Variant calling and benchmarking in an era of complete human genome sequences

Nathan D Olson,¹ Justin Wagner,¹ Nathan Dwarshuis,¹ Karen H. Miga², Fritz J. Sedlazeck³, Marc Salit⁴, Justin M Zook^{*,1}

- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, MS8312, Gaithersburg, MD 20899 USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, 77030, USA
- 4. The MITRE Corporation, McLean, VA, 22102, USA

*Corresponding author: jzook@nist.gov

Abstract

Variant calling from DNA sequencing has enabled understanding of germline variation in hundreds of thousands of humans. Sequencing technologies and variant calling methods have advanced rapidly, routinely providing reliable variant calls in most of the human genome. We describe how advances in long reads, deep learning, *de novo* assembly, and pangenomes have expanded access to variant calls in increasingly challenging, repetitive genomic regions, including medically-relevant regions, and how new benchmark sets and benchmarking methods illuminate their strengths and limitations. Finally, we explore the possible future of more complete characterization of human genome variation in light of the recent completion of a Telomere-to-Telomere human genome reference assembly and human pangenomes, and innovations needed to benchmark their newly accessible repetitive regions and complex variants.

Introduction

Calling variants (sequence differences) between an individual's genome with respect to a reference genome assembly has been the standard practice for characterizing hundreds of thousands of human genomes since the completion of the Human Genome Project. The human reference genome assembly, first published in 2003, was the basis for a wide variety of methods to 'map' (align) reads to the reference and identify differences between those reads and the reference, commonly termed 'variant calling'. The typical variant calling process includes sequencing, read mapping or de novo assembly, variant calling, filtering of false positives, and sometimes phasing. Calling variants across many individuals has enabled understanding of variants associated with disease and clinical diagnostics, as well as evolutionary mechanisms.

Calling small variants from short-read sequencing has become highly accurate in regions of the genome to which short reads (typically 150 to 250 base-pairs (bp) long) can be accurately mapped.^{1–3} This high accuracy has resulted from decreases in sequencing errors rates (e.g., due to PCR-free sequencing) and modest increases in short read length. However, short reads have limitations in repetitive regions of the genome (Figure 1). Generally, if a read is shorter than a repeated or duplicated region, it may be difficult to determine the read's 'true' location in the genome, and thus calling variants from it will be ambiguous. Such repetitive regions include segmental duplications, long interspersed nuclear repeats (LINEs), short tandem repeats (STRs), variable number tandem repeats (VNTRs), telomeres, and satellite repeats (up to 30 Mbp long). To deal with these limitations, novel

sequencing methods and bioinformatics tools have been invented to enable longer read lengths, specifically ultralong (100 kbp to several Mbp) reads⁴ and highly accurate long (15 kbp to 20 kbp) reads.⁵ These longer reads enabled the complete de novo assembly of an effectively haploid human genome by the Telomere-to-Telomere Consortium, correcting some errors in the GRCh38 human reference genome and adding ~7% of highly repetitive sequence previously unassembled.⁶

Genomic benchmarks have played an important role in optimizing sequencing methods and analysis pipelines. These benchmarks include well-characterized samples and variant callsets from community efforts such as the Genome in a Bottle Consortium (GIAB) and Sequencing Quality Control Consortium (SEQC), along with benchmarking tools from the Global Alliance for Genomics and Health (GA4GH). Scientists can use these benchmarks by acquiring a well-characterized sample (e.g. HG002 from GIAB), run it through their sequencing and analysis pipeline, and compare their results with the accompanying benchmark variant callsets. Thus, performance can be measured across analysis pipelines in a standardized way, and as Lord Kelvin once postulated: "If you cannot measure it, you cannot improve it". Furthermore, as benchmarks include increasingly challenging genomic regions or variants, they help technology and method development, providing key insights into what laboratories may miss.

Here, we review the advances in DNA sequencing technologies and bioinformatics, as well as accompanying benchmarks, which have made variant calling routine in much of the human genome, as well as their limitations in repetitive regions and common sources of bias and error. We review the role of benchmarks and benchmarking tools in understanding and improving variant accuracy, and we conclude with our perspective on the future of variant calling and benchmarking in complex, repetitive, and highly variable regions.

Remaining Challenges across the genome

Over the years many advancements have been made to identify variants and create benchmarks. Nevertheless, it is important to keep in mind that there are multiple challenging regions left across the genome. Here, we introduce the types of challenging regions and provide insights on why they are challenging and why it still matters to resolve these. The challenges are generally related to different types of repetitive regions in the genome, which are often analogized to regions of a puzzle where pieces are very similar. Different types of repeats have different challenges in sequencing errors, mapping, and variant calling, which we describe below.

Homopolymers and Tandem repeats

Homopolymers and tandem repeats are sequences repeated many times next to each other (Figure 1a), and cause systematic sequencing errors, mapping errors, and challenges in variant representation. Homopolymers are a single base repeated many times, and cause errors during PCR amplification and during sequencing, with most errors in A and T homopolymers due to their high prevalence in the human genome (Figure 1b). Although less common, G and C homopolymers generally have a higher error rate (Figure 1c),⁷ partly because certain sequence motifs may cause errors in one direction and not the other, called 'strand bias' (e.g., GGT is sometimes read as GGG by Illumina).⁸ Variants in tandem repeats often were filtered with standard short-read variant callers if short reads do not span the repeat, and are sometimes noisy in long reads (Figure 1d and 1e). In addition, GA-rich simple repeats are poorly covered in current PacBio HiFi data.⁹ While reads can generally be mapped or assembled accurately with sufficient reads longer than the full repeat length, large or complex variants may confuse the alignment. Furthermore, even with accurate long reads that span the repeat, the specific representation of a variant may be important to understanding its role in a phenotype or disease, particularly for the horizontally complex variants (multiple variants on the same haplotype) and vertically complex variants (different variants occurring on both haplotypes) shown in Figure 2a and 2b. These challenges can be different for the two general historical categories of tandem repeats; short tandem repeats (STRs) are defined as repeats whose repeating unit is 6 base-pairs or less, and variable number tandem repeats (VNTRs) that have longer units.¹⁰

As an example for STRs, Huntington's disease is caused by having 36 or more CAG repeats in the huntingtin (*HTT*) gene, and gnomAD recently genotyped 59 disease-associated STR loci in >19,000 samples (https://gnomad.broadinstitute.org/news/2022-01-the-addition-of-short-tandem-repeat-calls-to-gnomad/).¹¹ Without understanding the repeat structure, variant callers may represent these repeats in a naive, repeat-agnostic way, often with multiple variants in the same repeat. This makes the variant

difficult to interpret, where ideally one would want a repeat count and sequence from each haplotype to determine phenotype or disease progression. For VNTRs, correctly identifying and genotyping repeat count is even more difficult for two main reasons, as shown in Figure 1d: first, VNTRs can often be much longer than the sequencing read length even for long reads (owing to their longer repeat size and total length), and second, VNTRs often have multiple point mutations in their repeats and multiple repeat motifs, which makes alignment more difficult.¹² Even with VNTRs longer than the read length, these can sometimes be assembled with accurate long reads, as in the gene *LPA*. adVNTR is a variant caller that specifically focuses on calling VNTRs.¹³ It uses a hidden Markov model (HMM), which encodes the likelihoods that a base letter will follow a specific position in repeat or flanking region. Even when accurately assembling or calling variants in VNTRs, representation of variants in these regions is challenging, and new tools need to be developed to compare variants between methods or across individuals.

Segmental duplications

Segmental duplications are nearly identical sequence fragments that are typically defined analytically as being at least 1000 bp long and occur at least twice throughout the genome, and may be either tandem (adjacent) or interspersed (distant).¹⁴ Because variant calling is inherently dependent on correctly mapped reads, calling small variants in these regions has historically been elusive; variants were frequently filtered or missed even if they were true positives because it was difficult to distinguish them from false positives. Recent advances in both sequencing technology and computation algorithms have begun to unlock these regions. One recent study found that segmental duplications and tandem repeats accounted for >90% of large deletions identified by long reads but missed by short reads.¹⁵

Segmental duplications are challenging for variant calling for several reasons. First, reads may not be long enough to confidently map to the correct copy of the segmental duplication (Figure 3a), even when using long reads for large, highly identical segmental duplications like SMN1 and SMN2 associated with spinal muscular atrophy.¹⁶ This can result in false positive and false negative variant calls, although paralogous sequence variants (PSVs) can be used to distinguish copies in some cases, as described below. Second, large, complex SVs such as inversions and duplications are often mediated by segmental duplications, which presents unmet challenges for variant call representation and benchmarking.¹⁷ Third, many segmental duplications differ in copy number between individuals. When an individual has an extra copy of a segmental duplication relative to the reference, reads from the extra copy often map to existing copies in the reference, typically resulting in higher than normal coverage and dense false-positive heterozygous variant calls from PSVs (Figure 2c and Figure 3b). In some cases, the GRCh37 and GRCh38 references are missing copies of a segmental duplication, resulting in false positives in all individuals, including medically relevant genes like KCNJ18 and MAP2K3.18,19 While long reads generally have fewer mapping errors than short reads, long reads can result in more false positives than short reads when the individual has an extra copy due to population variability and/or reference errors (e.g., KMT2C in Supp. Fig. 11 in Ref²⁰), because short reads from the extra copy may remain unmapped if the extra copy of the duplication is highly diverged from the reference (i.e., has many variants relative to the reference copy). Furthermore, GRCh37 and GRCh38 have gaps around segmental duplications that can cause mapping errors (Figure 2d). However, improved references like T2T-CHM13 and pangenome references can eliminate many of these false positives and mapping errors. Finally, segmental duplications can undergo gene conversion events, where the sequence in one copy replaces the sequence in another copy relative to the reference (Figure 3c), resulting in mis-mapping of reads and inaccurate variant calls when these are polymorphic in the human population, like in the medically relevant genes RHCE and SIGLEC16.20 The gene conversions were recently implicated in the increased mutation rate seen in assemblies of segmental duplications.²¹ Multiple methods have been developed to characterize copy number of segmental duplications from short reads,²² but only recently have long reads become sufficiently accurate to characterize both small and large variation using haplotype-resolved de novo assembly.9,23,24

Centromeres/heterochromatin/satellites

Satellite DNAs (long arrays of near-identical tandem repeats) are enriched within human centromeres, pericentromeric regions, and the short, acrocentric arms of chromosomes. These regions have typically been ignored by variant callers because they were missing or incomplete even in the reference, but high-resolution maps of these regions were revealed in 2022 by the T2T Consortium in the first

complete assembly of a human genome (representing an effectively haploid CHM13 cell line, or T2T-CHM13v2.0).^{6,25}

Pairwise alignments of repeat copies within the largest arrays (typically greater than 500,000 bp) are observed to be highly similar to one another (in the range of 98-100% identity). Furthermore, by mechanisms of repeat expansion, highly similar repeats — if not exactly identical repeat units — are often organized in close proximity to one another. Importantly, satellite DNAs are expected to evolve rapidly, with extreme variation in the length of the array (copy number of tandem repeats), differences in repeat unit structural variation (that is, some repeat units within an array or between arrays may vary in length), and sequence variants that distinguish one copy of a repeat from another. These unique genomic features present a fundamental challenge to generating confident short-read or long-read alignments within an array or between homologous arrays. The small number of sparsely organized differences (SNVs and indels) can present extensive regions where repeats are indistinguishable from one another. New methods are needed to ensure meaningful assembly-to-assembly comparisons between arrays. A previous study of diverse centromeric satellite arrays on haploid X chromosomes²⁵ revealed considerable variation in overall array length, regions of recent duplication (with several arrays reporting large internal duplications greater than 100,000 bp), and exceptional complex variation with local conversion and rearrangement. It is difficult to align two distinct satellite arrays that vary in repeat content in a meaningful way. As shown in Figure 2e, alignment strategies that are not repeataware (e.g. minimap2) align the HG002 assembly to CHM13 with many SNVs but few SVs, whereas minimap2 aligns HiFi reads with many CNVs and fewer SNVs. In addition to the alignment challenges, some highly repetitive satellite DNA sequences like HSat2 and HSat3 arrays were found to have strand bias and shorter read lengths for ONT and higher than normal coverage for HiFi, and conversely coverage was lower than normal for both HiFi and ONT in AT-rich HSat1 arrays.²⁶ All of these challenges need ongoing methods development, but some analyses of these regions are now possible with the advances in sequencing and variant calling methods discussed next.

Advances in sequencing methods

Advances in sequencing technology have improved variant calling accuracy and helped identify variants in complex regions of the genome and challenging variant types.²⁷ Sequencing read length and base calling accuracy partly determine whether a variant can be correctly identified within a specific genomic context. Highly similar genomic regions are generally inaccessible by sequencing technologies with sequencing accuracy less than the paralogous region similarity or reads shorter than the paralogous regions (Figure 1e).²⁸ Insufficient read length or sequence accuracy can cause incorrect or ambiguous mapping of reads to a reference and inaccurate or broken de novo assemblies.^{29–31} Improper read mapping can cause false negative variant calls when reads are unmapped or ambiguously mapped, or false positive variant calls when reads are mapped in the wrong location.³² Due to these errors, one study found one in seven pathogenic variants can be difficult to detect with standard short read sequencing.¹⁶ Sequencing methods have evolved to address these limitations by increasing accuracy, read length, or both.²⁸

Short read sequencing technologies were the first next-generation sequencing methods and have made whole-genome sequencing economical.³³ Short reads are commonly used in large population genomic studies, basic research, and clinical laboratories.^{34–36} PCR-free short reads reduce insertion and deletion (indel) errors in homopolymers (Figure 1a,b) and tandem repeats shorter than the read length. New short reads technologies are promising error rates of 1 in 10,000 bp, with particular performance gains in homopolymers.³⁷ Higher accuracy may be particularly important in calling somatic and mosaic variants in a small fraction of the reads, and calling variants in regions prone to systematic errors like homopolymers. Regardless of base accuracy, the short read lengths hinder variant calling in large tandem repeats (Figure 1d) and highly homologous regions, such as segmental duplications (Figure 3), and in the highly variable, medically relevant human leukocyte antigen (HLA) gene region that encodes several immune system components.^{1,32} To improve calls in some of these regions, new sequencing library preparation methods were developed. Paired-end sequencing of reads several hundred base-pairs apart and mate-pair sequencing of reads several thousand base-pairs apart improve mappability and SV calling.³⁸ Still, SVs are harder to detect using short read sequencing data, particularly in repetitive regions enriched for SVs.³⁹ To further improve mappability and SV detection with short reads, library preparation methods such as linked reads, synthetic long reads, Hi-C, and Strand-seq have been developed to incorporate much longer range information.

Linked-read and synthetic long-read methods leverage high-throughput short-read sequencing technologies but add barcodes identifying reads originating from the same long DNA molecule, further

improving mappability and phasing.^{40,41} For these methods large genomic DNA molecules, tens to hundreds of kilobases in length) are partitioned and barcoded. Barcodes enable read mapping in larger repeat regions such as segmental duplications, resulting in improved variant calling in these regions. Because reads sharing the same barcode within a region are generally from a single molecule, many heterozygous variants can be phased (i.e., determining whether they occur on the same haplotype or opposite haplotypes). Some of the first haplotype-resolved assembly methods were also developed with linked reads, though these have substantially lower contiguity than more recent methods using long reads.⁴² Alternative linked-read methods used dense sequencing of each molecule to enable local assembly of reads into 'synthetic long reads' (e.g., moleculo and more recently Complete Long Reads from Illumina). Linked reads generally have more DNA amplification biases in homopolymers and tandem repeats, and mapping or assembly challenges in tandem repeats and tandem duplications. The initial linked-read methods have been discontinued as commercial products, but new methods have been released, such as TELL-seq,⁴³ or announced, such as Illumina's Complete Long Reads.

Similar to linked read sequencing methods, Hi-C and Strand-Seq are sequencing methods that combine novel library preparation methods with high throughput of short-read sequencing methods to increase the amount of genomic information within a read. Hi-C sequencing methods provide chromosome contact information by cross-linking segments of DNA that are in close physical proximity.⁴⁴ Although Hi-C was originally developed and is still used for analyses of 3D genome organization, the chromosome contact information is also widely used for phasing variant calls as well as scaffolding and phasing of genome assemblies.^{45,46} Strand-Seq is a single-cell strand-specific sequencing protocol that tags reads by direction of sequencing (i.e. same direction as the reference or in the reverse complement direction), and enables clustering of reads by haplotype up to the length of chromosomes.⁴⁷ The resulting strand-specific information is particularly useful with the identification of large inversions along with phasing variants and genome assemblies.⁴⁸

Increased read length improves mappability, expanding callable regions, and increases genome assembly quality. Pacific Biosciences (PacBio) released the first long-read sequencing product^{49,50} followed by Oxford Nanopore Technologies (ONT).⁴ Often referred to as third-generation sequencing, these new methods initially offered longer reads but with lower sequencing accuracy, lower throughput, and higher cost compared to short-read sequencing methods. The lower sequence accuracy limited accuracy of calling small variants, but the longer read lengths substantially improved genome assembly and structural variant calling relative to short reads.^{51–54} Recent improvements in read accuracy have made small variant calling possible, particularly with new the PacBio HiFi approach based on circular consensus sequencing.⁵ The HiFi data's unique combination of read length and accuracy has resulted in high-accuracy small and structural variant calling as well as diploid genome assembly, as discussed below. Although ONT reads are still less accurate than HiFi reads, their accuracy has been steadily improving through improvements to the sequencing methods (e.g., new pore designs, duplex sequencing reading the same molecule twice, and base calling methods), enabling accurate single-nucleotide variant (SNV) calling as well as SV calling.^{55–57} ONT's unique pore-based electrical signal detection method has allowed for the generation of sequencing data with read lengths > 2 Mbp, and datasets with read length N50 > 100 kilobase-pairs.^{51,58,59} Combined, ultra-long ONT and HiFi datasets have enabled the generation of the first telomere to telomere human genome assembly.⁶

To complement sequencing technologies, optical⁶⁰ and electronic mapping⁶¹ technologies measure the spacing between sequence motifs that are marked on long DNA molecules, and were recently reviewed in Ref⁶². These technologies do not give sequence-level information, but can enable de novo assembly and detection of large SVs that are challenging to detect with sequencing, since they start with long DNA molecules.⁶⁰ Optical mapping has also been used to scaffold and correct assemblies of sequencing reads, as well as for detection of large germline SVs and copy number variants (CNVs) associated with diseases⁶³ and of somatic structural changes in cancer.⁶⁴ We next discuss methods developed to leverage new sequencing technologies to improve variant calling and thus benchmark creation.

Advances in variant calling methods

Variant calling pipelines typically have included mapping (or aligning) sequencing reads to the reference genome assembly, and then identifying differences between these reads and the reference genome, typically called variants, and represented in the variant call format (VCF),⁶⁵ as depicted in Figure 4. These candidate variants may be true variants in the individual or errors in mapping or sequencing, so variant callers typically include a filtering step to remove or flag likely false positives or

uncertain variants. Errors in variant calls can arise at each stage of genome analysis, from library preparation to sequencing to mapping to variant calling. Errors and variability introduced in each of these stages are often inter-related, and we detail different sources of errors in Supplementary Box 1, which are summarized in the figure in Ref⁶⁶. Since the focus of this review is on germline variant calling, we refer the readers to a recent review of somatic variant calling for a comprehensive examination of challenges.⁶⁷ A summary of advances in calling de novo mutations, variants in RNA-sequencing, and other specialized data types is in Supplementary Box 2. In the following sections, we describe recent advances in variant calling taking advantage of new sequencing methods to access challenging genomic regions.

Mapping reads

There are methods specially designed for hard to assess repeats or general challenging regions or variations. As described above, even highly similar segmental duplications have some differences (e.g., PSVs) between them. These PSVs can be used to distinguish different mapping locations, as shown in Figure 3a and 3b, but are not used explicitly by most mapping algorithms. Winnowmap2 solves this problem using minimal confidently alignable substrings (MCAS) which are substrings in reads used to establish mapping confidence by comparing the highest-scoring location with the second-highest scoring.⁶⁸ By forcing this confidence above a user-defined threshold, this naturally leverages PSVs between alignment locations. This generally leads to an order of magnitude improvement in false-positive rate (FPR) and false-negative rate (FNR) compared to other mappers such as winnowmap v1,⁶⁹ minimap2,⁷⁰ and NGMLR.⁷¹ DuploMap takes a different approach using both a priori PSVs (identified from the UCSC Table Browser) and calculation of longest common subsequence between reads and alignment locations (the assumption being that correctly aligned reads should share long and unique sequences with the mapped location).⁷² The authors show a large improvement for PacBio HiFi and ONT reads in improving mappability to segmental duplications, which also improves variant calling.^{1,57}

Filtering errors with deep learning and other machine learning

Filtering out false positive variants based on characteristics of the reads and repeats in the genome sequence has been important since the first variant callers. Filtering methods have become increasingly sophisticated, improving expert-designed features and using new methods such as deep learning. As seen in the precisionFDA Truth Challenge V2¹ and discussed by Ref⁷³, deep-learning implementations are becoming a prominent approach in many variant calling methods,⁷⁴ particularly for newer sequencing technologies. To develop a thorough contextual understanding of these developments, we direct readers to considerations for using machine learning methods in bioscience,⁷⁵ and a review of applications of deep learning in bioscience.⁷⁶ Whole human genome small variant calling is amenable to deep learning because of openly available sequencing data and benchmarks for training and testing that cover millions of variants in a range of genome contexts. The dominant architecture for variant calling deep learning models is currently convolutional neural networks (CNNs). Traditional variant callers use expert-designed features about the sequence of the locus (e.g., if it is a homopolymer), as well as characteristics of the reads from a sample aligned to the locus (e.g., if the variant is strand biased, as in Figure 1c). To reduce the need for expert-designed features, a CNN architecture accounts for information from sequencing reads and sequence of the reference genome at and around the variant. With appropriate training hyperparameters, a CNN can approximate a complex, non-linear function that classifies loci as homozygous variant, heterozygous variant, or homozygous reference (nonvariant), often yielding empirically accurate performance metrics for short and long read sequencing technologies.

Although neural networks do not need as many expert-designed features as other methods, it is still important to represent relevant features of alignments in the input data when designing variant callers. For example, in the precisionFDA challenge, the DeepVariant input format includes read base, base quality, mapping quality, strand, reads that support variant, base differs from reference, and insert size, whereas NeuSomatic used a reference sequence along with alignment features.¹ Looking beyond CNNs, recurrent neural network architectures that account for the sequential structure of the genome are used in prediction over sequencing reads such as in DeepConsensus.⁷⁷ Overall, deep learning techniques have been particularly important in enabling rapid adoption of new and evolving sequencing technologies for variant calling, such as PacBio HiFi, ONT, and new short-read technologies.^{57,73,78–81}

Other machine learning techniques are also commonly used to filter potential false positive variant calls. Examples include the Gaussian Mixture Model used in Variant Quality Score Recalibration in the Genome Analysis Toolkit (GATK),⁸² the optional random forest classifier in Octopus,⁸³ and Gradient Boosting Machines in DNAscope.⁸⁴ These models typically require feature engineering, so features associated with errors in each new technology need to be designed. Although engineering features can be challenging, these models can also give an indication of which features are important in filtering a variant — a task that is more challenging with deep learning models.

Given the complexities of variant calling, it is important that method developers summarize the model, training, and benchmarking for users to understand a method's intended use and limitations. We recommend that variant detection method developers adopt some of the transparency approaches used in machine learning, as described in Box 1. This transparency is useful for all variant callers, even when not based on deep learning, but it is particularly important for clinical applications, as one recent study showed improved variant detection with deep learning-based methods. ⁷⁴ Also, other machine learning disciplines use model zoos for distributing trained models, and genomic variant callers could similarly benefit from using Kipoi or a similar mechanism.⁸⁵

Tandem repeat-specific callers

A few highly specialized methods exist that are designed to cope with short tandem repeats (STR) and their repetitiveness, because these regions are often ignored or mis-called by standard small variant and SV callers due to size of alternative alleles, repeat structure, or complexity. ExpansionHunter is a variant caller that genotypes STRs by using a predefined variant catalogue, encoding the structure of the repeated loci in question using a regular-expression-like syntax.⁸⁶ ExpansionHunter has been shown to outperform other STR-specific variant callers such as HipSTR,⁸⁷ gangSTR,⁸⁸ and TREDPARSE⁸⁹. However, ExpansionHunter matches STRs based on user-defined patterns, requiring the user to know which variants they are targeting, and it also is less flexible to point mutations in the repeat units themselves. Other TR-specific callers have been developed for forensic STRs,⁹⁰ ONT reads,⁹¹ and PacBio HiFi reads.⁹²

Phasing/Haplotyping

Phasing entails assigning heterozygous variants, reads, or assembled contigs to the haplotype coming from the father or mother. When sequencing data are available from the parents, haplotypes can often be assigned as originating from the mother or father, or common variants can be phased based on large population panels. Otherwise, nearby variants can be phased locally when heterozygous variants are within the read length or paired-end distance for standard sequencing methods. As described above, specialized library preparations, including linked reads, Hi-C, and Strand-seq, have been developed to phase variants and assembled contigs at longer scales up to entire chromosomes. Several tools, including WhatsHap and HapCut2,^{93,94} have been developed to phase variants using a variety of types of sequencing data and pedigree information. Whatshap can also use phased variants to assign long reads to each haplotype, which is often helpful for calling variants and visualizing read support for variants.⁹³ Other tools include phasing steps to improve variant calling or assemblies^{24,45,48,95,96}. It is important to note that short read-based phasing often only locally assigns variants to haplotype blocks (i.e., the sub-region where variants are phased together), with long reads and linked reads producing larger haplotype blocks than short reads, but there may be switches between blocks. Local phasing can particularly be important for clinical applications, for example to understand whether two loss of function variants in a gene occur on the same haplotype, so that only one copy of the gene is nonfunctional, or on opposite haplotypes, so that both copies are non-functional.

Haplotype-resolved de novo assembly

De novo assembly is an increasingly possible alternative to read mapping that involves stitching together reads independent of the reference genome. From short reads, only relatively short contigs (contiguously assembled sequences of tens to hundreds of kilobase-pairs) and non-repetitive regions can be assembled, so it was rarely used except for regional assembly of large variants. Long reads enable assembly of much longer contigs. However, prior to the advent of highly accurate long reads in 2019,⁵ even the best assemblies collapsed haplotypes in most regions of the genome and had many small indel errors from the noisy reads, so were not useful for small variant calling.^{97,98} With the advent

of accurate long reads from PacBio HiFi, haplotype-resolved (or "diploid") assembly across much of the genome became possible^{9,24,45,48,99} and combined with new methods, enabled accurate small variant calling. Initially, assemblies still collapsed many segmental duplications, resulting in missed and inaccurate variants. However, many segmental duplications were resolved accurately by the best methods submitted to a 2020 comparison of diploid assemblies for HG002. This comparison showed the progress in assembly metrics and established assembly-based variant calling as a leading approach to characterize small and large variation of a genome, closely matching curated benchmarks.¹⁰⁰ The Telomere-to-Telomere (T2T) Consortium published a complete effectively haploid human assembly, as well as complete chromosome X assemblies in males in 2022,^{6,25} and are currently working towards complete haplotype-resolved assemblies of diploid assemblies for the purpose of building a pangenome reference, as described in the next section.¹⁰¹ Diploid assemblies currently are the best method to resolve complex variants in the most repetitive regions of the genome like segmental duplications and satellites, but much work remains to understand and benchmark these variants, with pangenome alignments providing one path.

Pangenomes and graph-based variant calling

Traditionally, human variant calling has been performed by aligning reads to a single linear reference such as GRCh37, GRCh38, or most recently T2T-CHM13. However, this approach is limited in regions where an individual differs substantially from the reference, such as large indels, structural variants, copy number variants, and other highly variable regions such as the medically relevant HLA (recently reviewed in Ref¹⁰²) and killer immunoglobulin-like receptor (KIR) regions. To address this challenge, approaches have been developed to map reads to pangenomes, often using graph-based references that incorporate variants from many individuals as different reference paths. For small variants, read alignments to the graph-based pangenome reference are typically translated into alignments to a linear reference so that normal variant calling tools can be used to generate variant calls on the linear reference. Pangenome approaches were recently reviewed.¹⁰³ Strengths and weaknesses of linear reference and pangenome reference approaches are shown in Table 1, and Figure 4 depicts an example of a large insertion in an individual relative to the linear reference, and how mapping to a pangeome enables reads to be mapped to the inserted sequence.

The first human graph-based references incorporated small variants and/or structural variants from short-read population sequencing projects such as the 1000 Genomes Project, and showed improvements in variant calls particularly for larger indels and SVs.¹⁰⁴ Recently, this approach was shown to improve mapping statistics and increase the number of variant calls in individuals of African ancestry.¹⁰⁵ Individuals with African ancestry generally have more variants and higher diversity than other populations, so it is plausible that graph-based references may particularly improve accuracy of variant calls for African individuals, but the lack of benchmarks for African samples makes it challenging to understand the accuracy of new variant calls detected by pangenome methods. With the advent of long reads applied to diverse samples, several approaches were developed to incorporate SVs discovered with long reads into the graph, which then enables genotyping of many of these SVs with short reads, although genotyping the majority of SVs is still challenging because they are located in tandem repeats. The latest graph-based references were made from long read de novo assemblies by the Human Genome Structural Variation Consortium (HGSVC) and the Human Pangenome Reference Consortium (HPRC). The 2019 HGSVC assemblies were based on long reads with ~10% error rate, so did not enable full haplotype separation, full assembly of segmental duplications, or accurate SNV calling, but they still substantially improved SV genotyping by short reads.^{54,106} The 2022 HPRC Phase 1 assemblies used more accurate HiFi reads, which enabled higher resolution of small and large variants, as well as better assembly of each haplotype and segmental duplications. This, along with refined graph-based variant calling methods (Giraffe-DeepVariant¹⁰⁷) and genotype inference methods (PanGenie¹⁰⁶), enabled further improvements in variant calling, particularly for large indels, structural variants, highly polymorphic regions, and regions with errors in the GRCh38 reference.¹⁰⁶⁻¹⁰⁸ While a pangenome reference can include new segmental duplications and complex structural variation missing from a linear reference, but rare variation may not be represented even in future pangenome reference resources. Calling rare complex variants, such as those causing rare disease, may still require assemblybased approaches, though the resulting assemblies could still be aligned to the pangenome reference.

Alternatives to graphs have been proposed to use pangenomes to improve variant calling. Low-frequency variants (i.e., variants observed with < 1% allele frequency) are typically observed to be regional or specific to a given population.¹⁰⁹ Therefore, there could be an advantage in using a

reference that contains major alleles in the population¹¹⁰ or that most closely corresponds to the ancestry of the sequenced individual, so that existing mapping and variant calling tools designed for a linear reference can be used.¹¹¹ This approach may not be sufficient for individuals with highly admixed ancestries or for regions of the genome that are highly variable between individuals in a population, such as the HLA and KIR regions, and some segmental duplications. A 'reference flow' approach progressively aligns reads to multiple reference genomes to improve variant calling, which is faster than graph-based approaches and therefore may enable the use of a larger number of reference genomes.¹¹²

Looking forward, alignments between pangenome assemblies are likely to be important for understanding the complex variation that frequently occurs in segmental duplications, VNTRs, satellite DNA, and other repetitive regions. Standardizing alignments between genomes in complex regions and representation of variants in these regions will be important for benchmarking accuracy and for understanding clinical relevance of complex variants. Many pangenome methods are under active development. and more comprehensive benchmarks and sophisticated benchmarking tools will be needed to assess their improvements in the most challenging regions, which we discuss in the following sections.

Benchmark sets and tools for assessing variant accuracy

Introduction to benchmark sets

Shared benchmark sets play a critical role to advance genomic science, wet- and dry-lab technology development, and to confidently apply genome sequencing. Little progress can be made without the ability to compare performance metrics from different approaches. These widely available benchmarks are the foundation for such comparison and can be the basis for translation to clinical use in regulated applications. A small number of extensively characterized genomes have been developed into 'benchmarks' to understand the performance of variant calling methods. These widely available genomes are composed of both the genomic DNA or cell lines containing the genome, and extensive data from multiple DNA sequencing technologies. These data are used to form a 'benchmark set,' the preferred term from GIAB and GA4GH to describe the set of variants in a VCF, and the regions in which practically all variants have been characterized, represented in BED format.^{113–116} 'Benchmark set' reflects the intended use, but synonyms in the literature include 'truth set'¹¹⁷, 'high confidence variants and regions'^{118,119}, 'baseline variants'¹²⁰, and 'gold standard'^{52,120,121}. These benchmark variants and regions enable users to identify true positives (correctly called variants), false positives (incorrectly called variants), and false negatives (missed variants) (Figure 5a).

There are multiple reasons why companies or scientists use benchmarks, including evaluating DNA library preparation, sequencing, and bioinformatics methods. Sequencing technology developers might ensure a new instrument is working as expected, and clinical laboratories might ensure a targeted protocol is capturing all expected variants in clinically relevant regions. In addition to testing library preparation and sequencing methods, the benchmarks are highly valuable to develop new computational methods to identify or filter genomic variants. Here, a scientist can download existing data from benchmark samples (sometimes even already mapped) or separately run their method on their own data set for the benchmark samples to measure both the fraction of variants that are reidentified from the benchmark set (i.e. recall or sensitivity) and the number of extra variants identified in the benchmark regions but not matching the benchmark variants. The lower the number of false positives, the better the precision or specificity of the method. Of note, benchmark samples generally should have defined benchmark regions to enable identification of false positives.

Ongoing advances in genome-wide variant calling required iterative refinement and development of the GIAB benchmarks. Developing and maintaining these benchmarks is unprecedented in the field of reference material and data development: novelty includes reference materials characterized for so-called nominal properties (the variants are the result of classification, most references are characterized for their quantitative attributes), and these are the first reference materials with more than 10^6 properties described (most have fewer than 10). To develop benchmarks for variant calling, the National Institute of Standards and Technology (NIST) formed the GIAB to convene a broad community from government, academia, commercial technology developers, and clinical laboratories. Complementary efforts have used family pedigree information¹¹⁹ and assemblies

of two effectively haploid cell lines.¹²² Similarly, the Sequencing and Quality Control Consortium (SEQC2) developed benchmarks for somatic variants.^{123–125} Each of these benchmarks has strengths and limitations for understanding different aspects of performance, as described below.

Principles for benchmark set design

GIAB has developed principles for designing and evaluating genomic benchmark sets. GIAB's Reliable Identification of Errors (RIDE) evaluation process ensures its benchmarks reliably identify false positives and false negatives across a variety of methods (Figure 5b).¹²⁶ Specifically, when GIAB develops a draft benchmark, the RIDE evaluation includes recruiting experts in a diverse set of methods from around the world to evaluate the utility of the benchmark for their particular callset. Each callset is compared against the draft benchmark, and a random set of potential false positives and false negatives from different categories are selected for manual curation. The external experts visually curate aligned short, linked, and long read data, along with annotations of repeats, and determines whether the benchmark is correct on both alleles in the region, the particular callset is correct on both alleles in the region, or if it is unclear given current technologies. They are asked to be critical of the benchmark, selecting unclear if the benchmark is not clearly supported by the data. Then, the NIST team that developed the benchmark re-curates any locations that were not determined to be correct in the benchmark and incorrect in the query. Finally, the NIST and external experts come to a consensus about any sites with differing opinions. All of these curations are made available with the benchmarks to transparently highlight limitations of the benchmark and particular errors or unclear regions. For variant benchmarks, it is critical that the benchmark accurately calls both haplotypes in the region surrounding any variants, including any nearby variants and variants in the same homopolymer or tandem repeat. Otherwise, benchmarking tools may inaccurately identify false positives and false negatives. As discussed in the next section, it is also important to choose appropriate benchmarking tools and parameters for a particular benchmark set, which is why GIAB selects robust benchmarking tools as part of the RIDE evaluation.

Germline variant benchmarks

Since GIAB was formed in 2012, it has released several versions of benchmarks for seven genomes. GIAB's benchmarks use data from multiple sequencing technologies and bioinformatics methods, taking advantage of the strengths of each technology, ignoring technologies at genomic locations where they appear biased, and delineating benchmark regions to exclude regions that are biased in all current technologies. As sequencing technologies and variant calling methods have improved, GIAB benchmarks have grown to include more challenging variants and regions of the genome, from 77% of the autosomal GRCh37 bases in 2014,¹¹⁸ to 88% in 2016-2019¹¹⁴ and 94% in 2020-2021. The latter versions also added two son-father-mother trios of Ashkenazi Jewish and Han Chinese ancestry, as well as benchmarks on GRCh38.

Based on these benchmarks, PrecisionFDA and GIAB held two 'Truth Challenges' to inspire development of improved small variant callers and provide a baseline for ongoing improvements. The first challenge was held in 2016 before releasing the first benchmark for GIAB's second sample, HG002.¹¹³ When comparing each submission to the v3.2 HG002 benchmark released after the challenge, it demonstrated that a variety of short-read based variant callers have accuracy >99.9% for SNVs and >99% for indels in the regions covered by the v3.2 GIAB benchmarks. However, many challenging variants and regions were excluded from this benchmark, and concordance between two of the highest performing variant callers outside the v3.2 benchmark regions was <80% for SNVs and indels.¹¹³ With the advent of long reads with >99% accuracy, GIAB developed a new small variant benchmark covering 76 million base pairs of segmental duplications and the highly polymorphic HLA gene region^{115,126} which was used in the 2020 PrecisionFDA Truth Challenge V2.¹ Results from the Truth Challenge V2 demonstrated substantial improvements in sequencing technologies, variant calling methods, and benchmark sets. The most accurate submissions from the first challenge had substantially lower accuracy with respect to the new v4.2.1 benchmark, with SNV accuracy decreasing as much as 10-fold.¹ Still, v4.2.1 excludes 8% of the sequence in GRCh38, in addition to the 7% of sequence missing from GRCh38, and variants are likely enriched in the remaining sequence. This result highlights the importance of understanding the limitations of any benchmark, particularly any challenging regions that are not included in the benchmark.

In complementary benchmark sets, the Illumina Platinum Genomes and Real Time Genomics benchmarks used a 17-member, 3-generation family pedigree to develop phased benchmark sets of variants for the mother and father.^{119,127} In this approach, the 11 grandchildren enable robust phasing of

the variants in their mother and father, and variants that are not inherited as expected according to this phasing are removed as potential errors. This fully phased set of variants has also been widely used to benchmark phasing methods. The mother (NA12878) is the same as the pilot genome from GIAB, enabling cross-comparisons to validate and improve each benchmark. In general, these different approaches to forming benchmarks are highly concordant inside their benchmark regions, with ~4 differences per million matching variants after excluding differences near the edge of the Platinum Genomes benchmark regions.¹¹⁴ An advantage of the Platinum Genomes benchmark is that it contained substantially more variants than the short read-based GIAB benchmarks available at the time. However, it had some limitations around complex variants, particularly in tandem repeats, due to its fragmented benchmark regions.¹¹⁴ In addition, because it relied on short reads, mapping errors caused some inaccurate variants in segmental duplications even though they were phased and inherited as expected.¹²⁶

The first benchmark to use long reads used assemblies of two effectively haploid hydatidiform mole cell lines (CHM1 and CHM13).¹²² These two assemblies were then aligned to the reference to call variants together as a synthetic diploid benchmark, covering some regions difficult to map with short reads. Because highly accurate long reads were not yet available, small indels could not be benchmarked due to small errors in the assembly, and some segmental duplications could not yet be assembled. Nevertheless, this served as an important benchmark for more challenging variants, particularly before the recent advent of diploid assemblies based on highly accurate long reads, and it highlighted an important limitation of existing benchmarks excluding more difficult regions.

For structural variants, benchmarks are less mature, but several resources have been developed. First, the Parliament method was developed to integrate SV calls from multiple technologies and variant callers.¹²⁸ The HGSVC performed a focused analysis of a subset of the 1000 Genomes samples, developing an initial resource of phased SVs for 3 trios,⁵² and later a resource of SVs for 15 trios,⁵⁴ both of which can be useful for testing sensitivity of variant callers. Another resource was developed for small variants and structural variants using the unique shotgun Sanger sequencing dataset available for HuRef.^{129,130} The GIAB Consortium developed a set of benchmark insertions and deletions larger than 50 bp along with benchmark regions that exclude complex SVs in HG002, making it the first SV benchmark to enable assessment of both sensitivity and precision.¹¹⁶ Still, multiple challenges remain, especially for more complex SVs and when comparing SVs across many samples.

Recent efforts can produce SVs from thousands to millions of genomes with short- or longreads. One challenge is to accurately identify SVs across many samples, particularly because the number of false calls can be amplified by the sample number. Some methods achieve this by jointly analyzing all samples simultaneously per region,^{131,132} while other approaches revisit each SV per sample individually, reconciling different SV representations during the merging.^{133–136} Another approach focuses on building a database of discordant reads first to enable exact querying of SV across the samples.¹³⁷ For both benchmarking and population-scale analyses, significant challenges remain for comparing different representations of complex SVs, especially when combining different sequencing technologies or SV calling methods.

Many of these benchmarks did not include variants on chrX and chrY in male samples because they are effectively haploid (except for the pseudoautosomal regions). Chromosome Y is especially challenging due to its high fraction of satellite and segmental duplications, so GIAB and T2T currently have a focused effort to develop a benchmark from the first complete assemblies of these chromosomes in HG002, as well as from complete assemblies of the entire genome.^{6,138}

Somatic variant benchmarks

Somatic variants are those that arise after conception, and are often relevant in the context of understanding cancer. Benchmarks for tumor genomes are more challenging and currently have substantial limitations, but some initial benchmarks are now published. A DREAM challenge was organized for somatic variant detection, using a tool that modifies real sequencing data to simulate somatic variants.^{121,139} Additional tools have been developed to simulate somatic variants of different types,^{140–143} which have been recently reviewed.¹⁴⁴ Alternatively, DNA from normal and/or tumor cell lines like GIAB can be mixed to simulate somatic mutations, but some variant callers filter these germline mutations.¹²³ Synthetic DNA can also be added to normal cell lines to mimic a smaller number of mutations.¹⁴⁵ Griffith et al. published analyses of deep sequencing data from an acute myeloid leukemia (AML) patient sample, which can be used to benchmark bioinformatics tools though a cell line is not available.¹⁴⁶ A unique benchmark dataset used cell lineage information from cell sorting to develop a benchmark from a cell line that accumulates somatic mutations.¹⁴⁷ Several efforts

have developed multiple sequencing datasets and benchmarks for paired tumor and normal cell lines from the same individual, including COLO-829/COLO-829BL with 35,543 SNVs, 446 indels, and 6,500 genes with copy number changes.¹⁴⁸ The SEQC-II somatic working group recently published extensive interlaboratory sequencing data and benchmarks for another tumor–normal cell line pair with 37,398 SNVs and 1,754 indels assigned as high-confidence somatic mutations.^{124,125} While existing studies provide important information, no current benchmark tumor–normal cell line pairs are explicitly consented for public release of genomic data, and development of these is a critical need for future somatic benchmarks (see Box 2). Existing somatic benchmarks also generally include fewer challenging regions than germline benchmarks, so ongoing work is needed to benchmark somatic variants in repetitive regions.

Robust variant comparison tools for benchmarking

Although reliable benchmark sets have been important in advancing our understanding of performance of variant callers, appropriate tools to compare against the benchmark are essential to reliable use of these benchmarks. To develop best practices for benchmarking germline small variants, the GA4GH Benchmarking Team brought together benchmark set developers, benchmarking tool developers, and clinical and other bioinformatics users of benchmarking tools. This team standardized definitions for performance metrics, optimized benchmarking tools to account for different representations of variants, and developed methods to stratify performance by variant type and genome context. This team developed the hap.py framework with the vcfeval engine as best practice for comparing germline SNVs and small indels. This framework compares the query VCF (variants from the method being evaluated) to the benchmark VCF within the benchmark regions. We point the reader to the GA4GH best practices paper for benchmarking small variants for details, including its Supplementary Table 1 summarizing best practices,¹¹³ as well as the recent precisionFDA Truth Challenge V2 for an example implementation of these best practices.¹

Several outstanding challenges remain for benchmarking complex variants, SVs, segmental duplications, and satellites. No standards exist for representing many types of complex variants, so sophisticated benchmarking tools have been developed to reconcile differing representations of small variant calls in a query and benchmark VCF, as long as the variants are called completely accurately in the region (Figure 2b). If any part of the variant is filtered, missed, or incorrectly genotyped, particularly in homopolymers and tandem repeats, then other parts of the variant may be counted as errors if they are represented differently from the benchmark.²⁰

Structural variants pose even more challenges for benchmarking due to imprecision in detection and lack of standard representations of the numerous types of complex structural variants that occur. In addition, accuracy of SVs can be measured at different stringencies; e.g., least stringent would require that only SV type and rough location are correct (e.g. SURVIVOR¹⁴⁹), and most stringent might require that the exact sequence change is correct and that it is annotated correctly (e.g. Truvari¹⁵⁰). Isolated insertions and deletions in non-repetitive sequences are generally the easiest to detect and to benchmark, but these make up only a small fraction of all SVs.^{54,116} Because the majority of SVs are located in tandem repeats, methods such as Truvari are designed to compare not just their reference location (start and end) but further their length (i.e. the insertion can have a larger length than the reference location) and their sequence content.¹⁵⁰ Although these complex SVs can increasingly be resolved accurately by phased, long-read assemblies, even the most sophisticated SV benchmarking tools such as truvari and hap-eval are just starting to be able to compare different representations if they are not represented as a single, isolated insertion or deletion. For example, a recent GIAB benchmark for challenging medically relevant genes excluded genes like CR1 and LPA that were accurately resolved because the variation they contained was too complex for current benchmarking tools.²⁰ The kringle repeats in the gene LPA can either be represented as copy number variants, or as one or more large insertions or deletions and small variants. In addition, SV callers may represent tandem duplications as insertions (SVTYPE=INS), as duplications (SVTYPE=DUP), or even as breakends (SVTYPE=BND) or translocations (SVTYPE=TRA) in VCF. The variant representation often depends both on the mapping methods and the variant caller used. Other challenges in variant representation occur around gaps in the reference (Figure 2d). Complex variants are increasingly characterized, even in large short read studies,³⁴ but robust benchmarking of these complex variants is an outstanding challenge that will need new standards for sequence alignment, variant representation, and comparison, possibly building on pangenome alignments.

Segmental duplications are increasingly being resolved accurately by phased, long-read assemblies, and these pose additional challenges in variant representation and benchmarking due to

their structural and copy number variation (e.g., Figure 2c). Current benchmark sets and benchmarking tools enable comparisons when the sample matches the reference in copy number, but new benchmarking tools and standards for representation need to be developed to benchmark the small and structural variants that occur in additional copies of segmental duplications that are not in the reference. Graph-based and/or assembly-based representations of these regions may provide a path towards variant calling and benchmarking variants.

When benchmarking, variant call accuracy can differ by several orders of magnitude depending on the type of variant and genome context. GA4GH and GIAB provide methods for stratifying performance by variant type and in the different types of repetitive sequences that occur in the genome (see examples in Figure 2). These tools also indicate variant types and regions with a high fraction of not assessed variants, i.e., variants that are not included in the benchmark regions. These variants outside the benchmark regions tend to be more challenging, so that variant error rates in the whole genome will be higher than the rates estimated from the benchmark,¹¹³ and performance metrics can vary by an order of magnitude between benchmarks that are more or less conservative.^{1,122} As benchmarks include increasingly challenging regions of the genome, stratifying performance by genome context and variant type becomes increasingly important for interpreting the results and powerful for understanding the strengths and weaknesses of any variant calling method. Stratifying performance can also help predict potential false positives or variants needing further confirmation in clinical samples. Measuring how false negatives are associated with genomic repeats can also help predict clinically relevant variants that might be missed by a method.⁷ In addition to improvements in accuracy, there have also been efforts to improve the speed of variant calling methods. These have been reviewed recently in ref¹⁵¹.

Visualizing and curating variants to understand errors

Visualizing and curating sequencing data from multiple technologies at and near challenging variants is often particularly valuable to understand differences in variant calls between methods or false positives or false negatives relative to a benchmark. Sometimes, this curation helps understand why a method has some types of errors, or might show that the benchmark is incorrect or questionable. This visualization process is not currently available in a single application that provides the utilities described by Ben Schneiderman in his seminal work with the mantra "Overview first, zoom and filter, then details on demand".¹⁵² Currently, a workflow requires using a number of different software tools with visualization typically occurring primarily for 'details on demand'. Specifically, hap.py and vcfeval provide an 'Overview first' of variants identified as matching or not-matching a benchmark (Figure 5b). The GA4GH/GIAB stratification regions provide 'zoom and filter' to specific 'clustering of errors' correlated with genome context, such as different repetitive region types (Figure 5c). Finally, a genomics viewer program such as Integrative Genomics Viewer (IGV) can provide 'details on demand' to inspect read alignments along with other sequencing or genomic features including repeats that are not apparent from stratification to determine sources of possible bias or error (Figure 5d). Within the 'details on demand' step, the current visualization workflow from GIAB starts at the window size default for IGV of 40 bp around a variant, or sufficient to view an entire homopolymer or tandem repeat, if applicable. After identifying any local details, we zoom out to approximately 10 kbp to inspect larger sequence contexts such as segmental duplications, nearby structural variants, or other notable features that might impact read mapping, such as SVs. Visualizing read alignments around a patient's clinically important variants was also recommended in the Association for Molecular Pathology (AMP) bioinformatics guidelines.³⁶ Newer tools enable faster curation of SVs.^{153,154} We expect visualization of the evidence for variants will remain particularly important for complex variants and challenging regions as methods access these areas of the genome.^{17,155} We show some examples of visualizing complex variants in Figure 2, illustrating how ongoing work is needed to call and benchmark the most complex variants.

Conclusions and perspectives

The best methods now produce highly accurate variant calls for much of the human genome, but variant calling is far from being a fully solved problem. It will continue to be an area of active development as new sequencing technologies and analysis methods are enabling characterization of the most challenging variants and regions of the genome for the first time. The Telomere-to-Telomere Consortium's assembly of the first complete human genome opens the door to analyzing human

variation in extremely repetitive regions of the genome like highly identical segmental duplications and satellite DNA in the centromeres. Pangenome alignments of assemblies from the Human Pangenome Reference Consortium highlight complex structural changes that are excluded from current benchmarks, including in known medically relevant gene families like *CYP2D6*, *RHCE*, DAZ, *LPA*, and HLA.^{17,101} To translate these developments to broad research and clinical applications, innovations are needed in many areas including sequencing technologies, assembly and variant calling methods, variant representation, benchmarking and variant comparison tools, and expanded benchmark sets. As methods push into these challenging regions, it will be increasingly important to stratify performance metrics by genome context and variant type.

We have noted above the orders-of-magnitude difference of performance metrics depending on composition of the benchmark set, genome context, and variant type;^{1,122} advances in applications will depend on trustworthy benchmarking. While methods achieve >99% accuracy in existing benchmark regions, benchmarks exclude about 15% of the genome (when counting the 7% of sequence added in the newly completed human genome sequence), and benchmarks likely exclude even >15% of all variants. Every benchmark set has limitations, and understanding these limitations is critical. Variant benchmarks tend to lag behind the first methods to call a class of difficult genomic regions, until these methods are tested and used to expand the benchmark. Current benchmarks exclude many long homopolymers, tandem repeats, segmental duplications, and satellite DNA, or some types of variants, such as large indels or structural variants (e.g. rearrangements). When challenging regions and variants are excluded, performance metrics for these cannot be estimated, and performance metrics are generally overestimated when looking at aggregate statistics. The most useful benchmarks are formed using high-coverage data from multiple technologies not all used by the method being tested. With the advent of complete genome assemblies from high coverage long-read data, we are poised to be able to benchmark even the most challenging variants and regions. However, even benchmarks formed from perfect assemblies will require new methods and standards for aligning assemblies to a reference, and comparing and representing complex variants. For example, current work in GIAB includes developing new benchmark sets and benchmarking tools for tandem repeats, as well as more comprehensive benchmarks from complete human genome assemblies with the T2T Consortium.

Solutions for remaining challenges in variant analysis and representation could follow a number of different trajectories in this new age of complete human genome sequences. These options include: continuing to align reads to a common reference such as T2T-CHM13 or GRCh38 and call variants; aligning phased assemblies to a common reference to call variants; aligning reads to a population-specific reference to call variants; aligning reads to a graph-based pangenome reference; progressively aligning reads to many reference genomes with 'reference flow'; or aligning assemblies to a graph-based pangenome reference. We expect each of these approaches and yet-to-be-developed approaches will be active areas of research, and that new benchmarking approaches will be needed to evaluate these methods, since they have the biggest benefits for the most challenging variants and regions of the genome. Importantantly, benchmarks representing challenging regions and variants across different ancestries will be needed to assess the strengths and weaknesses of each approach. Even if we have perfectly assembled genomes from every individual, standardized methods and formats will need to be developed to align these assemblies to call variants and/or catalog common and rare haplotypes associated with disease or function.

Pangenome tools are being built to translate variants between pangenomes and linear reference genomes, which should help enable research studies and clinical laboratories to use innovations in pangenome references, even if these pangenomes continue to evolve. However, some of the most complex regions and variants in the large repeats discussed above are likely to only be represented in new formats such as a graph, and may even be best envisioned as something other than variants with respect to a reference genome. While these complex variants affect a small fraction of the genome, they affect known medically relevant regions and new important regions are likely to be discovered now that these regions can be accurately sequenced. Sequencing technologies are likely to continue to advance, including cheaper and more accurate short and long reads, along with analysis methods to characterize and benchmark increasingly difficult genomic regions and variants at scale. As new sequencing and analysis methods are developed, a positive feedback loop exists between technological innovation and benchmarking. Technological advances in sequencing and bioinformatics enable improved benchmark sets and improved benchmarking (tools and sets) promote technology development and clinical translation - a cycle we expect to continue for years to come.

Acknowledgments

We thank the members of the Genome in a Bottle Consortium, Human Pangenome Reference Consortium, and Telomere to Telomere Consortium for helpful discussions about the strengths and limitations of the various technologies and bioinformatics methods. Certain commercial equipment, instruments, or materials are identified to specify adequately experimental conditions or reported results. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment, instruments, or materials identified are necessarily the best available for the purpose.

Competing Interests

FJS has received support from Oxford Nanopore Technologies, Pacific Biosciences, Illumina, and Genentech. All others declare no competing interests.

	Variant Calling Process							
Input Sample Data	Raw/ preprocessed WGS of	De novo Assembly						
Reference Type	Linear	Graph/ Pangenome	Linear or Pangenome					
Sequence Alignment	Read-Reference Genome A	Assembly -Reference Genome Alignment						
Example Tools	bwa-mem ¹⁵⁶	Seven bridges GRAF ¹⁰⁴ Dragen graph variant calling pipeline ¹ Giraffe ¹⁰⁷	minimap2 ⁷⁰ mummer ¹⁵⁷					
Variant Detection	Variants identified based or and alternate base	Variants identified based on reference-assembly alignment, including sequence differences and large structural changes						
Example Tools	GATK ⁸² DeepVariant ⁸¹	Seven bridges GRAF ¹⁰⁴ Dragen giraffe-DV ¹⁰⁷ GraphTyper2 ¹⁵⁸	dipcall ¹²² PAV ⁵⁴ mummer ¹⁵⁷ SVanalyzer (SV calling) ¹¹⁶					
Variant Filtering	Candidate variants filtered based on input data support and known biases associated with input data type. Typically less filtering for assembly-based methods.							
Strengths	 Works with short or long reads Less compute intensive High accuracy for easy regions Mature Infrastructure Extensive reference annotations 	 Works with short or long reads High accuracy for easy regions and some structural variants 	 Phased small variant and structural variant calls (for diploid assemblies) Ability to call small variants and complex structural variants in very difficult regions, though still limited by insufficient standards for representing complex variants and CNVs 					
Limitations	 Low accuracy for difficult regions of the genome Limited accuracy for structural variants 	 More compute intensive Infrastructure and tools still being developed No standard reference graph genome Information may be lost when translating variants to a linear reference genome 	 Requires long reads More compute intensive Variant calling accuracy dependent on assembly quality, particularly for homopolymers and tandem repeats Currently worse in highly homozygous regions 					

Table 1: Comparison of variant calling process from mapping, graph reference, and diploid assembly

Figure Legends

A									
	Unit size	Name	Structure	Example IAIAIAIAIAIAIAIAIAIAIAIAI IACIACIACIACIACIACIACI IACIACIACIACIACIACIACI IACIACIACIACIACIACIACI					
	1	Homopolymer	([])n						
	2	Dinucleotide	(⊞)n						
	3	Trinucleotide	(Ⅲ)n					1	
								_	
	N	Tandem repeat	([]…[])n						
Cor Sin Sin	B rrect Sequence glebase deletion glebase insertion	Sequencing En GGC - <mark>AAA</mark> GGC - AAA GGC A AAAA	TORS IN HOM	opolymers c CG CG CG	Correct Two SNPs Two SNPs	Sequence s (forward) s (reverse)	GGCCCCCC GGCCCCCC CCCCCCCC		TCG
Mapping and Sequencing Errors D in Tandem Repeats Mappable						appable			
	Re	ference AB	XXXXXXXXDE		4				
	Tru	e Paternal ABXXXXX	XXXXYXXXXXDE		engt				
Short reads (haplotype: [A		s s mixed) <u>ABXX</u>	XXXX XXXY	Mapping and sequencing errors	Read L		Mappable	e if	
		ong reads Maternal)	XXXXXDE			/	Read Accur	cacy >	
		AB				Repeat Io		entity	
	(Paternal)	CXXXYXXXXXXDE				Repeat Length		

Figure 1: Challenges with mapping and variant calling in simple repetitive regions. (a) Examples of homopolymers and tandem repeats, which are a common source of systematic sequencing and mapping errors, and frequently cause structural variants. (b) Systematic indel errors occur in homopolymers and STRs, usually with one extra or one missing copy of the repeat unit. In this example, the first read has one missing A and the last read has one extra A. This happens most in methods like 454/Ion Torrent/Ultima and ONT, often in raw PacBio, somewhat in PacBio HiFi and PCR-based short reads, and rarely except in very long homopolymers for PCR-free sequencing by synthesis like Illumina and Element. (c) Systematic errors occur in C and G homopolymers for Illumina due to sequencing chemistry biases. The SNV and indel errors tend to happen after the homopolymer ends. (d) X represents the tandem repeat unit, which may be two to hundreds of base pairs in size and is repeated many times, though there frequently are some differences between units, denoted as Y. When tandem repeats are longer than the read length, reads map ambiguously to the repeat sequence, so traditional variant callers miss true variants and sometimes call false positives. For example, because the Y sequence is only in the reads and not in the reference, short read mappers can ambiguously map sequencing containing Y multiple places within the tandem repeat, resulting in false positive and/or false negative variant calls. In contrast, if long reads traverse the entire repeat and flanking sequence, the variants can be accurately called. Although long reads sometimes have systematic errors at tandem repeats, these can often be averaged to the true variant call because reads can be partitioned by haplotype (except in highly homozygous regions or where the long reads are very noisy). (e) Mappability of sequencing reads based on the relationship between read length and repeat length along with read accuracy and repeat identity, assuming there are no variants. Variants, particularly large or complex variants, can further hinder accurate mapping, but pangenome references can improve mapping for these variants.

Figure 2: Remaining challenges in representing and benchmarking complex variants due to lack of reliable benchmarks and/or lack of comparison tools for benchmarking. (a) Diagram showing vertically and horizontally complex variants, where nearby variants occur on opposite haplotypes or the same haplotype, respectively. (b) Small horizontally complex variant that is represented as an adjacent insertion and deletion in the assembly alignment and as SNVs and 1 bp deletions in the HiFi alignment. Comparing different representations of variants requires sophisticated benchmarking tools like hap.py and vcfeval for small variants, or truvari for larger variants. (c) Duplication in HG002 relative to reference in KIR region causes dense false heterozygous variants, as well as coverage frequently higher than the average coverage (horizontal dashed lines) due to reads incorrectly mapping from the duplicated sequence (see also Figure 3b). (d) Differing alignments around a gap in the GRCh38 reference in the *C1R* gene, where short reads do not align to the gap but assemblies and long reads align across the gap with deletions and many SNVs. Benchmarking tools currently do not work robustly in these regions. (e) When aligning the chrX HSat region of HG002 chrX to CHM13 chrX, the assembly is aligned to the reference very differently from HiFi reads with standard mapping methods, where HiFi reads have highly variable coverage, resulting in highly discordant variant calls (vertical blue bars).

Figure 3: Mapping challenges in segmental duplications and large structural variants. (a) Shows a highly identical segmental duplication that is larger than short or highly accurate long reads but shorter than noisier ultralong reads. In this case, the segmental duplications are close to each other (tandem duplications), but they can also be distant. Short reads generally cannot map reads or call variants with confidence except very near paralogous sequence variants (PSVs, green, marked by vertical lines) that differentiate the duplicated sequence. False positives result from reads mapped to the other copy (different color) of the segmental duplication. Sophisticated long read mappers can use nearby PSVs to align the variant to the correct copy of the segmental duplication. Ultralong reads can also correctly align across the segmental duplication and flanking sequences despite their higher error rate, but sophisticated variant calling methods are needed to distinguish true variants from sequencing errors. (b) A large structural variation, specifically a tandem duplication, is in the individual but not the reference. When short or long reads are shorter than or about the same size as the duplicated region, reads from the duplicated sequence are often mapped to the existing sequence in the reference, resulting in higher-than-normal coverage and denser variants due to PSVs in the new duplication. When long read assemblies or ultralong reads traverse the duplication and flanking sequences, then the duplicated sequence can be detected as an insertion of sequence similar, but not identical, to the reference sequence. (c) Gene conversion, where the PSVs in the second copy of the segmental duplication replace the sequence of the first copy. This typically results in no short reads mapping confidently to the first copy of the segmental duplication, since there are no PSVs from it. Long reads that are shorter than the duplication may map confidently to the second copy because they do not contain the PSVs, even if they actually originate from the first copy (red reads). When long read assemblies or ultralong reads traverse the entire region and flanking sequences, then the variants may be detected accurately in the entire region.

Figure 4: Diagram of four variant calling workflows. Workflows are distinguished by read alignment method, read mapping (top) vs. de novo assembly (bottom), and by reference genome structure, linear vs. pangenome. Raw reads or a de novo assembly are mapped to the linear or pangenome reference, in this case depicted as a graph. The alignments are then used for variant calling and subsequent filtering. Raw reads are from two haplotypes and align to genome segments A, B, and C. Segment B is present in the pangenome but not the linear reference. In this case, the large insertion of segment B is missed by reads mapping to the linear reference because the reads from segment B remain unmapped.

Reliable IDentification of Errors

Figure 5: Considerations when generating and using benchmark sets for evaluating variant calling methods. (a) Primary components of a benchmark set, benchmark variants and benchmark regions, and their usage. (b) Diagram of the RIDE (reliable identification of errors) principle for determining if a benchmark is fit for purpose. (c) Benchmarking variant calls using genome stratifications to provide within genomic context variant callset performance. (d) Visualization and curation of benchmarking results, with three layers of analysis 1) high-level overview - overall summary statistics, 2) zoom and filter - performance in stratifications representing different types of genomic repeats, and 3) details on demand - visualization of aligned read support for variant calls, typically in a genome browser like IGV.

Box 1: Transparency for Variant Detection Methods and Pangenome Construction

It is increasingly important to summarize attributes of variant detection methods using transparency techniques such as Model Cards, Transparency Notes, and AI360.¹⁵⁹ Historically, variant detection methods relied on classic statistical models, but they increasingly rely on models trained using machine learning techniques. Benchmarking allows for comparison between variant calling methods based on performance metrics, including stratifying by genomic context to understand strengths and weaknesses. A complementary approach to compare methods is evaluating the algorithmic performance and modelling approach.¹⁶⁰ Modelling inherently relies on assumptions about the data and estimated function characteristics as well as hyperparameter selection, which impacts results of machine learning solutions. We expect that adopting prominent transparency approaches from the machine learning community could enable improved comparison of variant detection models. We propose that developers of both statistical and machine learning-based variant detection methods use these transparency techniques to explicitly summarize characteristics and limitations of the training and test data, model attributes, hyperparameter search space explored, known biases or limitations of the method, data used in graph-based reference genomes, and expected use cases. Making transparent both how benchmark sets are used and attributes of the model helps users determine the best approach for their application. Similarly, transparency for samples used in pangenome graph construction as well as sequencing data and parameters used to generate input haplotypes will be increasingly important moving forward. For example, samples used for benchmarking should be excluded from the graph to avoid biases. A minimum communication method such as the discussed transparency techniques will mitigate potential issues regarding interpretation and reproducibility of resulting variants when moving from a linear reference to pangenome graphs.

Box 2: Importance of broad consent for benchmark samples

Guidelines regarding informed consent for sharing human genomic data have evolved over time as potential risks are understood, and explicit consent for broad public sharing of genome data is particularly important for benchmark samples that will be widely used by the community. The family trios who provided samples characterized by the Genome in a Bottle Consortium (GIAB) are broadly consented under the Personal Genome Project for genome data sharing and commercial distribution of products based on their cell lines. This broad consent has enabled a number of applications, including adding spike-in DNA to test accuracy for particularly challenging variants and somatic variants, as well as mimicking clinical samples such as formalin-fixed paraffin-embedded (FFPE) and cell-free and circulating tumor DNA. Other benchmark samples, such as NA12878 (GIAB's pilot genome and Platinum Genomes sample) were consented for public release of genome data but not for commercial redistribution. The 11 children of NA12878 used in the Platinum Genomes analysis¹¹⁹ were not consented for public release of genomic data, so their data are in the restricted access database dbGaP, making them less accessible as benchmark data. The cell lines used in the synthetic diploid sample are not in a public repository, so the existing public data can be used to benchmark bioinformatics pipelines, but limited access hinders experimental work to benchmark a laboratory's particular sequencing method. Similarly, data from the COLO829/COLO829BL benchmark study from Craig et al.¹⁴⁸ and the deeply sequenced WashU AML cohort¹⁴⁶ were deposited in the dbGaP restricted access repository due to consent. No current benchmark tumor-normal cell lines are explicitly consented for public genome sequence release, so new cell lines are needed for broad use as genomic reference samples.

Glossary

Acrocentric arms: short arms of the human chromosomes 13, 14, 15, 21 and 22, known to be enriched with satellite DNA, segmental duplication, and transposable element insertions. Contain long tracts of ribosomal DNAs. Highly similar in repeat structure and sequence content.

Admixed ancestry: individuals with ancestors coming from multiple populations that had previously diverged

Benchmarking variants: the process of comparing a variant callset (the query callset) to the benchmark callset in the benchmark regions, in order to identify true positives, false positives, and false negatives

Benchmark set: the set of variants and regions defined to reliably identify false positives and false negatives, also sometimes called high-confidence, truth, baseline, and gold standard.

Centromere: a genomic site that maps the location of kinetochore assembly, typically marked as a primary constriction on a chromosome

Circular consensus sequencing (CCS): sequencing method in which a single molecule is sequenced multiple times to improve accuracy (e.g., in PacBio HiFi sequencing).

De novo assembly: Analysis of DNA reads to produce an individual's genome sequence without mapping individual reads to a reference genome. Increasingly, human genome assemblies can be haplotype-resolved (aka phased), such that separate assembled sequences are produced for the copies of each chromosome coming from the mother and father.

Genome in a Bottle Consortium (GIAB): A public-private-academic consortium formed by the National Institute of Standards and Technology in 2013 to develop authoritatively characterized genomes that can be used to benchmark human genome variant calls.

Germline variant: a variant attributed to an organism's initial sequence at conception, and typically found in all the cells in an individual

Haplotype: a region of DNA containing multiple variants (or alleles) that frequently inherited together

Indels: variants that are insertions and deletions of sequence, typically 1 to 49 base pairs in size.

k-mer: a sequence of length k. Unique k-mers in the genome can be used to assist in read mapping

Long interspersed nuclear elements (LINEs): a family of non-LTR transposons, with on the order of 100,000 truncated copies and a few thousand full-length 6000 base-pair copies in the human genome, causing mapping challenges

Long Terminal Repeats (LTRs): pairs of several hundred bp sequences that are transposons and comprise about 8 % of the human genome, causing mapping challenges

N50: A summary measure of read length distribution, where 50 % of the bases in the reads are in reads longer than the N50 value. Similarly, for de novo assemblies, 50 % of the bases in the assembled contigs are in contigs longer than the N50 value.

Pangenome reference: A collection of many genomes used as a reference (sometimes, but not always, represented as a graph) in addition to the standard linear genome reference assemblies.

Pericentromeric regions: Typically multi-megabase sized regions directly adjacent to centromeres which are enriched with satellite DNA, segmental duplications, and transposable elements. These regions are associated with darkly staining constitutive heterochromatin

Phasing: process of assigning heterozygous variants to the same haplotype (e.g., the maternal copy of the chromosome contains both variants) or to opposite haplotypes (e.g., one variant is on the maternal copy and the other is on the paternal copy)

Precision: fraction of query variants in the benchmark regions that match the benchmark variants, or true positives/(true positives+false positives)

Read: a small sequence fragment from a larger molecule generated by a given sequencing technology; the length can range from 100 bp to >1 million bp depending on the sequencing method

Read Mapping: aligning a given read to a reference

Recall: fraction of benchmark variants that are matched by query variants, or true positives/(true positives+false negatives)

Reference Genome Assembly: A haploid genome assembly to which sequencing reads are mapped and variants are called. The current versions in common use are GRCh37/hg19, GRCh38/hg38, and T2T-CHM13.

Reference Material: a material that is sufficiently stable (over time) and homogeneous (between vials) for its applications. For example, NIST's genomic reference materials are extensively characterized to develop benchmark variants and regions to reliable identify false positives and false negatives.

Scaffolding: process of connecting assembled contigs even when the intervening sequence is unknown

Satellite DNA: Highly repetitive regions that originally were defined by their density due to a unique composition of bases A, C, G, and T. Often characterized by tandem repeats organized in very long and are embedded in regions known to be enriched in silent, constitutive heterochromatin.

Segmental Duplications: long DNA sequences that are highly similar to each other in the reference genome assembly, typically at least 1000 base-pairs in length and not a transposable element (LINE, SINE, or LTR), tandem repeat, or satellite DNA. There is some overlap between VNTR and segmental

duplication annotations, particularly for tandem repeat unit sizes longer than 1,000 bp as occurs in the medically-relevant genes *LPA* and *CR1*.

Sequencing Quality Control Consortium (SEQC): Consortium formed by the FDA to compare sequencing methods and understand sources of variability

Short Tandem Repeats (STRs): many consecutive repeats of 2 to 6 base-pair sequence units.

Short interspersed nuclear elements (SINEs): short sequences 100 to 600 base-pairs in length that are repeated many times in the genome. The most common type, Alus, are about 300 base-pairs.

Single nucleotide variants (SNVs): Variants that are single base substitutions, also commonly called single nucleotide polymorphisms (SNPs).

Somatic Variant: a variant attributed to a mutation after conception; only some cells in the organism will have this variant, most frequently detected in cancer tissues or blood

Structural Variants (SVs): typically defined as variants at least 50 base-pairs in size. Variants smaller than 50 base-pairs are the primary focus of this review

Variable Number Tandem Repeats (VNTRs): many consecutive repeats of >6 base-pair sequence units

References

- Olson, N. D. *et al.* PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions. *Cell Genom* 2, (2022).
- Pan, B. *et al.* Assessing reproducibility of inherited variants detected with short-read whole genome sequencing. *Genome Biol.* 23, 2 (2022).
- Foox, J. *et al.* Performance assessment of DNA sequencing platforms in the ABRF Next-Generation Sequencing Study. *Nat. Biotechnol.* 39, 1129–1140 (2021).
- Jain, M. *et al.* Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nat. Biotechnol.* 36, 338–345 (2018).
- 5. Wenger, A. M. *et al.* Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. *Nat. Biotechnol.* **37**, 1155–1162 (2019).
- 6. Nurk, S. *et al.* The complete sequence of a human genome. *Science* **376**, 44–53 (2022).
- Dwarshuis, N. *et al.* StratoMod: Predicting sequencing and variant calling errors with interpretable machine learning. *bioRxiv* 2023.01.20.524401 (2023) doi:10.1101/2023.01.20.524401.
- 8. Meacham, F. et al. Identification and correction of systematic error in high-throughput

sequence data. BMC Bioinformatics 12, 451 (2011).

- 9. Nurk, S. *et al.* HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. *Genome Res.* **30**, 1291–1305 (2020).
- Hannan, A. J. Tandem repeats mediating genetic plasticity in health and disease. *Nat. Rev. Genet.* 19, 286–298 (2018).
- Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature* 581, 434–443 (2020).
- Ren, J., Gu, B. & Chaisson, M. J. P. vamos: VNTR annotation using efficient motif sets. *bioRxiv* 2022.10.07.511371 (2022) doi:10.1101/2022.10.07.511371.
- Bakhtiari, M., Shleizer-Burko, S., Gymrek, M., Bansal, V. & Bafna, V. Targeted genotyping of variable number tandem repeats with adVNTR. *Genome Res.* 28, 1709– 1719 (2018).
- Vollger, M. R. *et al.* Segmental duplications and their variation in a complete human genome. *Science* 376, eabj6965 (2022).
- Zhao, X. *et al.* Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. *Am. J. Hum. Genet.* 108, 919–928 (2021).
- Lincoln, S. E. *et al.* One in seven pathogenic variants can be challenging to detect by NGS: an analysis of 450,000 patients with implications for clinical sensitivity and genetic test implementation. *Genet. Med.* 23, 1673–1680 (2021).
- Chin, C.-S. *et al.* Multiscale Analysis of Pangenome Enables Improved Representation of Genomic Diversity For Repetitive And Clinically Relevant Genes. *bioRxiv* 2022.08.05.502980 (2022) doi:10.1101/2022.08.05.502980.
- Behera, S. *et al.* Fixing reference errors efficiently improves sequencing results. *bioRxiv* 2022.07.18.500506 (2022) doi:10.1101/2022.07.18.500506.
- Aganezov, S. *et al.* A complete reference genome improves analysis of human genetic variation. *Science* 376, eabl3533 (2022).
- 20. Wagner, J. et al. Curated variation benchmarks for challenging medically relevant

autosomal genes. Nat. Biotechnol. 1-9 (2022).

- Vollger, M. R. *et al.* Increased mutation rate and interlocus gene conversion within human segmental duplications. *bioRxiv* 2022.07.06.498021 (2022) doi:10.1101/2022.07.06.498021.
- Sudmant, P. H. *et al.* An integrated map of structural variation in 2,504 human genomes. *Nature* 526, 75–81 (2015).
- Vollger, M. R. *et al.* Long-read sequence and assembly of segmental duplications. *Nat. Methods* 16, 88–94 (2019).
- 24. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. *Nat. Methods* **18**, 170–175 (2021).
- Altemose, N. *et al.* Complete genomic and epigenetic maps of human centromeres. *Science* 376, eabl4178 (2022).
- Mc Cartney, A. M. *et al.* Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. *bioRxiv* 2021.07.02.450803 (2021) doi:10.1101/2021.07.02.450803.
- Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of nextgeneration sequencing technologies. *Nat. Rev. Genet.* 17, 333–351 (2016).
- Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. *Nat. Rev. Genet.* 19, 329–346 (2018).
- Derrien, T. *et al.* Fast computation and applications of genome mappability. *PLoS One* 7, e30377 (2012).
- Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. *Nat. Rev. Genet.* 13, 36–46 (2011).
- Ou, S. *et al.* Effect of sequence depth and length in long-read assembly of the maize inbred NC358. *Nat. Commun.* 11, 2288 (2020).
- Ebbert, M. T. W. *et al.* Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. *Genome Biol.* 20, 97 (2019).

- Hardwick, S. A., Deveson, I. W. & Mercer, T. R. Reference standards for nextgeneration sequencing. *Nat. Rev. Genet.* 18, 473–484 (2017).
- Byrska-Bishop, M. *et al.* High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. *Cell* 185, 3426–3440.e19 (2022).
- Halldorsson, B. V. *et al.* The sequences of 150,119 genomes in the UK Biobank. *Nature* 607, 732–740 (2022).
- Roy, S. *et al.* Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. *J. Mol. Diagn.* 20, 4–27 (2018).
- Arslan, S. *et al.* Sequencing by avidity enables high accuracy with low reagent consumption. *bioRxiv* 2022.11.03.514117 (2022) doi:10.1101/2022.11.03.514117.
- Vergult, S. *et al.* Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations. *Eur. J. Hum. Genet.* 22, 652–659 (2014).
- 39. Mahmoud, M. *et al.* Structural variant calling: the long and the short of it. *Genome Biol.*20, 246 (2019).
- Marks, P. *et al.* Resolving the full spectrum of human genome variation using Linked-Reads. *Genome Res.* 29, 635–645 (2019).
- 41. Peters, B. A. *et al.* Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. *Nature* **487**, 190–195 (2012).
- 42. Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. *Genome Res.* 27, 757–767 (2017).
- Chen, Z. *et al.* Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. *Genome Res.* **30**, 898–909 (2020).
- Belton, J.-M. *et al.* Hi-C: a comprehensive technique to capture the conformation of genomes. *Methods* 58, 268–276 (2012).
- 45. Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat.

Biotechnol. 39, 309–312 (2021).

- 46. Rhie, A. *et al.* Towards complete and error-free genome assemblies of all vertebrate species. *Nature* **592**, 737–746 (2021).
- Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J. & Lansdorp, P. M. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. *Nat. Protoc.* 12, 1151–1176 (2017).
- Porubsky, D. *et al.* Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. *Nat. Biotechnol.* **39**, 302–308 (2021).
- Rhoads, A. & Au, K. F. PacBio Sequencing and Its Applications. *Genomics Proteomics Bioinformatics* 13, 278–289 (2015).
- 50. Eid, J. *et al.* Real-time DNA sequencing from single polymerase molecules. *Science* **323**, 133–138 (2009).
- Shafin, K. *et al.* Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. *Nat. Biotechnol.* 38, 1044–1053 (2020).
- 52. Chaisson, M. J. P. *et al.* Multi-platform discovery of haplotype-resolved structural variation in human genomes. *Nat. Commun.* **10**, 1784 (2019).
- 53. Chaisson, M. J. P. *et al.* Resolving the complexity of the human genome using singlemolecule sequencing. *Nature* **517**, 608–611 (2015).
- Audano, P. A. *et al.* Characterizing the Major Structural Variant Alleles of the Human Genome. *Cell* 176, 663–675.e19 (2019).
- 55. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. *Genome Biol.* **20**, 129 (2019).
- 56. Xu, Z. *et al.* Fast-bonito: A faster deep learning based basecaller for nanopore sequencing. *Artificial Intelligence in the Life Sciences* **1**, 100011 (2021).
- 57. Shafin, K. *et al.* Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. *Nat. Methods* **18**, 1322–1332 (2021).
- Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. *Bioinformatics* 35, 2193–2198 (2019).

- 59. Logsdon, G. A. *et al.* The structure, function and evolution of a complete human chromosome 8. *Nature* **593**, 101–107 (2021).
- 60. Cao, H. *et al.* Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. *Gigascience* **3**, 34 (2014).
- Kaiser, M. D. *et al.* Automated Structural Variant Verification in Human Genomes using Single-Molecule Electronic DNA Mapping. *bioRxiv* 140699 (2017) doi:10.1101/140699.
- Yuan, Y., Chung, C. Y.-L. & Chan, T.-F. Advances in optical mapping for genomic research. *Comput. Struct. Biotechnol. J.* 18, 2051–2062 (2020).
- 63. Mantere, T. *et al.* Optical genome mapping enables constitutional chromosomal aberration detection. *Am. J. Hum. Genet.* **108**, 1409–1422 (2021).
- Gerding, W. M. *et al.* Optical genome mapping reveals additional prognostic information compared to conventional cytogenetics in AML/MDS patients. *Int. J. Cancer* 150, 1998– 2011 (2022).
- Coster, W. D., De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. *Nature Reviews Genetics* 22, 572–587 (2021).
- Poplin, R., Zook, J. M. & DePristo, M. Challenges of Accuracy in Germline Clinical Sequencing Data. *JAMA* 326, 268–269 (2021).
- Cortés-Ciriano, I., Gulhan, D. C., Lee, J. J.-K., Melloni, G. E. M. & Park, P. J.
 Computational analysis of cancer genome sequencing data. *Nat. Rev. Genet.* 23, 298–314 (2022).
- Jain, C., Rhie, A., Hansen, N. F., Koren, S. & Phillippy, A. M. Long-read mapping to repetitive reference sequences using Winnowmap2. *Nat. Methods* 19, 705–710 (2022).
- Jain, C. *et al.* Weighted minimizer sampling improves long read mapping.
 Bioinformatics 36, i111–i118 (2020).
- Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34, 3094–3100 (2018).
- Sedlazeck, F. J. *et al.* Accurate detection of complex structural variations using singlemolecule sequencing. *Nat. Methods* 15, 461–468 (2018).

- Prodanov, T. & Bansal, V. Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. *Nucleic Acids Res.* 48, e114 (2020).
- 73. Zheng, Z. *et al.* Symphonizing pileup and full-alignment for deep learning-based longread variant calling. *bioRxiv* 2021.12.29.474431 (2021) doi:10.1101/2021.12.29.474431.
- AlDubayan, S. H. *et al.* Detection of Pathogenic Variants With Germline Genetic Testing Using Deep Learning vs Standard Methods in Patients With Prostate Cancer and Melanoma. *JAMA* 324, 1957–1969 (2020).
- 75. Whalen, S., Schreiber, J., Noble, W. S. & Pollard, K. S. Navigating the pitfalls of applying machine learning in genomics. *Nat. Rev. Genet.* **23**, 169–181 (2022).
- 76. Sapoval, N. *et al.* Current progress and open challenges for applying deep learning across the biosciences. *Nat. Commun.* **13**, 1728 (2022).
- 77. Baid, G. *et al.* DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer. *Nat. Biotechnol.* (2022) doi:10.1038/s41587-022-01435-7.
- Almogy, G. *et al.* Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. *bioRxiv* 2022.05.29.493900 (2022) doi:10.1101/2022.05.29.493900.
- Sahraeian, S. M. E. *et al.* Deep convolutional neural networks for accurate somatic mutation detection. *Nat. Commun.* 10, 1041 (2019).
- Luo, R., Sedlazeck, F. J., Lam, T.-W. & Schatz, M. C. A multi-task convolutional deep neural network for variant calling in single molecule sequencing. *Nat. Commun.* 10, 998 (2019).
- Poplin, R. *et al.* A universal SNP and small-indel variant caller using deep neural networks. *Nat. Biotechnol.* 36, 983 (2018).
- 82. Van der Auwera GA & O'Connor BD. *Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition).* (O'Reilly Media., 2020).
- Cooke, D. P., Wedge, D. C. & Lunter, G. A unified haplotype-based method for accurate and comprehensive variant calling. *Nat. Biotechnol.* 39, 885–892 (2021).

- Freed, D. *et al.* DNAscope: High accuracy small variant calling using machine learning. *bioRxiv* 2022.05.20.492556 (2022) doi:10.1101/2022.05.20.492556.
- Avsec, Ž. *et al.* The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. *Nat. Biotechnol.* 37, 592–600 (2019).
- Bolzhenko, E. *et al.* ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. *Bioinformatics* 35, 4754–4756 (2019).
- Willems, T. *et al.* Genome-wide profiling of heritable and de novo STR variations. *Nat. Methods* 14, 590–592 (2017).
- Mousavi, N., Shleizer-Burko, S., Yanicky, R. & Gymrek, M. Profiling the genome-wide landscape of tandem repeat expansions. *Nucleic Acids Res.* 47, e90 (2019).
- Tang, H. *et al.* Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes. *Am. J. Hum. Genet.* 101, 700–715 (2017).
- Hall, C. L. *et al.* Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device. *Forensic Sci. Int. Genet.* 56, 102629 (2022).
- 91. Fang, L. *et al.* DeepRepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. *Genome Biol.* **23**, 108 (2022).
- 92. *trgt: Tandem repeat genotyping and visualization from PacBio HiFi data*. (https://github.com/PacificBiosciences/trgt).
- Patterson, M. *et al.* WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads. *J. Comput. Biol.* 22, 498–509 (2015).
- Edge, P., Bafna, V. & Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. *Genome Res.* 27, 801–812 (2017).
- 95. Garg, S. *et al.* A haplotype-aware de novo assembly of related individuals using pedigree sequence graph. *Bioinformatics* **36**, 2385–2392 (2020).
- Chin, C.-S. *et al.* Phased diploid genome assembly with single-molecule real-time sequencing. *Nat. Methods* 13, 1050–1054 (2016).
- 97. Koren, S. *et al.* Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* **27**, 722–736 (2017).

- Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. *Nat. Biotechnol.* 37, 540–546 (2019).
- Chin, C.-S. & Khalak, A. Human Genome Assembly in 100 Minutes. *bioRxiv* 705616 (2019) doi:10.1101/705616.
- 100. Jarvis, E. D. *et al.* Semi-automated assembly of high-quality diploid human reference genomes. *Nature* 611, 519–531 (2022).
- 101. Liao, W.-W. *et al.* A Draft Human Pangenome Reference. *bioRxiv* 2022.07.09.499321
 (2022) doi:10.1101/2022.07.09.499321.
- 102. Kulski, J. K., Suzuki, S. & Shiina, T. Human leukocyte antigen super-locus: nexus of genomic supergenes, SNPs, indels, transcripts, and haplotypes. *Hum Genome Var* 9, 49 (2022).
- 103. Sherman, R. M. & Salzberg, S. L. Pan-genomics in the human genome era. Nat. Rev. Genet. 21, 243–254 (2020).
- 104. Rakocevic, G. *et al.* Fast and accurate genomic analyses using genome graphs. *Nat. Genet.* 51, 354–362 (2019).
- 105. Tetikol, H. S. *et al.* Pan-African genome demonstrates how population-specific genome graphs improve high-throughput sequencing data analysis. *Nat. Commun.* 13, 4384 (2022).
- 106. Ebler, J. *et al.* Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. *Nat. Genet.* **54**, 518–525 (2022).
- 107. Sirén, J. *et al.* Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. *Science* **374**, abg8871 (2021).
- 108. Li, H., Feng, X. & Chu, C. The design and construction of reference pangenome graphs with minigraph. *Genome Biol.* **21**, 265 (2020).
- 109. Auton, A. *et al.* A global reference for human genetic variation. *Nature* 526, 68–74 (2015).
- 110. Dewey, F. E. *et al.* Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. *PLoS Genet.* 7, e1002280 (2011).

- 111. Shumate, A. *et al.* Assembly and annotation of an Ashkenazi human reference genome.*Genome Biol.* 21, 129 (2020).
- 112. Chen, N.-C., Solomon, B., Mun, T., Iyer, S. & Langmead, B. Reference flow: reducing reference bias using multiple population genomes. *Genome Biol.* **22**, 8 (2021).
- Krusche, P. *et al.* Best practices for benchmarking germline small-variant calls in human genomes. *Nat. Biotechnol.* 37, 555–560 (2019).
- 114. Zook, J. M. *et al.* An open resource for accurately benchmarking small variant and reference calls. *Nat. Biotechnol.* **37**, 561–566 (2019).
- 115. Chin, C.-S. *et al.* A diploid assembly-based benchmark for variants in the major histocompatibility complex. *Nat. Commun.* **11**, 4794 (2020).
- 116. Zook, J. M. *et al.* A robust benchmark for detection of germline large deletions and insertions. *Nat. Biotechnol.* **38**, 1347–1355 (2020).
- 117. Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. *Bioinformatics* **30**, 2843–2851 (2014).
- 118. Zook, J. M. *et al.* Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. *Nat. Biotechnol.* **32**, 246–251 (2014).
- 119. Eberle, M. A. *et al.* A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. *Genome Res.* 27, 157–164 (2017).
- 120. Cleary, J. G. *et al.* Comparing Variant Call Files for Performance Benchmarking of Next-Generation Sequencing Variant Calling Pipelines. *bioRxiv* 023754 (2015).
- Ewing, A. D. *et al.* Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. *Nat. Methods* 12, 623–630 (2015).
- 122. Li, H. *et al.* A synthetic-diploid benchmark for accurate variant-calling evaluation. *Nat. Methods* 15, 595–597 (2018).
- 123. Jones, W. *et al.* A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency. *Genome Biol.* **22**, 111

(2021).

- 124. Zhao, Y. *et al.* Whole genome and exome sequencing reference datasets from a multicenter and cross-platform benchmark study. *Sci Data* **8**, 296 (2021).
- 125. Fang, L. T. *et al.* Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing. *Nat. Biotechnol.* **39**, 1151–1160 (2021).
- 126. Wagner, J. *et al.* Benchmarking challenging small variants with linked and long reads. *Cell Genomics* 2, (2022).
- 127. Cleary, J. G. et al. Joint Variant and De Novo Mutation Identification on Pedigrees from High-Throughput Sequencing Data. J. Comput. Biol. 21, 405–419 (2014).
- 128. English, A. C. *et al.* Assessing structural variation in a personal genome—towards a human reference diploid genome. *BMC Genomics* **16**, 286 (2015).
- 129. Mu, J. C. *et al.* Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods. *Sci. Rep.* 5, 14493 (2015).
- 130. Zhou, B. *et al.* Extensive and deep sequencing of the Venter/HuRef genome for developing and benchmarking genome analysis tools. *bioRxiv* 281709 (2018).
- Jun, G. *et al.* muCNV: Genotyping Structural Variants for Population-level Sequencing. *Bioinformatics* 37, 2055–2057 (2021).
- Collins, R. L. *et al.* A structural variation reference for medical and population genetics. *Nature* 581, 444–451 (2020).
- 133. Chen, X. *et al.* Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. *Bioinformatics* **32**, 1220–1222 (2016).
- 134. Chen, S. *et al.* Paragraph: a graph-based structural variant genotyper for short-read sequence data. *Genome Biol.* **20**, 291 (2019).
- 135. Chiang, C. *et al.* SpeedSeq: ultra-fast personal genome analysis and interpretation. *Nat. Methods* 12, 966–968 (2015).
- 136. Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparison and

analysis. Nat. Methods (2023) doi:10.1038/s41592-022-01753-3.

- 137. Chowdhury, M., Pedersen, B. S., Sedlazeck, F. J., Quinlan, A. R. & Layer, R. M. Searching thousands of genomes to classify somatic and novel structural variants using STIX. *Nat. Methods* 19, 445–448 (2022).
- 138. Rhie, A. *et al.* The complete sequence of a human Y chromosome. *bioRxiv* 2022.12.01.518724 (2022) doi:10.1101/2022.12.01.518724.
- 139. Lee, A. Y. *et al.* Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection. *Genome Biol.* **19**, 188 (2018).
- 140. Samadian, S., Bruce, J. P. & Pugh, T. J. Bamgineer: Introduction of simulated allelespecific copy number variants into exome and targeted sequence data sets. *PLoS Comput. Biol.* 14, e1006080 (2018).
- 141. Li, Z. *et al.* VarBen: Generating in Silico Reference Data Sets for Clinical Next-Generation Sequencing Bioinformatics Pipeline Evaluation. *J. Mol. Diagn.* 23, 285–299 (2021).
- 142. Xia, L. C. *et al.* SVEngine: an efficient and versatile simulator of genome structural variations with features of cancer clonal evolution. *Gigascience* 7, (2018).
- 143. Duncavage, E. J. *et al.* A Model Study of In Silico Proficiency Testing for Clinical Next-Generation Sequencing. *Arch. Pathol. Lab. Med.* 140, 1085–1091 (2016).
- 144. Duncavage, E. J. *et al.* Recommendations for the Use of In silico Approaches for Next Generation Sequencing Bioinformatic Pipeline Validation: A Joint Report of the Association for Molecular Pathology, Association for Pathology Informatics, and College of American Pathologists. *J. Mol. Diagn.* 25, 3–16 (2023).
- 145. Reis, A. L. M. *et al.* Using synthetic chromosome controls to evaluate the sequencing of difficult regions within the human genome. *Genome Biol.* **23**, 19 (2022).
- 146. Griffith, M. *et al.* Optimizing cancer genome sequencing and analysis. *Cell Syst* 1, 210–223 (2015).
- 147. Shand, M. *et al.* A validated lineage-derived somatic truth data set enables benchmarking in cancer genome analysis. *Commun Biol* **3**, 744 (2020).

- 148. Craig, D. W. *et al.* A somatic reference standard for cancer genome sequencing. *Sci. Rep.*6, 24607 (2016).
- 149. Jeffares, D. C. *et al.* Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. *Nat. Commun.* **8**, 14061 (2017).
- 150. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. *Genome Biol.* 23, 271 (2022).
- 151. Alser, M. *et al.* From Molecules to Genomic Variations: Accelerating Genome Analysis via Intelligent Algorithms and Architectures. *Comput. Struct. Biotechnol. J.* (2022) doi:10.1016/j.csbj.2022.08.019.
- 152. Shneiderman, B. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. in *The Craft of Information Visualization* (eds. Bederson, B. B. & Shneiderman, B.) 364–371 (Morgan Kaufmann, 2003).
- 153. Belyeu, J. R. *et al.* SV-plaudit: A cloud-based framework for manually curating thousands of structural variants. *Gigascience* 7, (2018).
- 154. Chapman, L. M. *et al.* A crowdsourced set of curated structural variants for the human genome. *PLoS Comput. Biol.* **16**, e1007933 (2020).
- 155. Guarracino, A., Heumos, S., Nahnsen, S., Prins, P. & Garrison, E. ODGI: understanding pangenome graphs. *Bioinformatics* (2022) doi:10.1093/bioinformatics/btac308.
- 156. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).
- 157. Marçais, G. *et al.* MUMmer4: A fast and versatile genome alignment system. *PLoS Comput. Biol.* 14, e1005944 (2018).
- 158. Eggertsson, H. P. *et al.* GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. *Nat. Commun.* **10**, 5402 (2019).
- 159. Mitchell, M. et al. Model Cards for Model Reporting. in Proceedings of the Conference on Fairness, Accountability, and Transparency 220–229 (Association for Computing Machinery, 2019).

160. Medvedev, P. The limitations of the theoretical analysis of applied algorithms. arXiv [cs.DS] (2022).

Highlighted References:

1. Olson, N. D. et al. PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions. Cell Genom 2, (2022).

Latest iteration of the precisionFDA Truth Challenge, which serves as a baseline for variant call performance from short and long reads in easy vs. more difficult regions using the GIAB v4.2.1 benchmark.

5. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

Initial demonstration of the value of accurate long reads for variant calling and assembly.

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in
 141,456 humans. Nature 581, 434–443 (2020).

Public resource of allele frequencies from 141,456 individuals using short reads, made available through the gnomAD genome browser.

Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome.
 Science 376, eabj6965 (2022).

Initial analysis of complex segmental duplication variation using the T2T-CHM13 reference.

Lincoln, S. E. et al. One in seven pathogenic variants can be challenging to detect by NGS: an analysis of 450,000 patients with implications for clinical sensitivity and genetic test implementation.
 Genet. Med. 23, 1673–1680 (2021).

Results from a large clinical laboratory showing one in seven pathogenic variants are challenging for short reads due to low mappability or variant type.

19. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

Initial analysis showing complete human genome reference improves variant calling by fixing reference errors and adding new sequences.

20. Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 1–9 (2022).

Latest benchmark from the Genome in a Bottle Consortium, demonstrating that diploid assembly can be used to form reliable small variant and structural variant benchmarks for a set of 273 challenging medically relevant genes, and providing a prototype for future assembly-based benchmarks.

39. Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome Biol. 20, 246 (2019).

Review of structural variant calling methods, to complement our more general review of variant calling.

54. Audano, P. A. et al. Characterizing the Major Structural Variant Alleles of the Human Genome. Cell 176, 663–675.e19 (2019).

Analysis using assemblies to show the prevalence of structural variation in the human genome.

57. Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

Recent iteration of the deep learning-based tool DeepVariant to call small variants from noisy long reads.

65. Coster, W. D., De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards populationscale long-read sequencing. Nature Reviews Genetics 22, 572–587 (2021).

Recent review of how long read sequencing is increasingly used to study variation in large numbers of samples.

67. Cortés-Ciriano, I., Gulhan, D. C., Lee, J. J.-K., Melloni, G. E. M. & Park, P. J. Computational analysis of cancer genome sequencing data. Nat. Rev. Genet. 23, 298–314 (2022).

Recent review of somatic variant calling, to complement this review's focus on germline variants.

101. Liao, W.-W. et al. A Draft Human Pangenome Reference. bioRxiv 2022.07.09.499321 (2022)doi:10.1101/2022.07.09.499321.

First manuscript from the Human Pangenome Reference Consortium about their initial pangenome formed from accurate diploid assemblies, which can be used to improve variant calling.

103. Sherman, R. M. & Salzberg, S. L. Pan-genomics in the human genome era. Nat. Rev. Genet.21, 243–254 (2020).

Review of pangenomes, including how past work on pangenomes for other species can inform work on human pangenomes.

 Krusche, P. et al. Best practices for benchmarking germline small-variant calls in human genomes. Nat. Biotechnol. 37, 555–560 (2019).

Primary product of the GA4GH Benchmarking Team, including Supplementary Table 1 that summarizes best practices for benchmarking variant calls.

150. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 23, 271 (2022).

Describes the truvari tool, which has been important for benchmarking structural variants and tandem repeats, by comparing different representations of variants.

Weblinks

Genome in a Bottle Consortium: <u>http://www.genomeinabottle.org/</u> gnomAD: <u>https://gnomad.broadinstitute.org/</u> Human Pangenome Reference Consortium: <u>https://humanpangenome.org/</u> Stratifications for challenging genomic regions: <u>https://github.com/genome-in-a-bottle/genome-stratifications</u> T2T-CHM13 complete human genome reference: <u>https://github.com/marbl/CHM13</u>