardware.

Martin Lueker-Boden is an engineering
research director for Western Digital
Corporation (WDC). He earned a Ph.D. in
physics from the University of California at
Berkeley in 2010. After earning his
doctorate, he worked as a post-doctoral
scholar at the California Institute of
Technology. He started working at WDC in

2014 with a research focus on developing novel applications for
non-volatile memory devices, including development of new

cell technologies, methods for media management techniques,
security considerations, I/O frameworks, software
optimizations and in-memory/neuromorphic computing. His
work prior to joining WDC focused on the development of
superconducting low-noise microwave radiation sensors, and
the statistical analysis of extra-galactic radiometry data.

Andrew Dienstfrey received the Ph.D. in
Applied Mathematics from the Courant
Institute of Mathematical Sciences at New
York University. Dienstfrey joined the
Mathematical and Computational Sciences
Division at the National Institute of
Standards and Technology (NIST), Boulder,
CO in 2000. His research interests include

applications of mathematics to computational physics and
numerical analysis.

Gina C. Adam (Senior Member, IEEE)
received the B.Sc. degree in applied
electronics from the University Politehnica
of Bucharest, Bucharest, Romania, in 2010,
and the Ph.D. degree in electrical and
computer engineering from the University of
California at Santa Barbara, CA, USA, in
2015. From 2016 to 2018, she was a

Research Scientist with the National Institute for Research and
Development in Microtechnologies, Voluntari, Romania, and a
Visiting Scholar with the École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland. She is currently an Assistant
Professor of electrical and computer engineering with the
School of Engineering and Applied Science, George
Washington University, Washington, DC, USA. Her current
research interests include resistive switching devices and their
use in memory storage, computing, and communications
applications.

	I. Introduction
	II. Methods
	A. Jump table modeling
	B. Device Datasets
	C. Neural Network Details
	D. Metrics for Evaluating Modeling Quality
	E. Optuna modeling

	iii. Results
	A. Impact of number of data points
	B. Impact of Cycle-to-Cycle Variability
	C. Impact of Non-Linearity
	D. Experimental Model Verification

	iv. Discussion
	V. Conclusions

