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Abstract—Emerging technologies based on resistive switching 
(ReRAM) devices promise to improve the speed and energy 
efficiency of next generation machine learning accelerators, but 
further research is required for achieving commercial maturity. 
System-level prototyping with emerging devices is costly, and 
algorithmic investigations require hardware neural network 
modeling which often deviates from experimental reality. In this 
work, the concept of modeling bias is proposed as a way to 
quantify this deviation and support reliable evaluation of device 
populations in the context of neural network algorithms. While 
applicable to other device modeling techniques, modeling bias is 
investigated here using jump tables - a promising physics-less 
technique to model emerging memory devices for hardware 
networks. Questions about the fidelity of these tables in relation to 
stochastic device behavior are answered. Two methods of jump 
table modeling – binning and a novel Optuna-optimized binning - 
are explored using synthetic data with known distributions for 
benchmarking and experimental data obtained from TiOx 
ReRAM devices for practical testing. Novel device metrics are 
proposed, and it is shown that these metrics can present crucial 
insights on the device population prior to training the hardware 
network. Results on a multi-layer perceptron trained on MNIST 
show that device models based on binning deviate from target 
network accuracy at a low number of points and high switching 
noise in the device dataset. The proposed approach opens the 
possibility for device-algorithm co-design investigations into 
statistical device models with better performance, as well as 
experimentally verified modeling bias in different in-memory 
computing and neural network architectures. 

 
Index Terms—Hardware Neural Networks, ReRAM, 

memristors, Device Modeling, Modeling Bias. 

I. INTRODUCTION 
RTIFICIAL INTELLIGENCE is exploding and is resource-
hungry, with advanced neural networks requiring 
hundreds of thousands of computing chips. At such 
large scales, traditional computing cores exhibit 
excessively high data movement and energy demands 

owing to the von-Neumann bottleneck, bringing us closer to 
hitting the “power wall” [1]. Thus, there is a growing need for 
investigating technologies with non-von Neumann 
architectures. Such alternatives can serve as building blocks for 
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faster and more efficient neural network accelerators that 
exploit near- or in-memory computation to minimize data 
movement. Non-volatile resistive switching devices promise 
both dense storage and energy-efficient analog processing, 
making them suitable for in-memory computing for artificial 
intelligence applications [2], [3]. 

Hardware-based neural networks based on emerging non-
volatile memory devices can exploit underlying physical 
phenomena to efficiently implement matrix-vector 
multiplication – a critical operation in neural networks. In 
particular, ReRAM or memristor devices can be used as highly 
energy-efficient physical implementations of artificial synaptic 
weights for neural networks owing to their non-volatility and 
fast switching characteristics [4], [5]. However, these devices 
exhibit complex multi-physics behavior leading to performance 
degradation in prototype networks. As with many other 
emerging technologies, the impact of these device non-
idealities on the network performance needs to be further 
studied and resolved before they can be used to realize large-
scale analog accelerators. 

Despite significant progress in the past two decades [4], the 
study of hardware neural networks based on ReRAM devices is 
facing several major barriers. First, a purely experimental 
approach is unfeasible since commercial ReRAM tape-outs 
have long timelines and significant design and fabrication costs 
[6]–[8]. Secondly, before hardware prototyping can be 
practically motivated, results from hardware-aware simulations 
are needed to reliably predict the promising performance of 
these systems and optimize their end-to-end behavior across all 
levels – from underlying devices to neural networks. Therefore, 
suitable modeling of ReRAM devices is a key consideration for 
hardware neural networks investigations and in-memory 
computing systems based on ReRAM devices in general. 

A broad range of models has been proposed. Atomistic 
models focus entirely on simulations from first principles in an 
effort to capture the multi-physics dynamics of filament 
formation and their conductance characteristics. These models 
may be used to provide insights needed for material and device 
design optimization [9]–[12]. Compact models needed for 
circuit design use physically inspired parametrizations which 
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are tuned to match experimental current vs. voltage 
characteristics [13], [14]. While both classes of models are 
appropriate for their respective purposes, they rely on 
computationally expensive systems of equations and are 
therefore not well-suited for scaling to neural network 
simulations. Additionally, these models require investigating 
underlying physical phenomena such as the shape of the 
filament [15]–[17] for new devices, which is a time-consuming 
process that can delay algorithmic investigation. 

Due to these limitations, for the following study we propose 
to investigate jump table models to characterize ReRAM device 
irregularities. Such models consist of lookup tables that specify 
the probability of moving from one conductance state to another 
as a function of present conductance state and applied pulse 
(and potentially other measurement parameters). In contrast to 
the physics-based and semi-empirical models discussed above, 
these models are derived solely from experimental data without 
reference to underlying physical mechanisms. While these 
physical mechanisms are important for device design, they 
impact the  neural network performance only indirectly at the 
level of device population. A large-scale neural network can 
require thousands to millions of individual conductance updates 
per training epoch depending on the network architecture. Since 
physics-based and semi-empirical models can be too 
computationally intensive due to the use of numerically 
complex equations, a data-driven jump table model provides a 
more lightweight modeling approach and a faster solution via 
look-up tables while being able to exhibit better experimental 
realism across a broad range of parameters. It is known that 
variability in the switching of ReRAM devices leads to weight 
dispersion, which can potentially negatively impact the 
accuracy and performance of the overall system [18], [19]. 
Therefore, accurate device modeling is needed for providing a 
realistic estimate of the training characteristics of analog 
neuromorphic systems implemented with real ReRAM devices. 

In this paper, we introduce and study modeling bias as a 
useful concept to evaluate the fitness of a device model in the 
context of neural network simulations. The choice of the 
network architecture, the problem, and the quantization regime 
detailed in Section II is motivated by our vision for an open-
source end-to-end device-algorithm co-design and prototyping 
platform for device benchmarking [20] intended to bridge 
efforts in the emerging device research community and the 
computer science and engineering community. We investigate 
the impact of two methods for creating jump table-based device 
models: the traditional binning and interpolation method 
proposed in [21], and a novel iterative hyperparameter 
optimization method based on the Optuna framework [22]. For 
benchmarking purposes, we synthesize ReRAM jump tables 
using an assumed closed-form model for device switching and 
investigate the convergence of our interpolation methods, as 
detailed in Section II A. These distributions are inspired by the 
“Real Device” model from the NeuroSimV3.0 simulator [23]. 
Trends in network metrics are compared with trends in the 
goodness-of-fit for the device to systematically analyze the 
performance of the interpolation methods for device modeling 
in the context of neural network simulations. We also present 
the training performance and methods to estimate the modeling 
bias when experimental jump tables are used. These are jump 

tables based on experimental data obtained from TiOx ReRAM 
devices, for which the underlying distributions for signal mean 
and switching noise are not known. 

The remainder of this paper is organized as follows. Section 
II covers the methods used in our analysis including details on 
jump table modeling, device datasets, neural network structure 
and training routines, and metrics for inferring data 
interpolation quality. Section III presents comparative neural 
network results using (a) synthetic datasets, where we 
investigate the impacts of the number of input data points, 
device cycle-to-cycle variation, and device non-linearity on 
modeling bias, and (b) experimental datasets, where we present 
an iterative approach for jump table modeling based on 
hyperparameter optimization and show how the modeling bias 
performance could potentially be estimated without 
experimental apparatus. Section IV is a discussion highlighting 
the limitations and opportunities in emerging device modeling 
for large-scale neural network simulations. We wrap up with 
conclusions in Section V. 

II. METHODS 

A. Jump table modeling 
A jump table is a set of cumulative distribution functions 

(CDFs) that define the stochastic change in device conductance 
per voltage pulse as a function of the current conductance state 
(i.e., the distribution of ΔG per pulse as a function of G) [18], 
[21], [24]. We define a jump table device model 𝑥𝑥 as a series of 
distributions as follows: 

x = {XG1 , XG2 , … , XGm} ,                              (1) 
where each XGi is a normal distribution with mean μi and 
standard deviation σi, and m is the total number of distributions. 
The mean profile μ(G) refers to the ordered list of μi’s, and 
likewise, the standard deviation profile σ(G) for σi’s. 

Jump tables provide a single model to encompass both the 
stochastic nature of device programming and the non-uniform 
conductance response ΔG as a function of conductance G. The 
cycle-to-cycle variability of a device is represented by the 
standard deviation around the ΔG mean. An alternative 
representation in the resistance space (ΔR vs. R) [25] is also 
possible. Here, we opt to work in (G,ΔG)-space since 
conductances map naturally to matrix weights in a neural 
network implemented with real ReRAM devices. 

During training, a desired weight update is determined by the 
gradient of the loss, and programming pulses are applied to each 
device to adjust its conductance according to this update [18]. 
Due to ReRAM physics, conductance increases and decreases 
are not always symmetrical. Thus, two jump tables are needed 
– one for potentiation (increase in G), and another for 
depression (decrease in G), referred to as the SET and RESET 
tables respectively.  

Jump tables are constructed from sampled data. For example, 
a dataset could consist of ReRAM measurements of n 
experimentally sampled points (G1,ΔG1), … , (Gn,ΔGn), where 
for a given i, Gi is the initial device conductance and ΔGi is the 
conductance change resulting from a single pulse at a fixed 
voltage. Alternatively, one may construct a synthetic dataset by 
sampling an arbitrary number of (Gi,ΔGi) data points from a 
given mean and standard deviation profile. Given this discrete 
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data, various interpolation methods can be used to create a 
continuous model of the underlying mean and standard 
deviation profiles.  

The binning jump table device modeling algorithm is 
outlined in Algorithm 1. The inputs are a dataset D comprising 
of (Gi,ΔGi) pairs, and the number of bins Gbins,ΔGbins. The 
outputs are the binning model’s mean and standard deviation 
profiles μ(G) and σ(G). In brief, the (Gi,ΔGi) data is grouped 
into bins of specified count. From each G bin in this binned data, 
the mean and standard deviation information for the ΔGi are 
computed. The mean and standard deviation values are then 
linearly interpolated across the G bins to obtain the jump table 
model.  

It has been observed  that binning and interpolation can 
introduce unwanted errors and artifacts in modeling such as 
edge effects, empty bins, excessive smoothing, and rugged 
predictions of the underlying mean and standard deviation [26]. 
To avoid such artifacts, parameters Gbins and ΔGbins for 
Algorithm 1 are optimized for each input dataset individually, 
in line with our previous work [27]. This is done to ensure that 
comparisons between different binning models remain fair 
relative to one another. 

 
Algorithm 1. Binning Jump Table Device Modeling 
1 procedure BinningModel (in D, Gbins,ΔGbins; out μ,σ) 
2     hist, edges = Hist2D(D, Gbins,ΔGbins)        // 2D binning 
3     Gaxis,ΔGaxis = GetMean(edges) // average G,ΔG per bin 
4     C = []   
5     for i in range(hist) do  
6         C[i] = ToCDF(hist[i])   // calculate CDF(ΔG) per G bin 
7     end for 
8     μ,σ = fit(C, Gaxis,ΔGaxis)    // Gaussian fit, interpolated 
9 end procedure 

 
Details of the Optuna model are presented separately in 

Section II E. To summarize, both the binning and Optuna 
modeling schemes attempt to predict the underlying mean and 
standard deviation profile of the input conductance data based 
on data interpolation.  

B. Device Datasets 
Cycle-to-cycle switching variability present in ReRAM 

devices is a non-ideality that can significantly hamper the 
performance of neural networks based on ReRAM devices [28]. 
Significant efforts in the community focus on engineering 
devices with lower variability [29] and providing algorithmic 
approaches to manage this device variability at the neural 
network level [21], [30]. For this work, we are focused only on 
exploring the impact of cycle-to-cycle variability on the 
modeling bias at the network level. Different formalisms exist 
in the literature to quantify device non-idealities. For example, 
[23] expresses cycle-to-cycle switching variation as an overall 
percentage of the underlying conductance range, [31] expresses 
this variability in terms of the ratio between the standard 
deviation and device resistance, and [32] proposes the use of a 
stochastic translator which uses a bitwise-AND operation in 
place of multiplication to capture this switching noise. We 
model the cycle-to-cycle variability by a random variable with 
distribution given by the CDF within a jump table. 

The underlying distribution and noise profile are unknown in 
experimental data. Therefore, for the purposes of testing the 
proposed methodology, we use synthetic target distributions. 
Synthetic Gaussian datasets are generated with pre-determined 
underlying mean and standard deviation profiles μ(G) and σ(G) 
over a given conductance range G ∈ [Gmin, Gmax] with fixed 
minimum and maximum bounds. A synthetic jump table can be 
created either from these target or ground truth mean and 
standard deviation profiles, called a target jump table, or from 
interpolated predictions of these profiles. In the case of binning 
interpolation, the jump table is referred to as a binning jump 
table. 

In this work, we focus on a family of synthetic distributions 
for which the random variable representing ΔG per pulse has a 
mean profile μ(G) that is linear in G, and the standard deviation 
profile σ(G) is a constant. This was chosen to match the 
experimentally derived “Real Device” model from the 
MLP+NeuroSim V3.0 framework [23], which we refer to as the 
analytical device model hereafter. 

The jump table for this analytical model was synthesized 
using the theoretical equations for the conductance vs. applied 
pulse behavior from NeuroSim. We first set the cycle-to-cycle 
variation (and all other device variations) to zero, keeping only 
the non-linearity values for potentiation and depression as 2.4 
and −4.88 respectively (which are the default values for Ag:Si-
based ReRAM model in NeuroSim). The maximum number of 
conductance levels was set to 500. We use this model to extract 
(Gi,ΔGi) data points for potentiation as well as depression. This 
analytical model of exponential interpolation between Gmin and 
Gmax mathematically translates into a linear function of the 
change in conductance per pulse vs. the  conductance state, as 
defined in (2) and (3) respectively as follows: 

G(p) =  B �1 − e−
p
A�  +  Gmin ,                    (2) 

 
ΔG / pulse ≈ dG

dp
= 1

A
(B − G + Gmin) ,                (3) 

where A and B are constants, and p is the applied pulse 
number. Thus, for our case, the equivalence was achieved by 
modeling the derivative mean profile as linear, with 
μ(Gmin )  =  0.161 nS, μ(Gmax )   =  0.022 nS for SET, and 
μ(Gmin )   =  −0.002 nS, μ(Gmax )   =  −0.346 nS for RESET. 
We then repeated this data gathering process at different values 
of cycle-to-cycle variation, and then performed fitting to 
determine the equivalent standard deviation profile for the jump 
table model. It was found that the cycle-to-cycle variation 
parameter of the analytical model, C2C, precisely related to the 
constant standard deviation profile, σ, of the jump table model 
as follows: 

σ(G) =  C2C ⋅ (Gmax − Gmin) ,                      (4) 
where Gmin and Gmax are physical minimum and maximum 
bounds on the device conductance values, fixed at 3 nS and 
38 nS respectively. In essence, the standard deviation relates to 
the cycle-to-cycle switching variation as a percentage of the 
conductance switching range. 

With the extracted mean profile μ(G) and the standard 
deviation σ(G) using (4), we can sample ΔG vs. G datasets for 
any given analytical device model containing an arbitrary 
number of points at a specific cycle-to-cycle variation.  
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Algorithm 2. Synthetic Data Generation 
1 procedure GenerateSyntheticData (in n, G, μ,σ; out D) 
2     f = LinearInterpolate(𝐱𝐱 = G,𝒚𝒚 = μ) 
3     g = LinearInterpolate (𝐱𝐱 = G,𝒚𝒚 = σ) 
4     for i in range [1, n] do 
5          Gi = RandomUniformFloat(min(G), max(G)) 
6          μi =  𝐟𝐟(Gi),σi =  𝐠𝐠(Gi) 
7     ΔGi = RandomNormalFloat(μi,σi2) satisfying (5) 
8     D[i]  =  (Gi,ΔGi) 
9 end for 
10 end procedure 

 
The synthetic device data generation algorithm used is 

outlined in Algorithm 2. The inputs are the number of points to 
synthesize n, conductance dynamic range G, and the mean and 
standard deviation profiles μ(G) and σ(G). The output is a 
synthetic dataset D comprising (Gi,ΔGi) pairs. Due to physical 
device constraints, for all pairs (Gi,ΔGi) recorded 
experimentally, we also require that 

Gmin ≤ Gi +  ΔGi  ≤ Gmax ,                  (5) 
that is, the jump table may not push a device beyond its minimal 
or maximal conductances. For any conductance update that 
exceeded these bounds, the conductance is clipped to the 
corresponding extreme value in order to eliminate non-physical 
device behavior. Additional constraints may be imposed to 
further reflect physical realism. 

Fig. 1a depicts the one-to-one matching between the 
conductance trajectories for both SET and RESET phases of the 

analytical model and the corresponding target jump table 
model. The Ag:Si analytical ReRAM model from NeuroSim 
has a cycle-to-cycle variation of 3.5 %, whereas our equivalent 
target jump table model has a standard deviation of 1.2 nS. Fig. 
1b shows the overlapping raw conductance data of the two 
models, indicating that our synthetic model is able to generate 
(Gi,ΔGi) data points in a dynamic range which matches the 
analytical model. 

In this work, we also use experimental ΔG vs. G data from a 
10 nm device with 2.5 nm Al2O3 / 15 nm TiOx / 5 nm Ti / 30 
nm Pt. The data were obtained utilizing a semiconductor 
parameter analyzer and pulse programming (Fig. 1c). Before 
programming, the devices were formed with monotonically 
increasing voltage pulses to reach a high conductance state. The 
data were collected after forming and then cycling between SET 
and RESET 30 times. A device is first programmed to a random 
conductance value within a given range. Then a write pulse 
voltage with 500 ns high time, 100 ns rise and fall time, and 
voltage amplitude randomly selected from among {±1.35 V, 
±1.5 V, ±1.65 V, ±1.8 V} is applied. The conductance state is 
read and the change is recorded into a dataset corresponding to 
the selected voltage amplitude via a subsequent pulse of 100 
mV applied 100 μs after the write pulse; during the intermediary 
time, the device is held at 0 V. This process is repeated until 
either all pulses in the list have been applied or the device 
conductance exceeds some defined limit, then the algorithm 
restarts from a random conductance value. The end result is a 
separate (G,ΔG) dataset for every voltage amplitude (Fig. 1d). 
The exploration of pulse amplitudes is purposely random: 
typical approaches that use monotonically increasing or 
decreasing write pulse voltage steps may result in sparse data 
sets for high write voltages, since the device typically switches 
before the higher voltages are applied. By comparison, our 
resulting data sets for each write pulse voltage have roughly the 
same number of points (≈10,000). This is critical for the jump 
table modeling of this device data. 

C. Neural Network Details 
A 2-layer perceptron network with 324 neurons in the input 

layer, 50 neurons in the hidden layer, and 10 neurons in the 
output layer, with no biases, was used. The network was trained 
for image classification on a reduced version of the MNIST 
dataset, which consists of 18 × 18 pixel images (center-
cropped from the original 28 × 28 pixel images) of handwritten 
digits labelled 0 through 9 [33]. Inputs to the network were first 
normalized by subtracting a constant (0.1307) and dividing the 
difference by a fixed scale factor (0.3801). This shift and 
scaling were determined as the mean and standard deviation of 
all pixels in the 60,000 images of the original, uncropped 
MNIST training set. A sigmoidal activation function was used 
for each hidden neuron, and a softmax activation was used for 
the output layer. Mean squared error was used as the loss 
function for training. The weights were initialized uniformly at 
random from −√𝑘𝑘 to √𝑘𝑘, where 𝑘𝑘 is the reciprocal of the 
number of input features for a given layer (thus 𝑘𝑘 = 1

324
  and 

𝑘𝑘 = 1
50

 for the input and output layers respectively), clamped 
between [wmin, wmax] = [−1, 1]. Mini-batch gradient descent 
was used based on previous investigations [30], [34], [35] of its 

 
Fig. 1. Overview of device data used in our modeling. 
Synthetic: (a) Device conductance trajectories and (b) 
associated ΔG vs. G data of the analytical and target jump table 
device models at 3.5 % cycle-to-cycle variability and 1.2 nS 
standard deviation respectively, with Gmin  =  3 nS and 
Gmax  =  38 nS. Experimental: (c) ReRAM devices used for 
experimental data gathering showing I-V characteristics, and 
(d) ΔG vs. G data at different pulse amplitudes. 
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performance benefits when training a network with non-ideal 
synaptic weights, and the batch size was fixed at 4096. In 
addition, stochastic rounding was used for the pulse coding of 
the gradient (6). Furthermore, all network-level quantities such 
as layer weights, gradients, activations and errors were 
quantized to 6-bit fixed-point precision using the QPyTorch 
library [36] to match realistic hardware operation. The choice 
of network architecture, batch size, loss function, optimizer, 
and quantization scheme are all motivated by the specifications 
of our future hardware prototype [20]. The current network 
under investigation would require at least 16,700 ReRAM 
devices using a one-device-per-synapse scheme for a potential 
prototype. Software weights trained in the range [wmin, wmax] 
would be linearly mapped to device conductances in the 
dynamic range [Gmin, Gmax]. For on-chip training, a co-
processor could be envisioned to implement streaming batch 
gradient decomposition and program the ReRAM array in a 
pipelined fashion. 

Fig. 2 presents background on how a feed forward neural 
network can be implemented using ReRAM devices in 
hardware, and on their modeling via jump tables. A single 
ReRAM device behaves like an artificial synapse, and ReRAM 
device crossbars can physically implement densely connected 
synaptic weight matrices, with weights wij of a network layer 
represented as device conductances Gij in the memristive 
crossbar array. For inference, pixels of an input image are 
converted to voltages on the input wires of the ReRAM 
crossbar, as shown in Fig. 2a. As a result of resistive circuit 
physics (Ohm’s and Kirchhoff’s Laws), these voltages induce 
currents on the layer-output wires whose values are equal to the 
matrix-vector product of synaptic weights times input voltages. 
These currents are then converted into numerical values using 
an analog-to-digital conversion. The nonlinear activation 
function is computed using digital logic. This result is fed as a 
voltage applied to the inputs of the following network layer, and 
so on until the final output layer is reached. 

For backpropagation, traditional minibatch gradient descent 

can be used to update the conductances of the crossbar array. 
For a conductance Gij at minibatch iteration k, firstly the total 
number of pulses pij to be applied is determined by:  

pij = 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 �pmax  .  �∇w
(k)L�

ij
� ,                        (6) 

where ∇w
(k)L is the gradient of the loss function averaged over 

all minibatch inputs at iteration k, and pmax is the device 
dynamic range, defined as the total number of pulses required 
to either SET the device from Gmin to Gmax, or alternatively, 
RESET the device from Gmax to Gmin. For our synthetic models, 
pmax was 500, and for our experimental models, pmax was 64. 
pij takes on the sign prescribed by the gradient: a positive sign 
means that Gij is to be SET and a negative sign means that Gij 
is to be RESET. It is thus important to retain this sign 
information in order to correctly determine the update for each 
device in the crossbar. In hardware, the pij pulses would 
physically be applied to the conductance Gij directly. However, 
in our jump table training regime, the following algorithm is 
employed to update Gij due to the train of applied pulses pij: 
Based on the sign of pij, the appropriate jump table is selected 
and a random number uk is generated between 0 and 1. The 
corresponding conductance change for a pulse is the inverse of 
the CDF for a device at conductance Gij applied to u, ΔG =
CDF−1(u). The device conductance is updated to Gij + ΔG and 
this cycle is repeated for all pulses. These jump table 
conductance updates intrinsically quantize and model the 
conductance update behavior of real devices. 

We implemented jump table-based neural network training 
in PyTorch [37]. In our simulations, the synaptic weights for 
each network layer are represented in the conductance space as 
a crossbar array via the CDF given by a pair of SET and RESET 
jump tables (Fig. 2b). While the scope of our work is modeling 
neural networks based on ReRAM devices, our framework can 
easily be extended to model other emerging analog memory 
technologies such as phase change memories, magnetic tunnel 
junctions, or photonic modulators [18], [38]. Additionally, this 

 

 
Fig. 2. Inference and training in a ReRAM-based multi-layer perceptron network. (a) Inference: ReRAM conductances implement 
matrix-vector multiplication in hardware as a consequence of electrical circuit physics (Ohm’s and Kirchoff’s Laws). Atomic Force 
Microscopy picture of a representative crossbar matrix of individual ReRAM devices is also shown. (b) Training: For all ReRAM 
devices in the network, the derivative of the loss function with respect to the synapse is converted to the number of voltage pulses 
to be applied to the corresponding device. The change in conductance resulting from these pulses is modeled by two jump tables, 
one for SET and one for RESET, samples of which are also shown. 
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work is entirely focused on training and investigating modeling 
bias using device models during training. Once programmed, 
the ReRAM device weight behaves like a fixed and relatively 
stable circuit element, so any small read noise and relaxation 
effects were considered negligible for the inference phase. 

Training characteristics of hardware neural networks 
implemented with emerging synaptic devices can widely 
depend on their switching characteristics and statistics. A 
network implemented using devices with high switching 
variability would have different optimal training 
hyperparameters than a network implemented using nearly-
ideal devices, due to different evolution of the respective weight 
distributions [34]. It is thus of utmost importance to isolate this 
phenomenon in the context of modeling bias. To address this, a 
learning rate optimization was implemented using a grid-search 
for every individual target model. In brief, 10-epoch training 
was carried out using learning rates sampled on a logarithmic 
scale covering a wide range. The optimal learning rate was 
defined as that which gave the highest test accuracy averaged 
over these training epochs. The impact of randomness in the 
network weight initializations, mini-batching shuffling, and the 
random number generation in the stochastic jump-table weight 
update was explored by repeating this optimization under 
various conditions. The results show consistency of the optimal 
learning rate for a given target jump table model. The modeling 
bias of a given interpolated jump table model was investigated 
using 100-epoch simulations computed for 20 iterations at only 
the optimal learning rate corresponding to each target model. 
Since each accuracy comparison between a target and an 
interpolated model is done after an initial learning rate 
optimization phase, any differences and thus resulting modeling 
bias arise solely due to misestimations during the  device 
modeling and not as a result of a poor choice of network 
hyperparameters.  

D. Metrics for Evaluating Modeling Quality 
In order to quantify the quality of the device model in the 

context of the neural network training, the following metrics are 
employed at the network and device levels. 

 
D.1.  Modeling Bias 

Given that ReRAM conductance updates have a stochastic 
character, any single training simulation and its attendant 
accuracy should be viewed as an instance of a random variable. 
Different models for the ReRAM devices have different 
distributions in accuracy, and it is sensible to compare their 
means. We define modeling bias (MB) as the amount that the 
network’s average modeled test accuracy (Mean Acc.model) – 
the accuracy when the synaptic weights are represented by 
ReRAM devices using an interpolated jump table model – 
differs from the average target test accuracy (Mean Acc.target ). 
These averages are computed for each epoch as shown in (7). 
Note that the target test accuracy can have a different meaning 
based on the type of data we used for modeling. For synthetic 
data, it is the accuracy when the synaptic weights are modeled 
by ReRAM devices using the synthesized target jump table 
model. For experimental data, it is the experimental test 
accuracy that would be obtained in a physical implementation 

based on the real behavior of the device population used for 
creating the jump table models.  

Since modeling bias is a function of the training epoch, a 
good device model is one that has lower modeling bias 
throughout training. Formally, we define 

MB(i)  =  Mean Acc.model (i) – Mean Acc.target (i)   (7) 
as a function of epoch number i. The bias can either be positive, 
when the modeled accuracy is too optimistic and overpredicts 
the target accuracy, or negative, when the modeled accuracy 
underpredicts it. For the results shown below, mean network 
accuracies required by (7) were determined by averaging over 
20 instances of network training for a given device model. 
 
D.2.  Switching Sign Discrepancy and Overlapping Error 

To estimate the quality of a device model, we propose the use 
of two device-level error metrics: switching sign discrepancy 
(SSD) and overlapping error (OVLE). At the network level, the 
switching direction of ReRAM devices plays a pivotal role in 
effective training. As an example, suppose the target mean 
values for a given jump table model were all positive across the 
entire range of the G parameter with minimal variance, as is the 
case with some of our SET tables. If an interpolated model 
regularly predicts negative ΔG updates for many of the 
corresponding G indices, the result would be a weight that is 
changed in the opposite direction of what is prescribed by the 
corresponding gradient. These updates with inverted signs 
would almost certainly lead to a degradation in training 
performance. The same argument applies to the RESET tables. 
To measure the presence of this failure mechanism, we define 
the switching sign discrepancy (SSD) as: 

SSD(x,  y) =
1
n
��P�XGi < 0� − P�YGi < 0��
n

i=1

 , (8) 

where XGi and YGi are distributions of device models x and y 
respectively, n is the total number of distributions within these 
models (assumed to be the same for both models), and P(XGi <
0) is the probability that the i-th distribution of model x 
produces a negative variate. For our jump table models with 
Gaussian distributions, this is computed as: 

P�XGi < 0� = �PDFXGi  dG =
1
2

erfc �
μi

σi√2
�  ,

0

−∞

 (9) 

where PDFXGi  is the probability density function of XGi, erfc(. ) 
is the complementary error function, and μi,σi are the mean and 
standard deviation of XGi. The SSD quantifies the average 
signed agreement between two device models in terms of their 
switching behavior. The SSD of a device model with itself is 0 
since the agreement is maximum and is 1 when there is no 
signed switching agreement between two models.  

Along similar lines, the overall overlap between device 
model distributions is also important. For this, we make use of 
the complement of the overlapping coefficient from [39] and 
define the overlapping error (OVLE) between two device 
models x and y as follows: 

OVLE(x, y) =
1

2n� � ��PDFXGi − PDFYGi��dG
+∞

−∞

n

i=1

 . (10) 
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The OVLE of a device model with itself is 0 since the overlap 
is maximum and is 1 in the case of no overlap between two 
models. 

These device metrics can potentially present insights about 
the modeling bias performance of a given device model, prior 
to carrying out expensive neural network experiments, and can 
thus save significant time. Additionally, these metrics can also 
serve as a tool for device designers to quickly quantify 
disagreement (or agreement) between different devices at the 
level of device switching. As an example, different jump table 
models could be extracted from experimental (Gi,ΔGi) datasets 
obtained from different devices, and these error metrics could 
be computed and compared across device populations.  

 
D.3.  Kolmogorov-Smirnov test 

For experimental data where the underlying statistics are 
unknown, the SSD and OVLE cannot be directly calculated. 
The two-sample Kolmogorov-Smirnov test (or a similar non-
parametric two sample test) can be used instead. The 
Kolmogorov-Smirnov test can provide a probabilistic estimate 
of two datasets being drawn from the same underlying 
distribution. The test value reports the largest absolute 
difference D between two distribution functions I(x) and J(x) 
as given by (11). 

D = sup
x

| I(x) − J(x)| ,                           (11) 

where sup denotes the supremum. A lower test value 
corresponds to a better fit, meaning that the probability of the 
two datasets having been drawn from the same distribution is 
higher. Since our experimental device data is two-dimensional 
(Gi,ΔGi), we use a two-dimensional variant of the 
Kolmogorov-Smirnov test, as specified in [40]. Our 
methodology is as follows: First, the experimental data is 
transformed to reflect a compliance current to limit switching 
between Gmin and Gmax using (5). Second, the data is randomly 
split into non-overlapping modeling and testing subsets. The 
modeling subset is used to generate binning and Optuna jump 
table models. We then use these models to synthesize a 
�Gj,ΔGj� dataset. Finally, we apply the Kolmogorov-Smirnov 
test on the initial testing subset and each of the two synthesized 
datasets. As a baseline for comparison, we also report the 
Kolmogorov-Smirnov test values between the two 
experimental subsets in our results. 

E. Optuna modeling 
We propose a method to explore the network modeling bias 

in the absence of experimental apparatus and/or experimental 
network accuracies. Ideally, the experimental data includes a 
complementary set of experimental device (Gi,ΔGi)  datapoints 
and the corresponding network train / test accuracies obtained 
from a prototype network physically implemented with these 
devices. In such case, different device modeling methods, their 
device- and network-level metrics, and respective network 
simulation results could be tested against the experimental 
reality directly to determine if the device model needs to be 
further optimized. However, prototyping neural networks in 
emerging hardware is challenging, expensive and time 
consuming. Therefore, for a given emerging device technology, 
only experimental device (Gi,ΔGi) data might be available to 

benchmark both the device model and the network simulation 
results. Nevertheless, the question remains if the device model 
utilized is sufficient to obtain a realistic network accuracy or if 
there is space for optimization in the device model.  

To address this challenge, this paper presents a device 
model optimization methodology based on Optuna [22], an 
automated hyperparameter optimization framework. The 
algorithm employs a derivative-free optimization strategy to 
push the limits of device modeling towards experimental 
realism. As an optimization metric, the Kolmogorov-Smirnov 
test is used. Algorithm 3 details our developed Optuna 
algorithm. The input is an experimental dataset D comprising 
of (Gi,ΔGi) pairs, conductance range G, polynomial degrees m 
and n to use for modeling mean and standard deviation profiles 
respectively, objective function f, and a termination value e to 
be optimized. In our case, the objective function is the two-
dimensional two sample Kolmogorov-Smirnov error between 
the testing subset of the experimental dataset, and synthesized 
Optuna dataset.  However, this can easily be replaced with an 
alternate metric as needed. e is chosen as the binning test error, 
which is the Kolmogorov-Smirnov error between the testing 
subset of the experimental dataset and a synthesized binning 
dataset. The outputs are Optuna mean and standard deviation 
profiles μ′(G) and σ′(G), the test error of which is better than 
the corresponding binning model by iterative optimization. 
 

Algorithm 3. Optuna Jump Table Device Modeling 
1 procedure OptunaModel (in D, G, m, n, f, e; out μ′,σ′) 
2     𝑒𝑒′ = ∞                               (Initialize Optuna error as inf.) 
3     μparams ←  Initialize m + 1 coefficients for μ(G) profile 
4     σparams ←  Initialize n + 1 coefficients for σ(G) profile 
5     while 𝑒𝑒′ ≥ 𝑒𝑒 do 
6         μ′ = EvaluatePolynomial(G, μparams)  
7         σ′ = EvaluatePolynomial(G,σparams) 
8         GenerateSyntheticData(in length(D),G,μ',σ'; out D') 
9         e′ = 𝐟𝐟(D′, D) 
10         μparams ←  Update m + 1 coefficients for μ(G) profile 
11         σparams ←  Update n + 1 coefficients for σ(G) profile 
12     end while 
13 end procedure 
 
In essence, Optuna iteratively learns the mean and standard 

deviation profiles of an input experimental dataset consisting of 
(Gi,ΔGi) points recorded at a certain voltage by fitting two 
separate polynomials (of degrees m and n) on the input dataset 
– one for the mean profile over G, and another for the standard 
deviation profile over G. The m + 1 coefficients for the mean 
profile, and the n + 1 coefficients for the standard deviation 
profile serve as hyperparameters for optimization. Since the 
algorithm is iterative, there is no guaranteed upper-bound on its 
time complexity. In comparison with binning, it is fairly more 
time-consuming in terms of runtime because of having to 
sample from a mn-dimensional space a large number of times. 

For our datasets, hyperparameters were initialized based on 
direct polynomial fitting over binning mean and standard 
deviation profiles. Successive sampling was done by the tree-
structured parzen estimator – a Bayesian optimization strategy. 
For all RESET voltage pulse amplitudes from our experimental 
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datasets, the termination criterion was achieved using parabolic 
modeling of the mean and standard deviation profiles, and for 
all SET voltages, it was achieved using linear modeling of the 
mean and standard deviation profiles.  

III. RESULTS 

A. Impact of number of data points 
Identifying the optimal number of (G,ΔG) data points for 

jump table modeling is of significant interest to provide a highly 
representative simulation result at the network level, while 
keeping the device measurement time to a minimum.  

To study this, we generated series of jump tables following 
the linear mean, constant standard deviation profiles from Fig. 
2 (equivalent to 3.5 % cycle-to-cycle variability of the 
analytical device model) with an increasing number of points in 
the raw dataset, ranging from 40 to a total of 10,000 data points. 
Neural network simulations using these jump table models were 
run at their respective optimized hyperparameters and the 
modeling bias as well as SSD and OVLE metrics were 
determined. 

The results in Fig. 3 show a potential correlation between the 
quality of the device model and the quality of the network 
simulation based on this device model. As the number of data 
points increases, conductance trajectories of the binning models 
align more with the target model (Fig. 3a, b). Additionally, 
device-level metrics SSD and OVLE of the binning models 
both decrease, and so does the modeling bias of the 
corresponding binning jump table models (Fig. 3c, d). This 
occurs because the binning algorithm is able to more effectively 
capture the underlying target mean and standard deviation 
profiles given rich data, leading to overall good network-level 
estimation of the target models (Fig. 3e).  

There is minimal benefit in terms of modeling bias upon 
increasing the points from 4,000 to 10,000. The remainder of 

the jump tables generated in this work are thus based on 4,000 
samples of (Gi,ΔGi) points, where these samples are drawn 
from target Gaussian distributions with known mean and 
standard deviation profiles in the synthetic case and are 
experimental measurements when working with real devices.  

B. Impact of Cycle-to-Cycle Variability 
To investigate how the device cycle-to-cycle variability 

impacts the device modeling and network simulation 
respectively, we synthesized variants based on the analytical 
device model at increasing values of the underlying standard 
deviation, sampled in a range from 0.2 nS to 12 nS, 
corresponding roughly to cycle-to-cycle variations from 0.5 % 
to 34 % of the underlying conductance range. The mean profile 
was not altered, and the number of (G,ΔG) data points was fixed 
at 4,000. 

Fig. 4 presents an analysis of the overall performance of 
these models. As the cycle-to-cycle variability of target devices 
increases, the target conductance trajectories become noisier. 
As a consequence, the corresponding binning models find it 
harder to predict the underlying mean and standard deviation 
profiles. This manifests in binning conductance trajectories 
deviating from target trajectories (Fig. 4a).  

At the network level, the increase in cycle-to-cycle 
variability translates to an overall degradation of the training 
capability of target devices, evident from narrower learning rate 
training windows in Fig. 4b and the decline in optimal target 
accuracies in Fig. 4c. Additionally, it can be observed that the 
optimal learning rate values – shown in cyan markers in Fig. 4b 
– inversely decrease with the increase in device cycle-to-cycle 
variability. This suggests that in order to optimally train a 
ReRAM-based hardware network, smaller gradient steps 
proportional to the cycle-to-cycle variability of the underlying 
ReRAM devices may be required. Fig. 4a also highlights the 
importance of performing a learning rate optimization. This is 

 

 
Fig. 3. Impact of the number of points for device modeling and respective network simulations. (a) Synthesized (G,ΔG) datasets 
for SET modeling with 500 and 10,000 points, and (b) corresponding conductance trajectories of the target device model and 
interpolated binning model for 500 applied pulses. (c) Overlapping Error and Switching Sign Discrepancy of different binning 
jump table models. (d) Network training curves of the 500 point and 10,000-point models, and (e) average absolute modeling bias 
of the different binning jump table models, indicating that the modeling bias performance improves as the number of points 
increase. The batch size used is 4096 and optimized network learning rate is 0.1 for all models. 
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because modeling bias results at unoptimized learning rates can 
be potentially misleading.  

Finally, network simulations of binning models show that 
the network modeling bias tends to increase with the increase 
in noise, as captured in Fig. 4d. It can also be observed that the 
network results are largely unreliable in terms of the sign of 
modeling bias – with some cases over-estimating target 
accuracy, and others under-estimating target accuracy. Overall, 
we conclude that the binning algorithm fails to effectively 
capture target mean and standard deviation profiles when the 
standard deviation in the input dataset is high given a fixed 
number of data points, i.e., beyond 2 nS given 4,000 (G,ΔG) 
data points. 

C. Impact of Non-Linearity 
The impact of the device non-linearity on modeling bias is 

investigated using variants of the analytical model at different 
device non-linearity values. The chosen parametrization for 
non-linearity is formulated as follows: given a base jump table 
model with mean profile μ(G), the corresponding model at non-
linearity k – where k is a positive integer – is the model with 
mean profile kμ(G) = {kμ1, kμ2, … kμn}. Note that the standard 
deviation profile is unaltered, though the multiplication of the 
mean profile by a constant can lead to a change in the net 
coefficient of variation (defined as dispersion around the mean). 
Fig. 5 summarizes our analysis on device non-linearity. 

Fig. 5a shows the conductance trajectories of target and 

binning models at different non-linearities. Contrary to Fig. 4a 
where target devices get noisier, here we see that target devices 
show less noise under our chosen scheme of increasing non-
linearity. This is due to the net coefficient of variation 
decreasing with the increase in device non-linearity. 
Additionally, it can be observed that binning modeling is able 
to better model target devices with high non-linearity and low 
cycle-to-cycle variability, compared to target devices that have 
low non-linearity and high cycle-to-cycle variability. This 
improvement is manifested in the OVLE and SSD device 
metrics shown in Fig. 5b, which are consistently significantly 
lower compared to devices from Fig. 3c. As the non-linearity 
increases, we make the following two observations at the 
network level. Firstly, the optimal accuracy of target models 
increases. Secondly, the modeling bias performance of 
corresponding binning models improves, as captured in the 
thinning gray region in Fig. 5c. The convergence curves in Fig. 
5d reinforce these observations. Our device metrics do not seem 
to fully capture modeling bias characteristics, contrary to Fig. 3 
where target profiles were unaltered. We hypothesize that this 
happens because of significant changes to switching behavior 
from one non-linearity model to another, and acknowledge that 
our device metrics need to be further refined to better capture 
device switching intricacies.  

 
Fig. 5. Impact of device non-linearity on device modeling and 
respective network simulations. (a) Conductance trajectories of 
target and binning jump table models with increasing non-
linearity for up to 64 applied pulses for clarity. At higher non-
linearity, devices saturate faster. (b) Overlapping error and 
switching sign discrepancy of the binning models. (c) 
Comparative optimal accuracies at different levels of device 
non-linearity. (d) Corresponding optimized network training 
curves at different levels of non-linearity. The batch size was 
4096, the optimal learning rates for non-linearity 2, 8, and 24 
were 0.31, 0.31, and 0.1 respectively, and the jump table 
standard deviation was constant at σ = 1.2 nS for all three 
models. 
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Fig. 4. Impact of the cycle-to-cycle variability on device 
modeling and respective network simulations. (a) Conductance 
trajectories of target and binning jump table models at different 
levels of standard deviation for up to 64 applied pulses for 
clarity. (b) Training windows of target models at the 
investigated batch size of 4096. Cyan markers indicate optimal 
learning rates. (c) Comparative optimal accuracies of target and 
binning models. Traces in (b) correspond to target models of 
the same shade in (c). (d) Convergence curves corresponding 
to the device models in (a). 
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D. Experimental Model Verification 

 While prior sections investigated synthetic datasets, this 
section summarizes the modeling results on experimental data. 
We use our experimental datasets (Fig. 1c, d) to derive jump 
table models using the approach described in Section II D.3. 

Fig. 6a shows Kolmogorov-Smirnov test error values for 
the different SET and RESET datasets for the binning and 
Optuna models, computed using our methodology detailed in 
Section II D.3. To illustrate the room for optimization in these 
models, we also plot the test error between the experimental 
model and experimental test subsets. These values are the 
lowest as expected, as the two are indeed drawn from exactly 
the same distribution. The subsampling of the experimental 
datasets, the binning modeling, and the error calculations were 
repeated for a total of 20 iterations for maintaining statistical 
significance. An error bar indicates one standard deviation. 

 There is a performance gap between what the binning 
models can do to approximate the experimental data, as 
observed by the gap between the cyan and gray points in Fig. 
6a. This is line with the results from Fig. 4. Our proposed 
Optuna-based algorithm for optimization produces (G,ΔG) data  
is significantly closer to the experimental reality compared to 
the binning models in all investigated cases, with lower K-S 
values. Since Optuna models still exhibit a performance gap 
from the experimental data, better interpolation methods still 
need to be explored. Nevertheless, network simulations of the 
Optuna models seem to represent experimental reality closer 
than corresponding binning models. End-to-end experimental 
verification is left for future work.  

 

Fig. 6b shows the normalized difference of the mean and 
standard deviation profiles between binning and Optuna 
models. In all cases, it can be observed that differences in the 
standard deviation profile are higher than the differences in the 
mean profile. A negative bar links to a binning profile 
underestimating the corresponding Optuna profile, and it can be 
seen that binning tends to generally underestimate the standard 
deviation. This underestimation of the device noise directly 
manifests in the network convergence curves shown in Fig. 6c, 
where binning models over-promise the test accuracy that 
would be obtained by a ReRAM network implemented using 
our devices compared to Optuna models.  

IV. DISCUSSION 
These results point to the need to understand the goodness of 

a device model in connection with the experimental reality of 
ReRAM hardware for in-memory compute and neural network 
accelerators. In hardware implementations, the obtained 
accuracy depends on the underlying distribution of the device 
population used for implementation. While this underlying 
distribution is unknown and can only be approximated 
indirectly via electrical measurements, a good statistical model 
of the device based on these measurements should be able to 
predict the target accuracy that a hardware prototype would 
achieve – if available. The value of the accuracy is not of critical 
consideration here per se; the modeling bias, defined as the 
difference between simulated accuracy and target accuracy, is 
more relevant. For example, a software simulation based on a 
given device model may achieve an accuracy higher than the 
target model, supposing such a hardware model exists for 
comparison. This outcome would be undesirable since the 
simulation results overpromise on the particular device 
technology proposed. For our investigation at the network level, 
we are only interested in how well a statistical model can 
approximate the underlying target distribution of the device 
population, which does not have to be the model that achieves 
the highest network training accuracy.  

To support these co-design efforts in the absence of 
experimental network data, this work has proposed the use of 
automatic optimizers such as Optuna to estimate network 
convergence as the benchmark for estimating the modeling bias 
performance of corresponding experimentally derived device 
models. While this approach does not replace the need of 
experimentally obtaining network performance estimates and 
studying exact device performance, it could be used as a short-
term solution to support iterative device and network co-
optimization, particularly when experimental results of network 
training might be difficult to obtain. Considering the device 
yield capabilities of emerging device technologies, the 
proposed network and evaluation methodology represents a 
relevant step for the device research community and the 
computer science and engineering community to jointly 
benchmark the performance of emerging hardware against. 

We have shown that there are limitations to binning models 
in approximating synthetic target model convergence. 
Specifically, binning models exhibit poor device modeling and 
a high modeling bias when a) the input dataset is scarce – 
having fewer than 4,000 data points, and b) when the device 
cycle-to-cycle variability is high – beyond 2 nS in our chosen 

 
Fig. 6. Experimental Model Verification. (a) Kolmogorov-
Smirnov test errors of the experimental test dataset with the 
experimental model dataset and synthesized datasets from the 
binning and the Optuna-optimized binning models. (b) 
Normalized difference (%) between mean and standard 
deviation profiles of the binning models with the Optuna 
models. (c) Optimized network training curves investigated 
pulse amplitudes. The batch size was 4096, and the optimal 
learning rates for voltage amplitude 1.35 V, 1.5 V, 1.65 V, and 
1.8 V were 0.1, 0.031, 0.01, and 0.01 respectively. 
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network training regime. These limitations mean that exploring 
other interpolation methods in the context of jump table-based 
device modeling is promising. Our prior work in device 
modeling with Gaussian Process Regression methods, such as 
ordinary Kriging [27] hints at a potential method that will be 
investigated in the future for network training.  

It is important to point out that this initial investigation is 
restricted to Gaussian interpolation methods applied mostly to 
linear mean and constant standard deviation profiles. In reality, 
emerging devices can follow various profiles, e.g., piecewise 
linear profile [21], parabolic mean and constant standard 
deviation [19], etc. Moreover, these Gaussian interpolation 
methods can be insufficient if the underlying data is skewed due 
to physical bounds and limitations based on the parasitic 
resistance of the device. More general interpolation methods, 
e.g., based on skew normal distribution, could better predict 
complex device behavior and possibly neural network behavior 
more accurately and consistently. We plan to explore in future 
work how various interpolation modeling methods compare to 
one another in terms of corresponding network modeling bias 
where the underlying distributions are complex and non-trivial. 
Another limitation of the jump table model is that it does not 
explicitly capture the evolution of a device’s statistics across a 
population of devices under different experimental conditions. 
Future work will thus explore multi-dimensional jump tables 
where the ∆G / pulse response is a function of not only the 
initial conductance of the device, but also the switching cycle 
number, pulse width, pulse height, device location in the array, 
etc. A more comprehensive methodology to model all of these 
additional dependencies in the context of neural network 
simulations at varying architectures will be evaluated. 

Since our device metrics and modeling bias results both 
monotonically decrease (e.g., Fig. 3), we hypothesize that these 
metrics could be the first step towards having a mechanism to 
predict modeling bias performance of different device models 
relative to one another. However, before such a link could be 
established, these metrics need to be further investigated and 
refined to fully understand their connection with modeling bias. 
Network parameters such as the learning rate, loss function, and 
network dimensionality would have to be studied in 
conjunction with device training statistics such as the number 
of times SET and RESET tables are used over training, number 
of SET or RESET pulses applied, etc. This is left for future 
work. 

V. CONCLUSIONS 
This paper proposes the concept of “modeling bias” as a 

useful metric to quantify the goodness of a device model at the 
neural network level. To exemplify this concept, the binning 
interpolation method was used for modeling ReRAM device 
jump tables and its applicability in predicting neural network 
convergence behavior was investigated. For testing, a wide 
range of synthetic Gaussian datasets with linear mean and 
standard deviation profiles as well as experimentally obtained 
datasets were used, in conjunction with proposed metrics at the 
device and network level. The results show that device models 
based on binning can lead to unreliable modeling bias behavior, 
sometimes over-promising and sometimes under-promising the 
network accuracy. Better interpolation methods that have lower 

bias than binning, particularly at high device switching noise 
and low number of data points will be investigated in the future. 
Promising device metrics seem to have a similar trend with 
modeling bias at the network level, but additional investigations 
are needed for more complex device switching profiles and 
more difficult image classification datasets. Additionally, 
simulated accuracy results will be experimentally verified. 
Finally, the proposed Optuna algorithm for device modeling 
will be further refined by exploring other, more application-
friendly error metrics beyond the Kolmogorov-Smirnov test. 
This work highlights the need for additional correlated efforts 
in device / network modeling and prototyping for in-memory 
computing and neural networks. 

ACKNOWLEDGMENT 
We thank Mark Anders and Lin Wang for prior useful 

discussions. The authors acknowledge the use of high-
performance computing clusters, advanced support from the 
research technology services, and IT support at The George 
Washington University and NIST. 

REFERENCES 

[1] P. Bose, “Power Wall,” in Encyclopedia of Parallel Computing, D. Padua, 
Ed. Boston, MA: Springer US, 2011, pp. 1593–1608. doi: 10.1007/978-
0-387-09766-4_499. 

[2] S. Channamadhavuni, S. Thijssen, S. K. Jha, and R. Ewetz, “Accelerating 
AI Applications using Analog In-Memory Computing: Challenges and 
Opportunities,” in Proceedings of the 2021 on Great Lakes Symposium on 
VLSI, Virtual Event USA, Jun. 2021, pp. 379–384. doi: 
10.1145/3453688.3461746. 

[3] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang, 
and P. Deaville, “In-Memory Computing: Advances and Prospects,” 
IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019, doi: 
10.1109/MSSC.2019.2922889. 

[4] Y. Chen, “ReRAM: History, Status, and Future,” IEEE Transactions on 
Electron Devices, vol. 67, no. 4, pp. 1420–1433, Apr. 2020, doi: 
10.1109/TED.2019.2961505. 

[5] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. 
Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-
Based Analog Computation and Neural Network Classification with a Dot 
Product Engine,” Advanced Materials, vol. 30, no. 9, p. 1705914, 2018, 
doi: 10.1002/adma.201705914. 

[6] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang, 
T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, Y.-R. Chen, T.-H. Hsu, 
Y.-K. Chen, Y.-C. Lo, T.-H. Wen, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-
T. Tang, and M.-F. Chang, “15.4 A 22nm 2Mb ReRAM Compute-in-
Memory Macro with 121-28TOPS/W for Multibit MAC Computing for 
Tiny AI Edge Devices,” in 2020 IEEE International Solid- State Circuits 
Conference - (ISSCC), Feb. 2020, pp. 244–246. doi: 
10.1109/ISSCC19947.2020.9063078. 

[7] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, 
and W. D. Lu, “A fully integrated reprogrammable memristor–CMOS 
system for efficient multiply–accumulate operations,” Nat Electron, vol. 
2, no. 7, pp. 290–299, Jul. 2019, doi: 10.1038/s41928-019-0270-x. 

[8] A. Valentian, F. Rummens, E. Vianello, T. Mesquida, C. L.-M. de 
Boissac, O. Bichler, and C. Reita, “Fully Integrated Spiking Neural 
Network with Analog Neurons and RRAM Synapses,” in 2019 IEEE 
International Electron Devices Meeting (IEDM), Dec. 2019, p. 14.3.1-
14.3.4. doi: 10.1109/IEDM19573.2019.8993431. 

[9] S. Menzel, “Comprehensive modeling of electrochemical metallization 
memory cells,” J Comput Electron, vol. 16, no. 4, pp. 1017–1037, Dec. 
2017, doi: 10.1007/s10825-017-1051-2. 

[10] S. Aldana, P. García-Fernández, R. Romero-Zaliz, M. B. González, F. 
Jiménez-Molinos, F. Gómez-Campos, F. Campabadal, and J. B. Roldán, 
“Resistive switching in HfO2 based valence change memories, a 
comprehensive 3D kinetic Monte Carlo approach,” J. Phys. D: Appl. 
Phys., vol. 53, no. 22, p. 225106, Apr. 2020, doi: 10.1088/1361-
6463/ab7bb6. 



12 
JETCAS-2022-0110 
 
[11] E. Abbaspour, S. Menzel, and C. Jungemann, “Studying the switching 

variability in redox-based resistive switching devices,” J Comput 
Electron, vol. 19, no. 4, pp. 1426–1432, Dec. 2020, doi: 10.1007/s10825-
020-01537-y. 

[12] A. Padovani, D. Z. Gao, A. L. Shluger, and L. Larcher, “A microscopic 
mechanism of dielectric breakdown in SiO2 films: An insight from multi-
scale modeling,” Journal of Applied Physics, vol. 121, no. 15, p. 155101, 
Apr. 2017, doi: 10.1063/1.4979915. 

[13] C. Bengel, A. Siemon, F. Cüppers, S. Hoffmann-Eifert, A. Hardtdegen, 
M. von Witzleben, L. Hellmich, R. Waser, and S. Menzel, “Variability-
Aware Modeling of Filamentary Oxide-Based Bipolar Resistive 
Switching Cells Using SPICE Level Compact Models,” IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, 
pp. 4618–4630, Dec. 2020, doi: 10.1109/TCSI.2020.3018502. 

[14] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor 
SPICE model and crossbar simulation based on devices with nanosecond 
switching time,” in The 2013 International Joint Conference on Neural 
Networks (IJCNN), Aug. 2013, pp. 1–7. doi: 
10.1109/IJCNN.2013.6706773. 

[15] G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. 
Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and 
M. Nafría, “Metal oxide resistive memory switching mechanism based on 
conductive filament properties,” Journal of Applied Physics, vol. 110, no. 
12, p. 124518, Dec. 2011, doi: 10.1063/1.3671565. 

[16] D. Ielmini, F. Nardi, and C. Cagli, “Physical models of size-dependent 
nanofilament formation and rupture in NiO resistive switching 
memories,” Nanotechnology, vol. 22, no. 25, p. 254022, May 2011, doi: 
10.1088/0957-4484/22/25/254022. 

[17] G. González-Cordero, J. B. Roldan, F. Jiménez-Molinos, J. Suñé, S. Long, 
and M. Liu, “A new compact model for bipolar RRAMs based on 
truncated-cone conductive filaments—a Verilog-A approach,” Semicond. 
Sci. Technol., vol. 31, no. 11, p. 115013, Oct. 2016, doi: 10.1088/0268-
1242/31/11/115013. 

[18] S. Sidler, I. Boybat, R. M. Shelby, P. Narayanan, J. Jang, A. Fumarola, K. 
Moon, Y. Leblebici, H. Hwang, and G. W. Burr, “Large-scale neural 
networks implemented with Non-Volatile Memory as the synaptic weight 
element: Impact of conductance response,” in 2016 46th European Solid-
State Device Research Conference (ESSDERC), Lausanne, Switzerland, 
Sep. 2016, pp. 440–443. doi: 10.1109/ESSDERC.2016.7599680. 

[19] M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J. 
Niroula, S. J. Plimpton, E. Ipek, and C. D. James, “Multiscale Co-Design 
Analysis of Energy, Latency, Area, and Accuracy of a ReRAM Analog 
Neural Training Accelerator,” IEEE Journal on Emerging and Selected 
Topics in Circuits and Systems, vol. 8, no. 1, pp. 86–101, Mar. 2018, doi: 
10.1109/JETCAS.2018.2796379. 

[20] B. Hoskins, W. Ma, M. Fream, O. Yousuf, M. Daniels, J. Goodwill, A. 
Madhavan, H. Tung, M. Branstad, M. Liu, R. Madsen, J. Mclelland, G. 
Adam, and M. Lueker-Boden, “A System for Validating Resistive Neural 
Network Prototypes,” in International Conference on Neuromorphic 
Systems 2021, Knoxville TN USA, Jul. 2021, pp. 1–5. doi: 
10.1145/3477145.3477260. 

[21] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. 
Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and H. 
Hwang, “Experimental Demonstration and Tolerancing of a Large-Scale 
Neural Network (165 000 Synapses) Using Phase-Change Memory as the 
Synaptic Weight Element,” IEEE Transactions on Electron Devices, vol. 
62, no. 11, pp. 3498–3507, Nov. 2015, doi: 10.1109/TED.2015.2439635. 

[22] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-
generation Hyperparameter Optimization Framework,” in Proceedings of 
the 25th ACM SIGKDD International Conference on Knowledge 
Discovery & Data Mining, New York, NY, USA, Jul. 2019, pp. 2623–
2631. doi: 10.1145/3292500.3330701. 

[23] Y. Luo, X. Peng, and S. Yu, “MLP+NeuroSimV3.0: Improving On-chip 
Learning Performance with Device to Algorithm Optimizations,” in 
Proceedings of the International Conference on Neuromorphic Systems, 
New York, NY, USA, Jul. 2019, pp. 1–7. doi: 10.1145/3354265.3354266. 

[24] J. Niroula, S. Agarwal, R. Jacobs-Gedrim, R. L. Schiek, D. Hughart, A. 
Hsia, C. D. James, and M. J. Marinella, “Piecewise empirical model 
(PEM) of resistive memory for pulsed analog and neuromorphic 
applications,” J Comput Electron, vol. 16, no. 4, pp. 1144–1153, Dec. 
2017, doi: 10.1007/s10825-017-1107-3. 

[25] S. Stathopoulos, A. Serb, A. Khiat, M. Ogorzałek, and T. Prodromakis, 
“A Memristive Switching Uncertainty Model,” IEEE Transactions on 

Electron Devices, vol. 66, no. 7, pp. 2946–2953, Jul. 2019, doi: 
10.1109/TED.2019.2918102. 

[26] J. van Leeuwen, J. B. J. Smeets, and A. V. Belopolsky, “Forget binning 
and get SMART: Getting more out of the time-course of response data,” 
Atten Percept Psychophys, vol. 81, no. 8, pp. 2956–2967, Nov. 2019, doi: 
10.3758/s13414-019-01788-3. 

[27] I. Hossen, M. A. Anders, L. Wang, and G. C. Adam, “Data-driven RRAM 
device models using Kriging interpolation,” Sci Rep, vol. 12, no. 1, Art. 
no. 1, Apr. 2022, doi: 10.1038/s41598-022-09556-4. 

[28] T. Dalgaty, N. Castellani, C. Turck, K.-E. Harabi, D. Querlioz, and E. 
Vianello, “In situ learning using intrinsic memristor variability via 
Markov chain Monte Carlo sampling,” Nat Electron, vol. 4, no. 2, Art. no. 
2, Feb. 2021, doi: 10.1038/s41928-020-00523-3. 

[29] S.-O. Park, H. Jeong, J. Park, J. Bae, and S. Choi, “Experimental 
demonstration of highly reliable dynamic memristor for artificial neuron 
and neuromorphic computing,” Nat Commun, vol. 13, no. 1, Art. no. 1, 
Jun. 2022, doi: 10.1038/s41467-022-30539-6. 

[30] Y. Gao, S. Wu, and G. C. Adam, “Batch Training for Neuromorphic 
Systems with Device Non-idealities,” in International Conference on 
Neuromorphic Systems 2020, Oak Ridge TN USA, Jul. 2020, pp. 1–4. doi: 
10.1145/3407197.3407208. 

[31] E. Ambrosi, A. Bricalli, M. Laudato, and D. Ielmini, “Impact of oxide and 
electrode materials on the switching characteristics of oxide ReRAM 
devices,” Faraday Discuss., vol. 213, pp. 87–98, 2019, doi: 
10.1039/C8FD00106E. 

[32] T. Gokmen and Y. Vlasov, “Acceleration of Deep Neural Network 
Training with Resistive Cross-Point Devices: Design Considerations,” 
Frontiers in Neuroscience, vol. 10, 2016, Accessed: Mar. 21, 2022. 
[Online]. Available: 
https://www.frontiersin.org/article/10.3389/fnins.2016.00333 

[33] L. Deng, “The MNIST Database of Handwritten Digit Images for 
Machine Learning Research [Best of the Web],” IEEE Signal Processing 
Magazine, vol. 29, no. 6, pp. 141–142, Nov. 2012, doi: 
10.1109/MSP.2012.2211477. 

[34] J. Zhao, S. Huang, O. Yousuf, Y. Gao, B. D. Hoskins, and G. C. Adam, 
“Gradient Decomposition Methods for Training Neural Networks With 
Non-ideal Synaptic Devices,” Frontiers in Neuroscience, vol. 15, p. 1524, 
2021, doi: 10.3389/fnins.2021.749811. 

[35] A. Laborieux, M. Bocquet, T. Hirtzlin, J.-O. Klein, E. Nowak, E. 
Vianello, J.-M. Portal, and D. Querlioz, “Implementation of Ternary 
Weights with Resistive RAM Using a Single Sense Operation per 
Synapse,” arXiv, arXiv:2007.14234, Oct. 2020. doi: 
10.48550/arXiv.2007.14234. 

[36] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep 
Learning with Limited Numerical Precision,” in Proceedings of the 32nd 
International Conference on Machine Learning, Jun. 2015, pp. 1737–
1746. Accessed: Dec. 13, 2021. [Online]. Available: 
https://proceedings.mlr.press/v37/gupta15.html 

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. 
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. 
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. 
Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information 
Processing Systems, 2019, vol. 32. Accessed: Nov. 06, 2021. [Online]. 
Available: 
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f
7012727740-Abstract.html 

[38] N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-
Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. 
Englund, “Linear programmable nanophotonic processors,” Optica, 
OPTICA, vol. 5, no. 12, pp. 1623–1631, Dec. 2018, doi: 
10.1364/OPTICA.5.001623. 

[39] H. F. Inman and E. L. Bradley, “The overlapping coefficient as a measure 
of agreement between probability distributions and point estimation of the 
overlap of two normal densities,” Communications in Statistics - Theory 
and Methods, vol. 18, no. 10, pp. 3851–3874, Jan. 1989, doi: 
10.1080/03610928908830127. 

[40] J. A. Peacock, “Two-dimensional goodness-of-fit testing in astronomy,” 
Monthly Notices of the Royal Astronomical Society, vol. 202, no. 3, pp. 
615–627, Mar. 1983, doi: 10.1093/mnras/202.3.615. 

 



13 
JETCAS-2022-0110 
 

Osama Yousuf (Student Member, IEEE)  
received a B.S. degree in computer science 
with a minor in mathematics from Habib 
University, Karachi, Pakistan in 2020. He is 
currently pursuing a Ph.D. degree in 
computer engineering at the George 
Washington University, Washington, DC, 
USA in the Adaptive Devices And 

Microsystems (ADAM) group as a research assistant. He also 
works as a research associate at the National Institute of 
Standards and Technology (NIST), Gaithersburg, MD. His 
research interests include robust neural network training 
algorithms, modeling emerging non-volatile memory devices, 
and prototyping ReRAM-based accelerators. 
 

Imtiaz Hossen (Student Member, IEEE) 
received the B.Sc. degree in electrical and 
electronic engineering from the University 
of Dhaka, Dhaka, Bangladesh, in 2016, and 
the M.Sc. degree in electrical and computer 
engineering from Marquette University, 
Milwaukee, WI, USA, in 2020. He is 
currently pursuing a Ph.D. degree in 

electrical engineering at the George Washington University, 
Washington, DC, USA in the Adaptive Devices And 
Microsystems (ADAM) group as a research assistant. His 
research interests are nano-scale fabrication and testing of novel 
memory devices, device modeling, heterogeneous integration 
of ReRAM in CMOS foundry chips, ultra-high resolution 
temperature sensors and RF/microwave sensors. 
 

Matthew W. Daniels is a research physicist 
in the Alternative Computing Group at the 
National Institute of Standards and 
Technology (NIST), Gaithersburg, MD. He 
received a B.S. in physics with a minor in 
mathematics from Clemson University in 
2012 and a Ph.D. in physics from Carnegie 
Mellon University in 2017. His dissertation 

work was on topological physics and theoretical 
antiferromagnetic spintronics. His current research program 
seeks to build a theory of hardware neural networks and 
neuromorphic systems. He currently works on understanding 
how time and stochasticity can be effectively utilized as 
primitive encodings for computing systems and on designing 
digital architectures that use the spectrally-biased, low-rank 
properties of neural network gradients to accelerate their 
training in hardware. 
 

Martin Lueker-Boden is an engineering 
research director for Western Digital 
Corporation (WDC). He earned a Ph.D. in 
physics from the University of California at 
Berkeley in 2010.  After earning his 
doctorate, he worked as a post-doctoral 
scholar at the California Institute of 
Technology.  He started working at WDC in 

2014 with a research focus on developing novel applications for 
non-volatile memory devices, including development of new 

cell technologies, methods for media management techniques, 
security considerations, I/O frameworks, software 
optimizations and in-memory/neuromorphic computing. His 
work prior to joining WDC focused on the development of 
superconducting low-noise microwave radiation sensors, and 
the statistical analysis of extra-galactic radiometry data. 
 

Andrew Dienstfrey received the Ph.D. in 
Applied Mathematics from the Courant 
Institute of Mathematical Sciences at New 
York University. Dienstfrey joined the 
Mathematical and Computational Sciences 
Division at the National Institute of 
Standards and Technology (NIST), Boulder, 
CO in 2000. His research interests include 

applications of mathematics to computational physics and 
numerical analysis. 
 

Gina C. Adam (Senior Member, IEEE) 
received the B.Sc. degree in applied 
electronics from the University Politehnica 
of Bucharest, Bucharest, Romania, in 2010, 
and the Ph.D. degree in electrical and 
computer engineering from the University of 
California at Santa Barbara, CA, USA, in 
2015. From 2016 to 2018, she was a 

Research Scientist with the National Institute for Research and 
Development in Microtechnologies, Voluntari, Romania, and a 
Visiting Scholar with the École Polytechnique Fédérale de 
Lausanne, Lausanne, Switzerland. She is currently an Assistant 
Professor of electrical and computer engineering with the 
School of Engineering and Applied Science, George 
Washington University, Washington, DC, USA. Her current 
research interests include resistive switching devices and their 
use in memory storage, computing, and communications 
applications.  


	I. Introduction
	II. Methods
	A. Jump table modeling
	B. Device Datasets
	C. Neural Network Details
	D. Metrics for Evaluating Modeling Quality
	E. Optuna modeling

	iii. Results
	A. Impact of number of data points
	B. Impact of Cycle-to-Cycle Variability
	C. Impact of Non-Linearity
	D. Experimental Model Verification

	iv. Discussion
	V. Conclusions



