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Abstract— Current automatic exposure notification apps 

primarily operate based on hard distance/time threshold 

guidelines (e.g., 2 m/15 min in the United States) to determine 

exposures due to close contacts. However, the possibility of virus 

transmission through inhalation for distances over the specified 

distance threshold might necessitate consideration of soft 

distance/time thresholds to accommodate all transmission 

scenarios. In this paper, using a simplifying approximation on the 

instantaneous rate of the viral exposure versus distance, we extend 

the definition of “contact” by proposing a soft distance/time 

threshold which includes the possibility of getting exposed at any 

distance (within certain limits) around an infected person. We then 

analyze the performance of automatic exposure notification with 

Bluetooth-based proximity detection by comparing the exposure 

results when soft or hard thresholds are used. This study is done 

through an agent-based simulation platform that allows for a 

comprehensive analysis using several system parameters. By 

tuning the parameters of the proposed soft thresholds, a more 

accurate determination of possible exposures at any distance 

would be possible. This would enhance the effectiveness of an 

automatic contact tracing system. Our results indicate the 

noticeable impact of using the soft distance/time threshold on the 

exposure detection accuracy. 

Keywords- Proximity Detection, Bluetooth, Exposure 

Determination, COVID-19, Contact Tracing  

I. INTRODUCTION 

Contact tracing is a well-established technique used by 

public health professionals to trace and identify “contacts” of a 

known infectious person. In the United States, a “close contact” 

is defined by the Centers for Disease Control and Prevention 

(CDC) as someone who was within 2 meters of an infected 

person for at least 15 minutes within a 24-hour period starting 

from 2 days before appearance of symptoms (or, for 

asymptomatic cases 2 days prior to positive specimen 

collection) until the time the person is isolated [1]. The total 

exposure time needed for determination of this “close contact” 

is a cumulative total of 15 min or more over a 24-hour period. 

For example, this total could be acquired through three 

individual 5-minutes encounters with three separate infected 

individuals during a 24-hour window. The World Health 

Organization (WHO) also has a similar definition for close 

contact through proximity and duration of exposure, except that 

the proximity threshold is 1 m, instead of the 2 m considered by 

CDC [2]. 

During a pandemic efficient implementation of contact 

tracing is critical to limit an outbreak. However, resource 

limitations in cases of large outbreaks could create many 

challenges for executing manual contact tracing. Automatic 

contact tracing (also known as Automatic Exposure 

Notification) is an electronic notification protocol based on a 

proximity detection mechanism such as Bluetooth ranging. The 

availability of Bluetooth (or Bluetooth Low Energy (BLE)) 

technology in today’s smart phones have prompted 

governments and industry to also consider automatic exposure 

notification as a tool to complement manual contact tracing in 

combating the spread of the virus during COVID-19 pandemic 

[3, 4]. Usage of this technology involves installing an app 

developed through collaboration between industry and 

government agencies and published by authorized health 

authorities. 

COVID-19 infections are primarily through exposure to 

respiratory fluids (i.e., droplets and aerosol particles) carrying 

the SARS-CoV-2 virus. These respiratory fluids are released 

during breathing, coughing, sneezing, speaking, etc. Droplets 

typically clear from the air surrounding the infectious source 

within seconds to minutes; however, aerosol particles (i.e., very 

fine droplets) can remain in the air for minutes to hours. 

Inhalation of the air containing these droplets or aerosols could 

cause transmission of the virus to an individual who is in 

proximity of an infected person. The infection risk of the 

individual inhaling this air depends on the amount of virus to 

which he is exposed. These infectious particles move outward 

from the infected person during exhalation or 

sneezing/coughing. The larger size droplets fall to the ground in 

the immediate vicinity of the source due to the gravity. 

However, aerosol particles remain in the air and become diluted 

with growing volume and mixing with the stream of the air 

surrounding the source. Since the concentration of these 

particles is greatest within one to two meters of the infectious 

source, the risk of virus transmission is highest within that 

range. Nevertheless, transmission can still occur from 

inhalation of the virus in the air farther than two meters from 

the infected person. Increased exhalation (e.g., shouting, 

singing, exercising), prolonged exposure over 15 minutes and 

environments such as enclosed spaces have been known to 

contribute toward infections through inhalation at distances 

greater than 2 meters from the source [5, 6, 7, 8, 9]. In general, 

the risk for such infections decreases with increasing distance 

from the source.  

The automatic exposure notification apps primarily operate 

based on the hard distance/time thresholds outlined by the 

health organizations (e.g., 2 m/15 min by the CDC or 1 m/ 15 

min by the WHO) to determine exposures as a result of close 

contacts. However, the possibility of virus transmission through 

inhalation for distances over two meters might necessitate 

consideration of a soft distance/time threshold to accommodate 
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all transmission scenarios. In addition, higher transmissibility 

of the virus variants (such as Omicron) might also require 

consideration of longer (or shorter) distances/time threshold for 

exposure determination. Ultimate exposure determination 

depends on the amount of virus inhaled by the exposed 

individual; however, there are no simple methodology to 

ascertain that amount in practice. Accurate mathematical 

representation of the spatial distribution of the virus density 

over distance depends on many factors and scenarios. Using a 

simplifying approximation on the instantaneous rate of the viral 

exposure versus distance, we can extend the definition of 

“contact” by proposing a soft distance/time threshold which 

includes the possibility of getting exposed at any distance 

(within certain limits) around an infected person. 

 In this paper, we analyze the performance of automatic 

exposure notification with BLE-based proximity detection by 

comparing the exposure results when soft or hard thresholds are 

used. This study is done through an enhanced agent-based 

simulation platform which was originally presented in [10]. By 

tuning the parameters of the proposed soft thresholds, a more 

accurate determination of possible exposures at any distance 

would be possible. This flexibility would allow optimization of 

the soft threshold parameters based on factors such as the 

surrounding environment (e.g., indoor vs. outdoor), an 

individual’s health, the severity of the outbreak in the 

community, etc. The rest of this paper is organized as follows. 

Section II presents mathematical derivation of the soft 

thresholds that are needed to calculate exposure. Section III 

describes the agent-based simulation platform that has been 

developed to study potential exposures using the BLE-based 

proximity detection. Simulation results and analysis are 

provided in Section IV. Finally, conclusions and plans for 

future work are described in Section V. 

II. USING SOFT THRESHOLDS FOR EXPOSURE 

DETERMINATION 

Consider a healthy individual that is located at distance 𝑑(𝑡) to 

an infected person at time 𝑡. Assume that 𝜈(𝑑(𝑡), 𝑡) is the 

instantaneous rate of the viral exposure experienced by this 

individual at time 𝑡. The total viral exposure by the individual 

during time interval [0, 𝑇] would be: 

 

𝑉𝑇 = ∫ 𝜈(𝑑(𝑡), 𝑡)𝑑𝑡
𝑇

0
     (1)                                              

 

To simplify, we assume that 𝜈(𝑑(𝑡), 𝑡) is the following function 

of distance 𝑑(𝑡):  

 

𝜈(𝑑(𝑡), 𝑡) = 𝑘𝑑(𝑡)−𝛼 ,     (2) 

 

where 𝛼 represents the decay factor of the viral exposure 

intensity with distance and 𝑘 > 0 is a constant coefficient. 

Clearly the distribution of the viral particles may not be the 

same (i.e., uniform) in all directions around the infected person 

and could depend on the source orientation and initial jetting of 

exhalations. However, to reduce the complexity of our analysis 

we do not consider dependency on direction in this paper. 

Therefore, from (1) and (2), we have: 

 

𝑉𝑇 = 𝑘 ∫ 𝑑(𝑡)−𝛼𝑑𝑡
𝑇

0
.                        (3)                                                 

 

The individual receiving this total viral exposure is considered 

to be “Exposed” at time  𝑡 ≥ 𝑇 if  𝑉𝑇 ≥ 𝑉∗, i.e.,  

 

𝑉𝑇 = 𝑘 ∫ 𝑑(𝑡)−𝛼𝑑𝑡
𝑇

0
≥ 𝑉∗              (4)                                                   

where 𝑉∗ is a constant representing the critical threshold for the 

total viral exposure. Using the current CDC definition of hard 

exposure thresholds (i.e., 𝐷𝐻 = 2 m and 𝑇𝐻 = 15 min), 𝑉∗ can 

be obtained as follows: 

𝑉∗ = 𝑘𝐷𝐻
−𝛼𝑇𝐻                (5) 

 

Therefore, the individual at risk is considered exposed if: 

 

𝑉𝑇 = 𝑘 ∫ 𝑑(𝑡)−𝛼𝑑𝑡
𝑇

0
≥ 𝑘𝐷𝐻

−𝛼𝑇𝐻   (6) 

 

Equation (6) defines the soft threshold (i.e., boundary in the 

distance/time space) for identification of exposure compared to 

the hard thresholds used for this purpose. This concept is further 

illustrated in Fig. 1a, and Fig. 1b. 

 

 
Fig. 1: Exposure zone according to (a) hard thresholds (b) soft 

thresholds 

The boundary function for exposure zone in Fig. 1b can be 

obtained from equation (6) as:  
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𝑇(𝐷) = 15 (
𝐷

2
)

𝛼

     (7) 

As indicated earlier in this section, 𝛼 is a parameter that 

specifies the rate at which viral particles decay with distance. In 

the simplest scenario, assuming a spherical spatial distribution 

of viral particles in the space surrounding the source, 𝛼 may be 

approximated by 2. However, many environmental 

characteristics such as obstacles along the exhalation path, 

indoor vs. outdoor, air flow quality, or even temperature may 

impact the actual value of 𝛼. For example, in indoor 

environments with low air circulation, the value of 𝛼 may be 

much lower than outdoor environments. In addition, 𝛼 could 

also be a function of distance itself as droplets may dissipate 

differently with increasing distance compared to aerosols. The 

impact of 𝛼 on the soft threshold (i.e., boundary of the exposure 

zone) is shown in Fig. 2. As observed, the size of the exposure 

zone depends on the values of 𝛼.  

 

Another parameter to consider when using soft thresholds is 

𝑑𝑚𝑖𝑛 . It indicates the minimum distance below which the 

required exposure time for occurrence of a ‘contact” does not 

decrease. A value of 𝑑𝑚𝑖𝑛 < 2 meters would represent 

scenarios where less than 15 minutes are sufficient for positive 

exposure determination. It should be noted that when 𝑑𝑚𝑖𝑛 = 2 

m, increasing value of 𝛼 would cause the soft threshold 

exposure zone to asymptotically converge to the exposure zone 

defined by the hard thresholds (i.e., Fig. 1a). 

 
Fig. 2: Impact of 𝛼 on the exposure zone 

 

Assuming that the BLE signal measurements are done at a 

rate of 1/∆ seconds, a non-stationary individual within the 

exposure zone will pick up incremental exposures every ∆ 

seconds. The values of these incremental exposures are not 

equal and depend on the distance of the individual from the 

infected agent at the time of measurement. Consider 

𝐸𝑥𝑝(𝑡, 𝑑(𝑡)) to be the total effective exposure time that an 

individual has experienced up to time 𝑡. 𝑑(𝑡) is the distance of 

the agent from an infected individual at time 𝑡.  Then, the total 

effective exposure time at  𝑡 + ∆  (i.e., 𝐸𝑥𝑝(𝑡 + ∆, 𝑑(𝑡 + ∆)) 

depends on how 𝑑(𝑡) changes from time 𝑡 to time 𝑡 + ∆ . In 

general, this can be approximated by the following equation: 

𝐸𝑥𝑝(𝑡 + ∆, 𝑑(𝑡 + ∆)) = 𝐸𝑥𝑝(𝑡, 𝑑(𝑡)) + 𝛽 (
∆×15

𝑇(𝑑(𝑡))
) + (1 −

𝛽) (
∆×15

𝑇(𝑑(𝑡+∆))
)  (8) 

where 0 ≤ 𝛽 ≤ 1 is a constant parameter indicating the impact 

of transition from 𝑑(𝑡) to 𝑑(𝑡 + ∆). If 𝛽 is close to one, it means 

that the individual stayed mostly at distance 𝑑(𝑡) to the infected 

individual during the time interval [𝑡, 𝑡 + ∆]. Likewise, a 𝛽 

value close to zero means that the individual stayed mostly at a 

distance 𝑑(𝑡 + ∆) to the infected individual during the time 

interval [𝑡 𝑡 + ∆]. Since no information would be available on 

the transition of the individual from 𝑑(𝑡) to 𝑑(𝑡 + ∆), then in 

practice three approaches can be followed to calculate 

accumulative exposure: A) an aggressive approach where 𝛽 is 

considered to be zero, or B) a conservative approach where 𝛽 is 

considered to be 1, and C) a medium approach where 𝛽 is taken 

to be 0.5.  
 

If the individual is stationary, then 𝑑(𝑡 + ∆) = 𝑑(𝑡) and all 

three approaches would be similar. For a moving individual if 

∆ is small, then the difference between these approaches is 

again minimal. The three strategies could differ significantly 

when ∆ becomes large relative to the speed of the individual. In 

practice, a small ∆ means higher measurement and processing 

rate by the contact tracing application on the mobile phone. This 

could result in a higher battery consumption and therefore 

higher frequency of recharging which might not be desirable in 

practice.  

 

As mentioned earlier, in automatic contact tracing, the 

Bluetooth signal is used to estimate the distance between two 

individuals carrying mobile phones. Knowing this proximity 

and its duration, the “close contact” guidelines using the hard 

thresholds [1] are typically used to determine the possibility of 

exposure to the virus. With soft thresholds, the same 

methodology using the updated exposure zone in Fig. 1b can be 

used to determine whether any exposure has occurred. Further 

details of this methodology are discussed in the next section. 

III. SIMULATION PLATFORM 

In [10], we proposed an agent-based simulation platform to 

better understand the impact of Bluetooth proximity estimation 

error on automatic exposure determination. The platform 

considered people walking in a plaza, campus area, or 

neighborhood. The basic dynamics in the agent’s mobility were 

based on the algorithms in [11]. In order to more accurately 

reflect agents’ traffic in an open area, we have incorporated two 

enhancements in our platform. In the basic platform, all agents 

within the simulation would simply randomly walk towards a 

given goal. So, the first enhancement is to overcome the 

possibility of the agents becoming jammed or trapped against 

one another with no way to proceed during the simulation 

[12]. Jamming can occur when all the agents in a simulation 

have similar goals, such as all trying to reach the same area 

within the simulation field.  To avoid jamming in our 

simulation and thus biasing the results, our platform 

periodically randomizes the goals of each agent. 

The second enhancement is to allow some interaction 

between agents within the simulation.  In other words, we allow 

an agent to start a “conversation” with another agent, which 

effectively immobilizes both agents for a random period of 
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time.  If two (or more) agents are within a certain proximity of 

each other, then, with a given probability, a conversation is 

started.  The length of this conversation is random variable with 

a truncated Normal distribution. In our simulations, we have 

chosen the standard deviation of this distribution to be 1 min 

while the mean is considered as a parameter. This enhancement 

enables us to better consider the possibility of exposure with 

face-to-face interactions among the agents.  

Using this enhanced platform, we can track the true and 

estimated distances between any two moving agents at fixed 

time interval of size ∆. The estimated distance is calculated as 

the summation of the true distance plus an error which is due to 

the BLE proximity detection mechanism. In the BLE-based 

proximity detection mechanism, there is an underlying error in 

the process that converts the signal strength into distance. This 

error is due to the variation in propagation of the Bluetooth 

signal. The variation is caused by many factors such as the 

surrounding environments, phones positions and orientations 

relative to the individuals carrying them, antenna gain patterns 

of the phones, etc. Assuming a Lognormal pathloss distribution 

for the BLE channel with a Gaussian distributed shadowing and 

fading component with standard deviation 𝜎, the distribution of 

the error in the estimated distance would be a function of (𝜎), 

pathloss exponent (𝑛) and the true distance between the agents. 

This distribution is shown in equation (9) [10]. 

 

𝑓𝑌(𝑦) =
1

√2𝑛

10𝑛

𝜎 𝑙𝑜𝑔𝑒(10)

1

(𝑑0 + 𝑦)
𝑒

−
1
2

 (
10𝑛

𝜎 𝑙𝑜𝑔𝑒(10)
)

2

(𝑙𝑜𝑔(
𝑌

𝑑0
+1)) 2

 

(9) 

During a simulation, each healthy agent maintains two 

parameters: (a) True Effective Exposure Time 

(𝑇_𝐸𝑥𝑝(𝑡, 𝑑(𝑡))), and (b) Estimated Effective Exposure Time 

(𝐸_𝐸𝑥𝑝(𝑡, 𝑑(𝑡))). The true effective exposure parameter keeps 

track of the total exposure time based on equation (8) using the 

true distance from infected agent. Likewise, the estimated 

effective exposure parameter shows the total exposure time 

when the estimated distance from infected agents is used in 

equation (8). The true and estimated effective exposure 

parameters are updated every ∆ seconds after incorporating the 

population dynamics in the simulation platform. The 

parameters are used to make exposure determination for all 

healthy agents at any time during the length of a simulation. 

Comparison of the values of these parameters to the soft 

thresholds discussed in the previous section will lead to 4 

possible states for each agent including two types of errors in 

exposure determination. 

A false positive exposure error occurs when the true effective 

exposure parameter of a heathy agent is outside the exposure 

zone shown in Fig. 1b while its estimated effective exposure 

parameter is within the exposure zone. Conversely, a false 

negative exposure error occurs when the agent’s true effective 

exposure parameter falls inside the exposure zone of Fig. 1b 

while the estimated effective exposure parameter shows the 

accumulated exposure time still outside that zone. The diagram 

shown in Fig. 3 describes possible states for an agent during the 

simulation and conditions for transitioning from one state to the 

other.   

 
 

Fig. 3: State diagram of the agents in the simulation platform 

 

To reduce the number of exposure checks at each time 

interval, a cutoff radius can be considered for the BLE signal 

measurement around any infected agent in the simulation. The 

maximum radius of Bluetooth signal in favorable environment 

(i.e., minimal fading and shadowing) is typically considered to 

be 10 m. However, this range could vary for harsh environment 

or equivalently environment with high standard deviation of 

fading (i.e., 𝜎).  

 

IV. SIMULATION RESULTS AND ANALYSIS 

Assuming a fixed pathloss exponent of 𝑛 = 2 for the BLE 

signal propagation, a fading standard deviation of 𝜎 = 4, and a 

distance measurement interval of ∆= 1 sec, extensive 

simulations have been done using the platform discussed in the 

previous section to investigate the impact of 𝛼 , 𝑑𝑚𝑖𝑛  and the 

average conversation length between agents on the number of 

exposed individuals. The results presented in this paper 

consider a population of 135 agents moving within an area of 

size 162 m × 35 m for 8 hours (i.e., typical length of a workday). 

These numbers are chosen based on a standard laboratory 

building inside the campus area of the National Institute of 

Standards & Technology where the authors work. The number 

of infected individuals at the beginning of the simulation is set 

to 5% of the population. In addition, the probability of two 

agents starting a conversation once they are within one meter 

distance of each other is assumed to be 0.01.  

 

Figure 4 shows the number of exposed agents versus time for 

the soft exposure threshold with parameter  𝛼 = 2, 2.5, 3, 3.5, 4 

as well as the hard thresholds of 2 m/15 min (per CDC 

guidelines). Here, it is also assumed that 𝑑𝑚𝑖𝑛 = 1 𝑚 and the 

average conversation length is set to 3 min. As observed, the 

number of exposed agents is noticeably more at any given time 

during the simulation when a soft threshold is used. In addition, 

this number grows faster for higher values of α. Although this 

may be counterintuitive, but the trend versus α depends on 

many factors such as 𝑑𝑚𝑖𝑛, agents mobility pattern, average 

conversation length, and population density. For 𝑑𝑚𝑖𝑛 < 2 , as 

shown in Fig. 2, the change in the size of the exposure zone 
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below the 15 min threshold as α changes will impact all agents 

that fall within the range [𝑑𝑚𝑖𝑛 ,  2 m].  When α increases, the 

size of that zone will increase as well. This will result in higher 

number of exposed agents, especially when the mobility pattern 

of the agents leads to more occurrence of agents within that 

exposure zone. 

 
Fig. 4: Impact of 𝛼 on the number of exposed agents when 𝑑𝑚𝑖𝑛 =

1 𝑚 

 

On the other hand, if 𝑑𝑚𝑖𝑛 = 2 𝑚, then the number of 

exposed agents versus time decreases as α increases. This trend, 

shown in Figure 5 for 𝛼 = 2, 2.5, 3, 3.5, 4, 20, is simply due to 

the reduction in the size of the exposure zone above the 15 min 

threshold. In the limit, for very large values of α, the soft 

exposure threshold would converge to the hard thresholds as 

defined by CDC, and the number of exposed agents would 

become identical. This can be observed in Fig. 5 when α=20. 

The curve corresponding to α=20 is much closer to the results 

obtained when using the hard thresholds.  

 
Fig. 5: Impact of 𝛼 on the number of exposed agents when 𝑑𝑚𝑖𝑛 =

2 𝑚 

 

In general, for a fixed value of α, higher values of 𝑑𝑚𝑖𝑛  would 

decrease the size of the exposure zone; and therefore, the 

number of exposure opportunities will be reduced. Figure 6 

shows the number of exposed agents versus time for the soft 

exposure threshold with parameter  𝑑𝑚𝑖𝑛 = (1, 1.5, 2) m as well 

as the hard thresholds of 2 m/15 min (per CDC guidelines). 

Here, it has been assumed that 𝛼 = 2, the average conversation 

length = 3 min, and the probability of initiating a conversation 

is again set to 1%. As expected, the total number of exposed 

agents decreases with increase in the values of 𝑑𝑚𝑖𝑛 .  

 
Fig. 6: Impact of 𝑑𝑚𝑖𝑛 on the number of exposed agents 

 

Aside from the soft threshold parameters (𝑑𝑚𝑖𝑛  and 𝛼), agent 

mobility attributes also impact the exposure results. As 

mentioned in Section 3, the mobility pattern considered for this 

study allows occasional stops for mobile agents that are within 

certain distance of each other. This feature represents random 

conversations that could take place among individuals in their 

work environment. Figure 7 shows the number of exposed 

agents over time when the average conversation length is 

assumed to be 3 min, 6 min or 10 min. A soft exposure threshold 

with parameters 𝛼 = 2 and 𝑑𝑚𝑖𝑛 = 1 m has been considered for 

these results. It might be expected that higher average 

conversation time should increase the number of exposed 

agents at any time. However, longer conversation between 

healthy agents reduces their exposure opportunity from other 

infected agents as they become immobilized during their 

conversation time. In addition, infected agents who get involved 

in a longer conversation have less opportunity to expose other 

healthy agents in the environment. Therefore, as seen in Fig. 7, 

higher average conversation time leads to lower number of 

exposed agents over time. It should be noted that this trend may 

change for different mobility pattern. 

 
Fig. 7: Impact of the average conversation length on the number of 

exposed agents 

As described by the state diagram in Fig. 3., the number of false 

exposure determinations can also be studied using our 
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simulation platform. As the sequence of the error in the 

estimated distances of agents is most likely correlated in time 

and not an independent and identically distributed process, a 

filter (i.e., windowing function) can be used to exploit this 

correlation, smooth the estimated distances and reduce the 

occurrence of false exposure determinations. Assuming 𝛼 = 2, 

𝑑𝑚𝑖𝑛 = 2 and an average conversation time of 3 min, Fig. 8 

shows the total average number of false negatives plus positives 

with and without filtering during the simulation. Here we are 

showing the impact of using a simple 3-point moving-average 

window. As shown in Fig. 8, the number of false determinations 

initially rise and then drop as more transitions to the fully 

exposed state occurs. However, the total number of false 

determinations is substantially lower when the 3-point moving 

average window is used. Further results elaborating the use of 

filtering has been omitted for brevity. 

 
Fig. 9: Number of false determinations with and without a 3-point 

moving-average window 

 

V. CONCLUSIONS AND FUTURE WORK 

The ultimate goal of contact tracing is to accurately notify 

the right people (i.e., people who were truly exposed) to 

quarantine in a timely manner and let other individuals who 

were not exposed to function in the community as usual. In this 

way, not only the spread of the virus is better controlled but also 

the negative economic impacts of general public lockdowns are 

avoided or minimized.  

This paper extends the current hard exposure thresholds to a 

parameterized soft threshold in order to allow for more general 

exposure determination scenarios. These scenarios include 

cases with 1) distances beyond the current hard proximity 

threshold and 2) exposure time below the current hard time 

threshold. The impact of the soft thresholds for various system 

parameters have also been reported using an agent-based 

simulation platform. The authors plan to further investigate the 

accuracy of exposure determination by varying the BLE signal 

measurement frequency as well as the impact of using various 

filtering on the sequence of the estimated distances. The 

concept of soft exposure thresholds presented here can be 

further customized for classes of individuals according to 

factors such as age, health condition, transmissibility of the 

virus at a given geographical area, etc. The authors further plan 

to investigate identification of such classes and their 

corresponding soft exposure thresholds.   
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