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Abstract 
 
Variant calling from DNA sequencing has enabled understanding of germline variation in hundreds of 
thousands of humans. Sequencing technologies and variant calling methods have advanced rapidly, 
routinely providing reliable variant calls in most of the human genome. We describe how advances in 
long reads, deep learning, de novo assembly, and pangenomes have expanded access to variant calls in 
increasingly challenging, repetitive genomic regions, including medically-relevant regions, and how 
new benchmark sets and benchmarking methods illuminate their strengths and limitations. Finally, we 
explore the possible future of more complete characterization of human genome variation in light of the 
recent completion of a Telomere-to-Telomere human genome reference assembly and human 
pangenomes, and innovations needed to benchmark their newly accessible repetitive regions and 
complex variants. 

Introduction 
Calling variants (sequence differences) between an individual’s genome with respect to a reference 
genome assembly has been the standard practice for characterizing hundreds of thousands of human 
genomes since the completion of the Human Genome Project. The human reference genome assembly, 
first published in 2003, was the basis for a wide variety of methods to ‘map’ (align) reads to the 
reference and identify differences between those reads and the reference, commonly termed ‘variant 
calling’.  The typical variant calling process includes sequencing, read mapping or de novo assembly, 
variant calling, filtering of false positives, and sometimes phasing. Calling variants across many 
individuals has enabled understanding of variants associated with disease and clinical diagnostics, as 
well as evolutionary mechanisms. 

Calling small variants from short-read sequencing has become highly accurate in regions of 
the genome to which short reads (typically 150 to 250 base-pairs (bp) long) can be accurately 
mapped.1–3 This high accuracy has resulted from decreases in sequencing errors rates (e.g., due to PCR-
free sequencing) and modest increases in short read length.  However, short reads have limitations in 
repetitive regions of the genome (Figure 1). Generally, if a read is shorter than a repeated or duplicated 
region, it may be difficult to determine the read’s ‘true’ location in the genome, and thus calling 
variants from it will be ambiguous. Such repetitive regions include segmental duplications, long 
interspersed nuclear repeats (LINEs), short tandem repeats (STRs), variable number tandem repeats 
(VNTRs), telomeres, and satellite repeats (up to 30 Mbp long). To deal with these limitations, novel 
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sequencing methods and bioinformatics tools have been invented to enable longer read lengths, 
specifically ultralong (100 kbp to several Mbp) reads4 and highly accurate long (15 kbp to 20 kbp) 
reads.5 These longer reads enabled the complete de novo assembly of an effectively haploid human 
genome by the Telomere-to-Telomere Consortium, correcting some errors in the GRCh38 human 
reference genome and adding ~7% of highly repetitive sequence previously unassembled.6 

Genomic benchmarks have played an important role in optimizing sequencing methods and 
analysis pipelines. These benchmarks include well-characterized samples and variant callsets from 
community efforts such as the Genome in a Bottle Consortium (GIAB) and Sequencing Quality 
Control Consortium (SEQC), along with benchmarking tools from the Global Alliance for Genomics 
and Health (GA4GH).  Scientists can use these benchmarks by acquiring a well-characterized sample 
(e.g. HG002 from GIAB), run it through their sequencing and analysis pipeline, and compare their 
results with the accompanying benchmark variant callsets. Thus, performance can be measured across 
analysis pipelines in a standardized way, and as Lord Kelvin once postulated: “If you cannot measure 
it, you cannot improve it”. Furthermore, as benchmarks include increasingly challenging genomic 
regions or variants, they help technology and method development, providing key insights into what 
laboratories may miss. 

Here, we review the advances in DNA sequencing technologies and bioinformatics, as well as 
accompanying benchmarks, which have made variant calling routine in much of the human genome, as 
well as their limitations in repetitive regions and common sources of bias and error. We review the role 
of benchmarks and benchmarking tools in understanding and improving variant accuracy, and we 
conclude with our perspective on the future of variant calling and benchmarking in complex, repetitive, 
and highly variable regions. 
 

Remaining Challenges across the genome 
Over the years many advancements have been made to identify variants and create benchmarks. 
Nevertheless, it is important to keep in mind that there are multiple challenging regions left across the 
genome. Here, we introduce the types of challenging regions and provide insights on why they are 
challenging and why it still matters to resolve these. The challenges are generally related to different 
types of repetitive regions in the genome, which are often analogized to regions of a puzzle where 
pieces are very similar. Different types of repeats have different challenges in sequencing errors, 
mapping, and variant calling, which we describe below.  

Homopolymers and Tandem repeats 
Homopolymers and tandem repeats are sequences repeated many times next to each other (Figure 1a), 
and cause systematic sequencing errors, mapping errors, and challenges in variant representation. 
Homopolymers are a single base repeated many times, and cause errors during PCR amplification and 
during sequencing, with most errors in A and T homopolymers due to their high prevalence in the 
human genome (Figure 1b). Although less common, G and C homopolymers generally have a higher 
error rate (Figure 1c),7 partly because certain sequence motifs may cause errors in one direction and not 
the other, called ‘strand bias’ (e.g., GGT is sometimes read as GGG by Illumina).8 Variants in tandem 
repeats often were filtered with standard short-read variant callers if short reads do not span the repeat, 
and are sometimes noisy in long reads (Figure 1d and 1e). In addition, GA-rich simple repeats are 
poorly covered in current PacBio HiFi data.9 While reads can generally be mapped or assembled 
accurately with sufficient reads longer than the full repeat length, large or complex variants may 
confuse the alignment. Furthermore, even with accurate long reads that span the repeat, the specific 
representation of a variant may be important to understanding its role in a phenotype or disease, 
particularly for the horizontally complex variants (multiple variants on the same haplotype) and 
vertically complex variants (different variants occurring on both haplotypes) shown in Figure 2a and 
2b. These challenges can be different for the two general historical categories of tandem repeats; short 
tandem repeats (STRs) are defined as repeats whose repeating unit is 6 base-pairs or less, and variable 
number tandem repeats (VNTRs) that have longer units.10 

As an example for STRs, Huntington's disease is caused by having 36 or more CAG repeats in 
the huntingtin (HTT) gene, and gnomAD recently genotyped 59 disease-associated STR loci in >19,000 
samples (https://gnomad.broadinstitute.org/news/2022-01-the-addition-of-short-tandem-repeat-calls-to-
gnomad/).11 Without understanding the repeat structure, variant callers may represent these repeats in a 
naive, repeat-agnostic way, often with multiple variants in the same repeat. This makes the variant 
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difficult to interpret, where ideally one would want a repeat count and sequence from each haplotype to 
determine phenotype or disease progression. For VNTRs, correctly identifying and genotyping repeat 
count is even more difficult for two main reasons, as shown in Figure 1d: first, VNTRs can often be 
much longer than the sequencing read length even for long reads (owing to their longer repeat size and 
total length), and second, VNTRs often have multiple point mutations in their repeats and multiple 
repeat motifs, which makes alignment more difficult.12 Even with VNTRs longer than the read length, 
these can sometimes be assembled with accurate long reads, as in the gene LPA. adVNTR is a variant 
caller that specifically focuses on calling VNTRs.13 It uses a hidden Markov model (HMM), which 
encodes the likelihoods that a base letter will follow a specific position in repeat or flanking region. 
Even when accurately assembling or calling variants in VNTRs, representation of variants in these 
regions is challenging, and new tools need to be developed to compare variants between methods or 
across individuals. 
 

Segmental duplications 
 
Segmental duplications are nearly identical sequence fragments that are typically defined analytically 
as being at least 1000 bp long and occur at least twice throughout the genome, and may be either 
tandem (adjacent) or interspersed (distant).14 Because variant calling is inherently dependent on 
correctly mapped reads, calling small variants in these regions has historically been elusive; variants 
were frequently filtered or missed even if they were true positives because it was difficult to distinguish 
them from false positives. Recent advances in both sequencing technology and computation algorithms 
have begun to unlock these regions. One recent study found that segmental duplications and tandem 
repeats accounted for >90% of large deletions identified by long reads but missed by short reads.15 

Segmental duplications are challenging for variant calling for several reasons. First, reads may 
not be long enough to confidently map to the correct copy of the segmental duplication (Figure 3a), 
even when using long reads for large, highly identical segmental duplications like SMN1 and SMN2 
associated with spinal muscular atrophy.16 This can result in false positive and false negative variant 
calls, although paralogous sequence variants (PSVs) can be used to distinguish copies in some cases, as 
described below. Second, large, complex SVs such as inversions and duplications are often mediated 
by segmental duplications, which presents unmet challenges for variant call representation and 
benchmarking.17 Third, many segmental duplications differ in copy number between individuals. When 
an individual has an extra copy of a segmental duplication relative to the reference, reads from the extra 
copy often map to existing copies in the reference, typically resulting in higher than normal coverage 
and dense false-positive heterozygous variant calls from PSVs (Figure 2c and Figure 3b). In some 
cases, the GRCh37 and GRCh38 references are missing copies of a segmental duplication, resulting in 
false positives in all individuals, including medically relevant genes like KCNJ18 and MAP2K3.18,19 
While long reads generally have fewer mapping errors than short reads, long reads can result in more 
false positives than short reads when the individual has an extra copy due to population variability 
and/or reference errors (e.g., KMT2C in Supp. Fig. 11 in Ref20), because short reads from the extra 
copy may remain unmapped if the extra copy of the duplication is highly diverged from the reference 
(i.e., has many variants relative to the reference copy). Furthermore, GRCh37 and GRCh38 have gaps 
around segmental duplications that can cause mapping errors (Figure 2d). However, improved 
references like T2T-CHM13 and pangenome references can eliminate many of these false positives and 
mapping errors. Finally, segmental duplications can undergo gene conversion events, where the 
sequence in one copy replaces the sequence in another copy relative to the reference (Figure 3c), 
resulting in mis-mapping of reads and inaccurate variant calls when these are polymorphic in the 
human population, like in the medically relevant genes RHCE and SIGLEC16.20 The gene conversions 
were recently implicated in the increased mutation rate seen in assemblies of segmental duplications.21 
Multiple methods have been developed to characterize copy number of segmental duplications from 
short reads,22 but only recently have long reads become sufficiently accurate to characterize both small 
and large variation using haplotype-resolved de novo assembly.9,23,24  

Centromeres/heterochromatin/satellites 
Satellite DNAs (long arrays of near-identical tandem repeats) are enriched within human centromeres, 
pericentromeric regions, and the short, acrocentric arms of chromosomes. These regions have typically 
been ignored by variant callers because they were missing or incomplete even in the reference, but 
high-resolution maps of these regions were revealed in 2022 by the T2T Consortium in the first 
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complete assembly of a human genome (representing an effectively haploid CHM13 cell line, or T2T-
CHM13v2.0).6,25  

Pairwise alignments of repeat copies within the largest arrays (typically greater than 500,000 
bp) are observed to be highly similar to one another (in the range of 98–100% identity). Furthermore, 
by mechanisms of repeat expansion, highly similar repeats — if not exactly identical repeat units — are 
often organized in close proximity to one another. Importantly, satellite DNAs are expected to evolve 
rapidly, with extreme variation in the length of the array (copy number of tandem repeats), differences 
in repeat unit structural variation (that is, some repeat units within an array or between arrays may vary 
in length), and sequence variants that distinguish one copy of a repeat from another.  These unique 
genomic features present a fundamental challenge to generating confident short-read or long-read 
alignments within an array or between homologous arrays. The small number of sparsely organized 
differences (SNVs and indels) can present extensive regions where repeats are indistinguishable from 
one another. New methods are needed to ensure meaningful assembly-to-assembly comparisons 
between arrays. A previous study of diverse centromeric satellite arrays on haploid X chromosomes25 
revealed considerable variation in overall array length, regions of recent duplication (with several 
arrays reporting large internal duplications greater than 100,000 bp), and exceptional complex variation 
with local conversion and rearrangement. It is difficult to align two distinct satellite arrays that vary in 
repeat content in a meaningful way. As shown in Figure 2e, alignment strategies that are not repeat-
aware (e.g. minimap2) align the HG002 assembly to CHM13 with many SNVs but few SVs, whereas 
minimap2 aligns HiFi reads with many CNVs and fewer SNVs. In addition to the alignment 
challenges, some highly repetitive satellite DNA sequences like HSat2 and HSat3 arrays were found to 
have strand bias and shorter read lengths for ONT and higher than normal coverage for HiFi, and 
conversely coverage was lower than normal for both HiFi and ONT in AT-rich HSat1 arrays.26 All of 
these challenges need ongoing methods development, but some analyses of these regions are now 
possible with the advances in sequencing and variant calling methods discussed next. 

Advances in sequencing methods  
Advances in sequencing technology have improved variant calling accuracy and helped 

identify variants in complex regions of the genome and challenging variant types.27 Sequencing read 
length and base calling accuracy partly determine whether a variant can be correctly identified within a 
specific genomic context. Highly similar genomic regions are generally inaccessible by sequencing 
technologies with sequencing accuracy less than the paralogous region similarity or reads shorter than 
the paralogous regions (Figure 1e).28 Insufficient read length or sequence accuracy can cause incorrect 
or ambiguous mapping of reads to a reference and inaccurate or broken de novo assemblies.29–31 
Improper read mapping can cause false negative variant calls when reads are unmapped or 
ambiguously mapped, or false positive variant calls when reads are mapped in the wrong location.32 
Due to these errors, one study found one in seven pathogenic variants can be difficult to detect with 
standard short read sequencing.16 Sequencing methods have evolved to address these limitations by 
increasing accuracy, read length, or both.28  

Short read sequencing technologies were the first next-generation sequencing methods and 
have made whole-genome sequencing economical.33 Short reads are commonly used in large 
population genomic studies, basic research, and clinical laboratories.34–36 PCR-free short reads reduce 
insertion and deletion (indel) errors in homopolymers (Figure 1a,b) and tandem repeats shorter than the 
read length. New short reads technologies are promising error rates of 1 in 10,000 bp, with particular 
performance gains in homopolymers.37 Higher accuracy may be particularly important in calling 
somatic and mosaic variants in a small fraction of the reads, and calling variants in regions prone to 
systematic errors like homopolymers. Regardless of base accuracy, the short read lengths hinder variant 
calling in large tandem repeats (Figure 1d) and highly homologous regions, such as segmental 
duplications (Figure 3), and in the highly variable, medically relevant human leukocyte antigen (HLA) 
gene region that encodes several immune system components.1,32 To improve calls in some of these 
regions, new sequencing library preparation methods were developed. Paired-end sequencing of reads 
several hundred base-pairs apart and mate-pair sequencing of reads several thousand base-pairs apart 
improve mappability and SV calling.38 Still, SVs are harder to detect using short read sequencing data, 
particularly in repetitive regions enriched for SVs.39 To further improve mappability and SV detection 
with short reads, library preparation methods such as linked reads, synthetic long reads, Hi-C, and 
Strand-seq have been developed to incorporate much longer range information. 

Linked-read and synthetic long-read methods leverage high-throughput short-read sequencing 
technologies but add barcodes identifying reads originating from the same long DNA molecule, further 
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improving mappability and phasing.40,41 For these methods large genomic DNA molecules, tens to 
hundreds of kilobases in length) are partitioned and barcoded. Barcodes enable read mapping in larger 
repeat regions such as segmental duplications, resulting in improved variant calling in these regions. 
Because reads sharing the same barcode within a region are generally from a single molecule, many 
heterozygous variants can be phased (i.e., determining whether they occur on the same haplotype or 
opposite haplotypes). Some of the first haplotype-resolved assembly methods were also developed with 
linked reads, though these have substantially lower contiguity than more recent methods using long 
reads.42 Alternative linked-read methods used dense sequencing of each molecule to enable local 
assembly of reads into ‘synthetic long reads’ (e.g., moleculo and more recently Complete Long Reads 
from Illumina). Linked reads generally have more DNA amplification biases in homopolymers and 
tandem repeats, and mapping or assembly challenges in tandem repeats and tandem duplications. The 
initial linked-read methods have been discontinued as commercial products, but new methods have 
been released, such as TELL-seq,43 or announced, such as Illumina’s Complete Long Reads. 

Similar to linked read sequencing methods, Hi-C and Strand-Seq are sequencing methods that 
combine novel library preparation methods with high throughput of short-read sequencing methods to 
increase the amount of genomic information within a read. Hi-C sequencing methods provide 
chromosome contact information by cross-linking segments of DNA that are in close physical 
proximity .44 Although Hi-C was originally developed and is still used for analyses of 3D genome 
organization, the chromosome contact information is also widely used for phasing variant calls as well 
as scaffolding and phasing of genome assemblies.45,46 Strand-Seq is a single-cell strand-specific 
sequencing protocol that tags reads by direction of sequencing (i.e. same direction as the reference or in 
the reverse complement direction), and enables clustering of reads by haplotype up to the length of 
chromosomes.47 The resulting strand-specific information is particularly useful with the identification 
of large inversions along with phasing variants and genome assemblies.48 

Increased read length improves mappability, expanding callable regions, and increases 
genome assembly quality. Pacific Biosciences (PacBio) released the first long-read sequencing 
product49,50 followed by Oxford Nanopore Technologies (ONT).4 Often referred to as third-generation 
sequencing, these new methods initially offered longer reads but with lower sequencing accuracy, 
lower throughput, and higher cost compared to short-read sequencing methods. The lower sequence 
accuracy limited accuracy of calling small variants, but the longer read lengths substantially improved 
genome assembly and structural variant calling relative to short reads.51–54 Recent improvements in 
read accuracy have made small variant calling possible, particularly with new the PacBio HiFi 
approach based on circular consensus sequencing.5 The HiFi data’s unique combination of read length 
and accuracy has resulted in high-accuracy small and structural variant calling as well as diploid 
genome assembly, as discussed below. Although ONT reads are still less accurate than HiFi reads, their 
accuracy has been steadily improving through improvements to the sequencing methods (e.g., new pore 
designs, duplex sequencing reading the same molecule twice, and base calling methods), enabling 
accurate single-nucleotide variant (SNV) calling as well as SV calling.55–57 ONT’s unique pore-based 
electrical signal detection method has allowed for the generation of sequencing data with read lengths > 
2 Mbp, and datasets with read length N50 > 100 kilobase-pairs.51,58,59 Combined, ultra-long ONT and 
HiFi datasets have enabled the generation of the first telomere to telomere human genome assembly.6  

To complement sequencing technologies, optical60 and electronic mapping61 technologies 
measure the spacing between sequence motifs that are marked on long DNA molecules, and were 
recently reviewed in Ref62.  These technologies do not give sequence-level information, but can enable 
de novo assembly and detection of large SVs that are challenging to detect with sequencing, since they 
start with long DNA molecules.60 Optical mapping has also been used to scaffold and correct 
assemblies of sequencing reads, as well as for detection of large germline SVs and copy number 
variants (CNVs) associated with diseases63 and of somatic structural changes in cancer.64 We next 
discuss methods developed to leverage new sequencing technologies to improve variant calling and 
thus benchmark creation. 
 

Advances in variant calling methods 
Variant calling pipelines typically have included mapping (or aligning) sequencing reads to 

the reference genome assembly, and then identifying differences between these reads and the reference 
genome, typically called variants, and represented in the variant call format (VCF),65 as depicted in 
Figure 4. These candidate variants may be true variants in the individual or errors in mapping or 
sequencing, so variant callers typically include a filtering step to remove or flag likely false positives or 
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uncertain variants. Errors in variant calls can arise at each stage of genome analysis, from library 
preparation to sequencing to mapping to variant calling. Errors and variability introduced in each of 
these stages are often inter-related, and we detail different sources of errors in Supplementary Box 1, 
which are summarized in the figure in Ref66. Since the focus of this review is on germline variant 
calling, we refer the readers to a recent review of somatic variant calling for a comprehensive 
examination of challenges.67 A summary of advances in calling de novo mutations, variants in RNA-
sequencing, and other specialized data types is in Supplementary Box 2. In the following sections, we 
describe recent advances in variant calling taking advantage of new sequencing methods to access 
challenging genomic regions. 

 

Mapping reads 
 There are methods specially designed for hard to assess repeats or general challenging regions 

or variations.  As described above, even highly similar segmental duplications have some differences 
(e.g., PSVs) between them. These PSVs can be used to distinguish different mapping locations, as 
shown in Figure 3a and 3b, but are not used explicitly by most mapping algorithms. Winnowmap2 
solves this problem using minimal confidently alignable substrings (MCAS) which are substrings in 
reads used to establish mapping confidence by comparing the highest-scoring location with the second-
highest scoring.68 By forcing this confidence above a user-defined threshold, this naturally leverages 
PSVs between alignment locations. This generally leads to an order of magnitude improvement in 
false-positive rate (FPR) and false-negative rate (FNR) compared to other mappers such as winnowmap 
v1,69 minimap2,70 and NGMLR.71 DuploMap takes a different approach using both a priori PSVs 
(identified from the UCSC Table Browser) and calculation of longest common subsequence between 
reads and alignment locations (the assumption being that correctly aligned reads should share long and 
unique sequences with the mapped location).72 The authors show a large improvement for PacBio HiFi 
and ONT reads in improving mappability to segmental duplications, which also improves variant 
calling.1,57  

 

Filtering errors with deep learning and other machine learning 
Filtering out false positive variants based on characteristics of the reads and repeats in the genome 
sequence has been important since the first variant callers. Filtering methods have become increasingly 
sophisticated, improving expert-designed features and using new methods such as deep learning. As 
seen in the precisionFDA Truth Challenge V21 and discussed by Ref73, deep-learning implementations 
are becoming a prominent approach in many variant calling methods,74 particularly for newer 
sequencing technologies. To develop a thorough contextual understanding of these developments, we 
direct readers to considerations for using machine learning methods in bioscience,75 and a review of 
applications of deep learning in bioscience.76 Whole human genome small variant calling is amenable 
to deep learning because of openly available sequencing data and benchmarks for training and testing 
that cover millions of variants in a range of genome contexts. The dominant architecture for variant 
calling deep learning models is currently convolutional neural networks (CNNs). Traditional variant 
callers use expert-designed features about the sequence of the locus (e.g., if it is a homopolymer), as 
well as characteristics of the reads from a sample aligned to the locus (e.g., if the variant is strand 
biased, as in Figure 1c). To reduce the need for expert-designed features, a CNN architecture accounts 
for information from sequencing reads and sequence of the reference genome at and around the variant. 
With appropriate training hyperparameters, a CNN can approximate a complex, non-linear function 
that classifies loci as homozygous variant, heterozygous variant, or homozygous reference (non-
variant), often yielding empirically accurate performance metrics for short and long read sequencing 
technologies.  

Although neural networks do not need as many expert-designed features as other methods, it is 
still important to represent relevant features of alignments in the input data when designing variant 
callers. For example, in the precisionFDA challenge, the DeepVariant input format includes read base, 
base quality, mapping quality, strand, reads that support variant, base differs from reference, and insert 
size, whereas NeuSomatic used a reference sequence along with alignment features.1 Looking beyond 
CNNs, recurrent neural network architectures that account for the sequential structure of the genome 
are used in prediction over sequencing reads such as in DeepConsensus.77 Overall, deep learning 
techniques have been particularly important in enabling rapid adoption of new and evolving sequencing 
technologies for variant calling, such as PacBio HiFi, ONT, and new short-read technologies.57,73,78–81  
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 Other machine learning techniques are also commonly used to filter potential false positive 
variant calls. Examples include the Gaussian Mixture Model used in Variant Quality Score 
Recalibration in the Genome Analysis Toolkit (GATK),82 the optional random forest classifier in 
Octopus,83 and Gradient Boosting Machines in DNAscope.84 These models typically require feature 
engineering, so features associated with errors in each new technology need to be designed. Although 
engineering features can be challenging, these models can also give an indication of which features are 
important in filtering a variant — a task that is more challenging with deep learning models.   
 Given the complexities of variant calling, it is important that method developers summarize 
the model, training, and benchmarking for users to understand a method’s intended use and limitations. 
We recommend that variant detection method developers adopt some of the transparency approaches 
used in machine learning, as described in Box 1. This transparency is useful for all variant callers, even 
when not based on deep learning, but it is particularly important for clinical applications, as one recent 
study showed improved variant detection with deep learning-based methods.  74 Also, other machine 
learning disciplines use model zoos for distributing trained models, and genomic variant callers could 
similarly benefit from using Kipoi or a similar mechanism.85 
 

Tandem repeat-specific callers 
A few highly specialized methods exist that are designed to cope with short tandem repeats 

(STR) and their repetitiveness, because these regions are often ignored or mis-called by standard small 
variant and SV callers due to size of alternative alleles, repeat structure, or complexity. 
ExpansionHunter is a variant caller that genotypes STRs by using a predefined variant catalogue, 
encoding the structure of the repeated loci in question using a regular-expression-like syntax.86 
ExpansionHunter has been shown to outperform other STR-specific variant callers such as HipSTR,87 
gangSTR,88 and TREDPARSE89. However, ExpansionHunter matches STRs based on user-defined 
patterns, requiring the user to know which variants they are targeting, and it also is less flexible to point 
mutations in the repeat units themselves. Other TR-specific callers have been developed for forensic 
STRs,90 ONT reads,91 and PacBio HiFi reads.92 

Phasing/Haplotyping 

Phasing entails assigning heterozygous variants, reads, or assembled contigs to the haplotype coming 
from the father or mother. When sequencing data are available from the parents, haplotypes can often 
be assigned as originating from the mother or father, or common variants can be phased based on large 
population panels. Otherwise, nearby variants can be phased locally when heterozygous variants are 
within the read length or paired-end distance for standard sequencing methods. As described above, 
specialized library preparations, including linked reads, Hi-C, and Strand-seq, have been developed to 
phase variants and assembled contigs at longer scales up to entire chromosomes. Several tools, 
including WhatsHap and HapCut2,93,94 have been developed to phase variants using a variety of types 
of sequencing data and pedigree information. Whatshap can also use phased variants to assign long 
reads to each haplotype, which is often helpful for calling variants and visualizing read support for 
variants.93 Other tools include phasing steps to improve variant calling or assemblies24,45,48,95,96. It is 
important to note that short read-based phasing often only locally assigns variants to haplotype blocks 
(i.e., the sub-region where variants are phased together), with long reads and linked reads producing 
larger haplotype blocks than short reads, but there may be switches between blocks. Local phasing can 
particularly be important for clinical applications, for example to understand whether two loss of 
function variants in a gene occur on the same haplotype, so that only one copy of the gene is non-
functional, or on opposite haplotypes, so that both copies are non-functional. 

Haplotype-resolved de novo assembly 
De novo assembly is an increasingly possible alternative to read mapping that involves stitching 
together reads independent of the reference genome. From short reads, only relatively short contigs 
(contiguously assembled sequences of tens to hundreds of kilobase-pairs) and non-repetitive regions 
can be assembled, so it was rarely used except for regional assembly of large variants. Long reads 
enable assembly of much longer contigs. However, prior to the advent of highly accurate long reads in 
2019,5 even the best assemblies collapsed haplotypes in most regions of the genome and had many 
small indel errors from the noisy reads, so were not useful for small variant calling.97,98 With the advent 
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of accurate long reads from PacBio HiFi, haplotype-resolved (or “diploid”) assembly across much of 
the genome became possible9,24,45,48,99 and combined with new methods, enabled accurate small variant 
calling. Initially, assemblies still collapsed many segmental duplications, resulting in missed and 
inaccurate variants. However, many segmental duplications were resolved accurately by the best 
methods submitted to a 2020 comparison of diploid assemblies for HG002. This comparison showed 
the progress in assembly metrics and established assembly-based variant calling as a leading approach 
to characterize small and large variation of a genome, closely matching curated benchmarks.100 The 
Telomere-to-Telomere (T2T) Consortium published a complete effectively haploid human assembly, as 
well as complete chromosome X assemblies in males in 2022,6,25 and are currently working towards 
complete haplotype-resolved assemblies of diploid humans. The Human Pangenome Reference 
Consortium recently released high-quality diploid assemblies for the purpose of building a pangenome 
reference, as described in the next section.101 Diploid assemblies currently are the best method to 
resolve complex variants in the most repetitive regions of the genome like segmental duplications and 
satellites, but much work remains to understand and benchmark these variants, with pangenome 
alignments providing one path. 
 

Pangenomes and graph-based variant calling 
Traditionally, human variant calling has been performed by aligning reads to a single linear reference 
such as GRCh37, GRCh38, or most recently T2T-CHM13. However, this approach is limited in 
regions where an individual differs substantially from the reference, such as large indels, structural 
variants, copy number variants, and other highly variable regions such as the medically relevant HLA 
(recently reviewed in Ref102) and killer immunoglobulin-like receptor (KIR) regions. To address this 
challenge, approaches have been developed to map reads to pangenomes, often using graph-based 
references that incorporate variants from many individuals as different reference paths. For small 
variants, read alignments to the graph-based pangenome reference are typically translated into 
alignments to a linear reference so that normal variant calling tools can be used to generate variant calls 
on the linear reference. Pangenome approaches were recently reviewed.103 Strengths and weaknesses of 
linear reference and pangenome reference approaches are shown in Table 1, and Figure 4 depicts an 
example of a large insertion in an individual relative to the linear reference, and how mapping to a 
pangeome enables reads to be mapped to the inserted sequence. 

The first human graph-based references incorporated small variants and/or structural variants 
from short-read population sequencing projects such as the 1000 Genomes Project, and showed 
improvements in variant calls particularly for larger indels and SVs.104 Recently, this approach was 
shown to improve mapping statistics and increase the number of variant calls in individuals of African 
ancestry.105 Individuals with African ancestry generally have more variants and higher diversity than 
other populations, so it is plausible that graph-based references may particularly improve accuracy of 
variant calls for African individuals, but the lack of benchmarks for African samples makes it 
challenging to understand the accuracy of new variant calls detected by pangenome methods. With the 
advent of long reads applied to diverse samples, several approaches were developed to incorporate SVs 
discovered with long reads into the graph, which then enables genotyping of many of these SVs with 
short reads, although genotyping the majority of SVs is still challenging because they are located in 
tandem repeats. The latest graph-based references were made from long read de novo assemblies by the 
Human Genome Structural Variation Consortium (HGSVC) and the Human Pangenome Reference 
Consortium (HPRC). The 2019 HGSVC assemblies were based on long reads with ~10% error rate, so 
did not enable full haplotype separation, full assembly of segmental duplications, or accurate SNV 
calling, but they still substantially improved SV genotyping by short reads.54,106 The 2022 HPRC Phase 
1 assemblies used more accurate HiFi reads, which enabled higher resolution of small and large 
variants, as well as better assembly of each haplotype and segmental duplications. This, along with 
refined graph-based variant calling methods (Giraffe-DeepVariant107) and genotype inference methods 
(PanGenie106), enabled further improvements in variant calling, particularly for large indels, structural 
variants, highly polymorphic regions, and regions with errors in the GRCh38 reference.106–108 While a 
pangenome reference can include new segmental duplications and complex structural variation missing 
from a linear reference, but rare variation may not be represented even in future pangenome reference 
resources. Calling rare complex variants, such as those causing rare disease, may still require assembly-
based approaches, though the resulting assemblies could still be aligned to the pangenome reference.  

Alternatives to graphs have been proposed to use pangenomes to improve variant calling. 
Low-frequency variants (i.e., variants observed with < 1% allele frequency) are typically observed to 
be regional or specific to a given population.109 Therefore, there could be an advantage in using a 
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reference that contains major alleles in the population110 or that most closely corresponds to the 
ancestry of the sequenced individual, so that existing mapping and variant calling tools designed for a 
linear reference can be used.111 This approach may not be sufficient for individuals with highly 
admixed ancestries or for regions of the genome that are highly variable between individuals in a 
population, such as the HLA and KIR regions, and some segmental duplications. A ‘reference flow’ 
approach progressively aligns reads to multiple reference genomes to improve variant calling, which is 
faster than graph-based approaches and therefore may enable the use of a larger number of reference 
genomes.112  

Looking forward, alignments between pangenome assemblies are likely to be important for 
understanding the complex variation that frequently occurs in segmental duplications, VNTRs, satellite 
DNA, and other repetitive regions. Standardizing alignments between genomes in complex regions and 
representation of variants in these regions will be important for benchmarking accuracy and for 
understanding clinical relevance of complex variants. Many pangenome methods are under active 
development. and more comprehensive benchmarks and sophisticated benchmarking tools will be 
needed to assess their improvements in the most challenging regions, which we discuss in the following 
sections. 
 

Benchmark sets and tools for assessing variant 
accuracy  

Introduction to benchmark sets 
Shared benchmark sets play a critical role to advance genomic science, wet- and dry-lab technology 
development, and to confidently apply genome sequencing. Little progress can be made without the 
ability to compare performance metrics from different approaches. These widely available benchmarks 
are the foundation for such comparison and can be the basis for translation to clinical use in regulated 
applications. A small number of extensively characterized genomes have been developed into 
‘benchmarks’ to understand the performance of variant calling methods. These widely available 
genomes are composed of both the genomic DNA or cell lines containing the genome, and extensive 
data from multiple DNA sequencing technologies. These data are used to form a ‘benchmark set,’ the 
preferred term from GIAB and GA4GH to describe the set of variants in a VCF, and the regions in 
which practically all variants have been characterized, represented in BED format.113–116  ‘Benchmark 
set’ reflects the intended use, but synonyms in the literature include ‘truth set’117, ‘high confidence 
variants and regions’118,119, ‘baseline variants’120, and ‘gold standard’52,120,121.  These benchmark 
variants and regions enable users to identify true positives (correctly called variants), false positives 
(incorrectly called variants), and false negatives (missed variants) (Figure 5a). 

There are multiple reasons why companies or scientists use benchmarks, including evaluating 
DNA library preparation, sequencing, and bioinformatics methods. Sequencing technology developers 
might ensure a new instrument is working as expected, and clinical laboratories might ensure a targeted 
protocol is capturing all expected variants in clinically relevant regions.  In addition to testing library 
preparation and sequencing methods, the benchmarks are highly valuable to develop new 
computational methods to identify or filter genomic variants. Here, a scientist can download existing 
data from benchmark samples (sometimes even already mapped) or separately run their method on 
their own data set for the benchmark samples to measure both the fraction of variants that are re-
identified from the benchmark set (i.e. recall or sensitivity) and the number of extra variants identified 
in the benchmark regions but not matching the benchmark variants. The lower the number of false 
positives, the better the precision or specificity of the method. Of note, benchmark samples generally 
should have defined benchmark regions to enable identification of false positives. 

Ongoing advances in genome-wide variant calling required iterative refinement and 
development of the GIAB benchmarks. Developing and maintaining these benchmarks is 
unprecedented in the field of reference material and data development: novelty includes reference 
materials characterized for so-called nominal properties (the variants are the result of classification, 
most references are characterized for their quantitative attributes), and these are the first reference 
materials with more than 10^6 properties described (most have fewer than 10). To develop benchmarks 
for variant calling, the National Institute of Standards and Technology (NIST) formed the GIAB to 
convene a broad community from government, academia, commercial technology developers, and 
clinical laboratories. Complementary efforts have used family pedigree information119 and assemblies 
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of two effectively haploid cell lines.122 Similarly, the Sequencing and Quality Control Consortium 
(SEQC2) developed benchmarks for somatic variants.123–125 Each of these benchmarks has strengths 
and limitations for understanding different aspects of performance, as described below. 

Principles for benchmark set design 
GIAB has developed principles for designing and evaluating genomic benchmark sets. 

GIAB’s Reliable Identification of Errors (RIDE) evaluation process ensures its benchmarks reliably 
identify false positives and false negatives across a variety of methods (Figure 5b).126 Specifically, 
when GIAB develops a draft benchmark, the RIDE evaluation includes recruiting experts in a diverse 
set of methods from around the world to evaluate the utility of the benchmark for their particular 
callset. Each callset is compared against the draft benchmark, and a random set of potential false 
positives and false negatives from different categories are selected for manual curation.  The external 
experts visually curate aligned short, linked, and long read data, along with annotations of repeats, and 
determines whether the benchmark is correct on both alleles in the region, the particular callset is 
correct on both alleles in the region, or if it is unclear given current technologies.  They are asked to be 
critical of the benchmark, selecting unclear if the benchmark is not clearly supported by the data. Then, 
the NIST team that developed the benchmark re-curates any locations that were not determined to be 
correct in the benchmark and incorrect in the query.  Finally, the NIST and external experts come to a 
consensus about any sites with differing opinions.  All of these curations are made available with the 
benchmarks to transparently highlight limitations of the benchmark and particular errors or unclear 
regions. For variant benchmarks, it is critical that the benchmark accurately calls both haplotypes in the 
region surrounding any variants, including any nearby variants and variants in the same homopolymer 
or tandem repeat.  Otherwise, benchmarking tools may inaccurately identify false positives and false 
negatives.  As discussed in the next section, it is also important to choose appropriate benchmarking 
tools and parameters for a particular benchmark set, which is why GIAB selects robust benchmarking 
tools as part of the RIDE evaluation. 

Germline variant benchmarks 
Since GIAB was formed in 2012, it has released several versions of benchmarks for seven 

genomes. GIAB’s benchmarks use data from multiple sequencing technologies and bioinformatics 
methods, taking advantage of the strengths of each technology, ignoring technologies at genomic 
locations where they appear biased, and delineating benchmark regions to exclude regions that are 
biased in all current technologies. As sequencing technologies and variant calling methods have 
improved, GIAB benchmarks have grown to include more challenging variants and regions of the 
genome, from 77% of the autosomal GRCh37 bases in 2014,118 to 88% in 2016-2019114 and 94% in 
2020-2021. The latter versions also added two son-father-mother trios of Ashkenazi Jewish and Han 
Chinese ancestry, as well as benchmarks on GRCh38.  

Based on these benchmarks, PrecisionFDA and GIAB held two ‘Truth Challenges’ to inspire 
development of improved small variant callers and provide a baseline for ongoing improvements. The 
first challenge was held in 2016 before releasing the first benchmark for GIAB’s second sample, 
HG002.113  When comparing each submission to the v3.2 HG002 benchmark released after the 
challenge, it demonstrated that a variety of short-read based variant callers have accuracy >99.9% for 
SNVs and >99% for indels in the regions covered by the v3.2 GIAB benchmarks.  However, many 
challenging variants and regions were excluded from this benchmark, and concordance between two of 
the highest performing variant callers outside the v3.2 benchmark regions was <80% for SNVs and 
indels.113 With the advent of long reads with >99% accuracy, GIAB developed a new small variant 
benchmark covering 76 million base pairs of segmental duplications and the highly polymorphic HLA 
gene region115,126 which was used in the 2020 PrecisionFDA Truth Challenge V2.1 Results from the 
Truth Challenge V2 demonstrated substantial improvements in sequencing technologies, variant calling 
methods, and benchmark sets. The most accurate submissions from the first challenge had substantially 
lower accuracy with respect to the new v4.2.1 benchmark, with SNV accuracy decreasing as much as 
10-fold.1  Still, v4.2.1 excludes 8% of the sequence in GRCh38, in addition to the 7% of sequence 
missing from GRCh38, and variants are likely enriched in the remaining sequence. This result 
highlights the importance of understanding the limitations of any benchmark, particularly any 
challenging regions that are not included in the benchmark.  

In complementary benchmark sets, the Illumina Platinum Genomes and Real Time Genomics 
benchmarks used a 17-member, 3-generation family pedigree to develop phased benchmark sets of 
variants for the mother and father.119,127 In this approach, the 11 grandchildren enable robust phasing of 
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the variants in their mother and father, and variants that are not inherited as expected according to this 
phasing are removed as potential errors. This fully phased set of variants has also been widely used to 
benchmark phasing methods. The mother (NA12878) is the same as the pilot genome from GIAB, 
enabling cross-comparisons to validate and improve each benchmark. In general, these different 
approaches to forming benchmarks are highly concordant inside their benchmark regions, with ~4 
differences per million matching variants after excluding differences near the edge of the Platinum 
Genomes benchmark regions.114 An advantage of the Platinum Genomes benchmark is that it contained 
substantially more variants than the short read-based GIAB benchmarks available at the time.  
However, it had some limitations around complex variants, particularly in tandem repeats, due to its 
fragmented benchmark regions.114  In addition, because it relied on short reads, mapping errors caused 
some inaccurate variants in segmental duplications even though they were phased and inherited as 
expected.126   

The first benchmark to use long reads used assemblies of two effectively haploid hydatidiform 
mole cell lines (CHM1 and CHM13).122 These two assemblies were then aligned to the reference to call 
variants together as a synthetic diploid benchmark, covering some regions difficult to map with short 
reads.  Because highly accurate long reads were not yet available, small indels could not be 
benchmarked due to small errors in the assembly, and some segmental duplications could not yet be 
assembled.  Nevertheless, this served as an important benchmark for more challenging variants, 
particularly before the recent advent of diploid assemblies based on highly accurate long reads, and it 
highlighted an important limitation of existing benchmarks excluding more difficult regions. 

For structural variants, benchmarks are less mature, but several resources have been 
developed. First, the Parliament method was developed to integrate SV calls from multiple 
technologies and variant callers.128  The HGSVC performed a focused analysis of a subset of the 1000 
Genomes samples, developing an initial resource of phased SVs for 3 trios,52 and later a resource of 
SVs for 15 trios,54 both of which can be useful for testing sensitivity of variant callers. Another 
resource was developed for small variants and structural variants using the unique shotgun Sanger 
sequencing dataset available for HuRef.129,130 The GIAB Consortium developed a set of benchmark 
insertions and deletions larger than 50 bp along with benchmark regions that exclude complex SVs in 
HG002, making it the first SV benchmark to enable assessment of both sensitivity and precision.116 
Still, multiple challenges remain, especially for more complex SVs and when comparing SVs across 
many samples.  

Recent efforts can produce SVs from thousands to millions of genomes with short- or long-
reads. One challenge is to accurately identify SVs across many samples, particularly because the 
number of false calls can be amplified by the sample number. Some methods achieve this by jointly 
analyzing all samples simultaneously per region,131,132 while other approaches revisit each SV per 
sample individually, reconciling different SV representations during the merging.133–136 Another 
approach focuses on building a database of discordant reads first to enable exact querying of SV across 
the samples.137 For both benchmarking and population-scale analyses, significant challenges remain for 
comparing different representations of complex SVs, especially when combining different sequencing 
technologies or SV calling methods.  

Many of these benchmarks did not include variants on chrX and chrY in male samples 
because they are effectively haploid (except for the pseudoautosomal regions). Chromosome Y is 
especially challenging due to its high fraction of satellite and segmental duplications, so GIAB and T2T 
currently have a focused effort to develop a benchmark from the first complete assemblies of these 
chromosomes in HG002, as well as from complete assemblies of the entire genome.6,138 

Somatic variant benchmarks 
Somatic variants are those that arise after conception, and are often relevant in the context of 

understanding cancer. Benchmarks for tumor genomes are more challenging and currently have 
substantial limitations, but some initial benchmarks are now published. A DREAM challenge was 
organized for somatic variant detection, using a tool that modifies real sequencing data to simulate 
somatic variants.121,139 Additional tools have been developed to simulate somatic variants of different 
types,140–143 which have been recently reviewed.144 Alternatively, DNA from normal and/or tumor cell 
lines like GIAB can be mixed to simulate somatic mutations, but some variant callers filter these 
germline mutations.123 Synthetic DNA can also be added to normal cell lines to mimic a smaller 
number of mutations.145 Griffith et al. published analyses of deep sequencing data from an acute 
myeloid leukemia (AML) patient sample, which can be used to benchmark bioinformatics tools though 
a cell line is not available.146 A unique benchmark dataset used cell lineage information from cell 
sorting to develop a benchmark from a cell line that accumulates somatic mutations.147 Several efforts 
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have developed multiple sequencing datasets and benchmarks for paired tumor and normal cell lines 
from the same individual, including COLO-829/COLO-829BL with 35,543 SNVs, 446 indels, and 
6,500 genes with copy number changes.148  The SEQC-II somatic working group recently published 
extensive interlaboratory sequencing data and benchmarks for another tumor–normal cell line pair with 
37,398 SNVs and 1,754 indels assigned as high-confidence somatic mutations.124,125 While existing 
studies provide important information, no current benchmark tumor–normal cell line pairs are explicitly 
consented for public release of genomic data, and development of these is a critical need for future 
somatic benchmarks (see Box 2). Existing somatic benchmarks also generally include fewer 
challenging regions than germline benchmarks, so ongoing work is needed to benchmark somatic 
variants in repetitive regions. 
 

Robust variant comparison tools for benchmarking 
Although reliable benchmark sets have been important in advancing our understanding of 

performance of variant callers, appropriate tools to compare against the benchmark are essential to 
reliable use of these benchmarks.  To develop best practices for benchmarking germline small variants, 
the GA4GH Benchmarking Team brought together benchmark set developers, benchmarking tool 
developers, and clinical and other bioinformatics users of benchmarking tools. This team standardized 
definitions for performance metrics, optimized benchmarking tools to account for different 
representations of variants, and developed methods to stratify performance by variant type and genome 
context. This team developed the hap.py framework with the vcfeval engine as best practice for 
comparing germline SNVs and small indels. This framework compares the query VCF (variants from 
the method being evaluated) to the benchmark VCF within the benchmark regions. We point the reader 
to the GA4GH best practices paper for benchmarking small variants for details, including its 
Supplementary Table 1 summarizing best practices,113 as well as the recent precisionFDA Truth 
Challenge V2 for an example implementation of these best practices.1  

 Several outstanding challenges remain for benchmarking complex variants, SVs, segmental 
duplications, and satellites. No standards exist for representing many types of complex variants, so 
sophisticated benchmarking tools have been developed to reconcile differing representations of small 
variant calls in a query and benchmark VCF, as long as the variants are called completely accurately in 
the region (Figure 2b).  If any part of the variant is filtered, missed, or incorrectly genotyped, 
particularly in homopolymers and tandem repeats, then other parts of the variant may be counted as 
errors if they are represented differently from the benchmark.20  

Structural variants pose even more challenges for benchmarking due to imprecision in 
detection and lack of standard representations of the numerous types of complex structural variants that 
occur. In addition, accuracy of SVs can be measured at different stringencies; e.g., least stringent would 
require that only SV type and rough location are correct (e.g. SURVIVOR149), and most stringent might 
require that the exact sequence change is correct and that it is annotated correctly (e.g. Truvari150). 
Isolated insertions and deletions in non-repetitive sequences are generally the easiest to detect and to 
benchmark, but these make up only a small fraction of all SVs.54,116  Because the majority of SVs are 
located in tandem repeats, methods such as Truvari are designed to compare not just their reference 
location (start and end) but further their length (i.e. the insertion can have a larger length than the 
reference location) and their sequence content.150 Although these complex SVs can increasingly be 
resolved accurately by phased, long-read assemblies, even the most sophisticated SV benchmarking 
tools such as truvari and hap-eval are just starting to be able to compare different representations if they 
are not represented as a single, isolated insertion or deletion. For example, a recent GIAB benchmark 
for challenging medically relevant genes excluded genes like CR1 and LPA that were accurately 
resolved because the variation they contained was too complex for current benchmarking tools.20 The 
kringle repeats in the gene LPA can either be represented as copy number variants, or as one or more 
large insertions or deletions and small variants. In addition, SV callers may represent tandem 
duplications as insertions (SVTYPE=INS), as duplications (SVTYPE=DUP), or even as breakends 
(SVTYPE=BND) or translocations (SVTYPE=TRA) in VCF. The variant representation often depends 
both on the mapping methods and the variant caller used. Other challenges in variant representation 
occur around gaps in the reference (Figure 2d). Complex variants are increasingly characterized, even 
in large short read studies,34 but robust benchmarking of these complex variants is an outstanding 
challenge that will need new standards for sequence alignment, variant representation, and comparison, 
possibly building on pangenome alignments.  

Segmental duplications are increasingly being resolved accurately by phased, long-read 
assemblies, and these pose additional challenges in variant representation and benchmarking due to 
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their structural and copy number variation (e.g., Figure 2c). Current benchmark sets and benchmarking 
tools enable comparisons when the sample matches the reference in copy number, but new 
benchmarking tools and standards for representation need to be developed to benchmark the small and 
structural variants that occur in additional copies of segmental duplications that are not in the reference. 
Graph-based and/or assembly-based representations of these regions may provide a path towards 
variant calling and benchmarking variants. 

When benchmarking, variant call accuracy can differ by several orders of magnitude 
depending on the type of variant and genome context. GA4GH and GIAB provide methods for 
stratifying performance by variant type and in the different types of repetitive sequences that occur in 
the genome (see examples in Figure 2). These tools also indicate variant types and regions with a high 
fraction of not assessed variants, i.e., variants that are not included in the benchmark regions.  These 
variants outside the benchmark regions tend to be more challenging, so that variant error rates in the 
whole genome will be higher than the rates estimated from the benchmark,113 and performance metrics 
can vary by an order of magnitude between benchmarks that are more or less conservative.1,122  As 
benchmarks include increasingly challenging regions of the genome, stratifying performance by 
genome context and variant type becomes increasingly important for interpreting the results and 
powerful for understanding the strengths and weaknesses of any variant calling method. Stratifying 
performance can also help predict potential false positives or variants needing further confirmation in 
clinical samples. Measuring how false negatives are associated with genomic repeats can also help 
predict clinically relevant variants that might be missed by a method.7 In addition to improvements in 
accuracy, there have also been efforts to improve the speed of variant calling methods. These have been 
reviewed recently in ref151. 

Visualizing and curating variants to understand errors 
Visualizing and curating sequencing data from multiple technologies at and near challenging 

variants is often particularly valuable to understand differences in variant calls between methods or 
false positives or false negatives relative to a benchmark. Sometimes, this curation helps understand 
why a method has some types of errors, or might show that the benchmark is incorrect or questionable. 
This visualization process is not currently available in a single application that provides the utilities 
described by Ben Schneiderman in his seminal work with the mantra “Overview first, zoom and filter, 
then details on demand”.152 Currently, a workflow requires using a number of different software tools 
with visualization typically occurring primarily for ‘details on demand’. Specifically, hap.py and 
vcfeval provide an ‘Overview first’ of variants identified as matching or not-matching a benchmark 
(Figure 5b). The GA4GH/GIAB stratification regions provide ‘zoom and filter’ to specific ‘clustering 
of errors’ correlated with genome context, such as different repetitive region types (Figure 5c). Finally, 
a genomics viewer program such as Integrative Genomics Viewer (IGV) can provide ‘details on 
demand’ to inspect read alignments along with other sequencing or genomic features including repeats 
that are not apparent from stratification to determine sources of possible bias or error (Figure 5d). 
Within the ‘details on demand’ step, the current visualization workflow from GIAB starts at the 
window size default for IGV of 40 bp around a variant, or sufficient to view an entire homopolymer or 
tandem repeat, if applicable. After identifying any local details, we zoom out to approximately 10 kbp 
to inspect larger sequence contexts such as segmental duplications, nearby structural variants, or other 
notable features that might impact read mapping, such as SVs. Visualizing read alignments around a 
patient’s clinically important variants was also recommended in the Association for Molecular 
Pathology (AMP) bioinformatics guidelines.36 Newer tools enable faster curation of SVs.153,154 We 
expect visualization of the evidence for variants will remain particularly important for complex variants 
and challenging regions as methods access these areas of the genome.17,155 We show some examples of 
visualizing complex variants in Figure 2, illustrating how ongoing work is needed to call and 
benchmark the most complex variants. 

Conclusions and perspectives 
The best methods now produce highly accurate variant calls for much of the human genome, but 
variant calling is far from being a fully solved problem. It will continue to be an area of active 
development as new sequencing technologies and analysis methods are enabling characterization of the 
most challenging variants and regions of the genome for the first time. The Telomere-to-Telomere 
Consortium’s assembly of the first complete human genome opens the door to analyzing human 
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variation in extremely repetitive regions of the genome like highly identical segmental duplications and 
satellite DNA in the centromeres. Pangenome alignments of assemblies from the Human Pangenome 
Reference Consortium highlight complex structural changes that are excluded from current 
benchmarks, including in known medically relevant gene families like CYP2D6, RHCE, DAZ, LPA, 
and HLA.17,101 To translate these developments to broad research and clinical applications, innovations 
are needed in many areas including sequencing technologies, assembly and variant calling methods, 
variant representation, benchmarking and variant comparison tools, and expanded benchmark sets. As 
methods push into these challenging regions, it will be increasingly important to stratify performance 
metrics by genome context and variant type.  

We have noted above the orders-of-magnitude difference of performance metrics depending 
on composition of the benchmark set, genome context, and variant type;1,122 advances in applications 
will depend on trustworthy benchmarking. While methods achieve >99% accuracy in existing 
benchmark regions, benchmarks exclude about 15% of the genome (when counting the 7% of sequence 
added in the newly completed human genome sequence), and benchmarks likely exclude even >15% of 
all variants. Every benchmark set has limitations, and understanding these limitations is critical. 
Variant benchmarks tend to lag behind the first methods to call a class of difficult genomic regions, 
until these methods are tested and used to expand the benchmark. Current benchmarks exclude many 
long homopolymers, tandem repeats, segmental duplications, and satellite DNA, or some types of 
variants, such as large indels or structural variants (e.g. rearrangements). When challenging regions and 
variants are excluded, performance metrics for these cannot be estimated, and performance metrics are 
generally overestimated when looking at aggregate statistics. The most useful benchmarks are formed 
using high-coverage data from multiple technologies not all used by the method being tested. With the 
advent of complete genome assemblies from high coverage long-read data, we are poised to be able to 
benchmark even the most challenging variants and regions. However, even benchmarks formed from 
perfect assemblies will require new methods and standards for aligning assemblies to a reference, and 
comparing and representing complex variants. For example, current work in GIAB includes developing 
new benchmark sets and benchmarking tools for tandem repeats, as well as more comprehensive 
benchmarks from complete human genome assemblies with the T2T Consortium.  
 Solutions for remaining challenges in variant analysis and representation could follow a 
number of different trajectories in this new age of complete human genome sequences. These options 
include: continuing to align reads to a common reference such as T2T-CHM13 or GRCh38 and call 
variants; aligning phased assemblies to a common reference to call variants; aligning reads to a 
population-specific reference to call variants; aligning reads to a graph-based pangenome reference; 
progressively aligning reads to many reference genomes with ‘reference flow’; or aligning assemblies 
to a graph-based pangenome reference. We expect each of these approaches and yet-to-be-developed 
approaches will be active areas of research, and that new benchmarking approaches will be needed to 
evaluate these methods, since they have the biggest benefits for the most challenging variants and 
regions of the genome. Importantantly, benchmarks representing challenging regions and variants 
across different ancestries will be needed to assess the strengths and weaknesses of each approach. 
Even if we have perfectly assembled genomes from every individual, standardized methods and 
formats will need to be developed to align these assemblies to call variants and/or catalog common and 
rare haplotypes associated with disease or function.  

Pangenome tools are being built to translate variants between pangenomes and linear 
reference genomes, which should help enable research studies and clinical laboratories to use 
innovations in pangenome references, even if these pangenomes continue to evolve. However, some of 
the most complex regions and variants in the large repeats discussed above are likely to only be 
represented in new formats such as a graph, and may even be best envisioned as something other than 
variants with respect to a reference genome. While these complex variants affect a small fraction of the 
genome, they affect known medically relevant regions and new important regions are likely to be 
discovered now that these regions can be accurately sequenced. Sequencing technologies are likely to 
continue to advance, including cheaper and more accurate short and long reads, along with analysis 
methods to characterize and benchmark increasingly difficult genomic regions and variants at scale. As 
new sequencing and analysis methods are developed, a positive feedback loop exists between 
technological innovation and benchmarking. Technological advances in sequencing and bioinformatics 
enable improved benchmark sets and improved benchmarking (tools and sets) promote technology 
development and clinical translation - a cycle we expect to continue for years to come. 
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Table 1: Comparison of variant calling process from mapping, graph reference, and 
diploid assembly 

 Variant Calling Process 

Input Sample 
Data 

Raw/ preprocessed WGS or targeted sequencing reads De novo Assembly 

Reference Type Linear Graph/ Pangenome Linear or Pangenome 

Sequence 
Alignment 

Read-Reference Genome Alignment (Mapping) Assembly -Reference 
Genome Alignment 

Example Tools bwa-mem156 
 

Seven bridges GRAF104 
Dragen graph variant 
calling pipeline1 
Giraffe107 

minimap270 
mummer157 

Variant 
Detection 

Variants identified based on read support for reference 
and alternate base 

Variants identified based on 
reference-assembly 
alignment, including 
sequence differences and 
large structural changes 

Example Tools GATK82 
DeepVariant81 

Seven bridges GRAF104 
Dragen 
giraffe-DV107 
GraphTyper2158 

dipcall122 
PAV54 
mummer157 
SVanalyzer (SV calling)116 

Variant 
Filtering 

Candidate variants filtered based on input data support and known biases associated 
with input data type. Typically less filtering for assembly-based methods. 

Strengths 1. Works with short or 
long reads 

2. Less compute intensive 
3. High accuracy for easy 

regions 
4. Mature Infrastructure 
5. Extensive reference 

annotations 

1. Works with short or long 
reads 

2. High accuracy for easy 
regions and some 
structural variants 

1. Phased small variant and 
structural variant calls (for 
diploid assemblies) 

2. Ability to call small 
variants and complex 
structural variants in very 
difficult regions, though 
still limited by insufficient 
standards for representing 
complex variants and 
CNVs 

Limitations 1. Low accuracy for 
difficult regions of the 
genome 

2. Limited accuracy for 
structural variants 

1. More compute intensive 
2. Infrastructure and tools 

still being developed 
3. No standard reference 

graph genome 
4. Information may be lost 

when translating variants 
to a linear reference 
genome 

1. Requires long reads 
2. More compute intensive 
3. Variant calling accuracy 

dependent on assembly 
quality, particularly for 
homopolymers and 
tandem repeats 

4. Currently worse in highly 
homozygous regions 
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Figure Legends

 
Figure 1: Challenges with mapping and variant calling in simple repetitive regions. (a) Examples of homopolymers and tandem 
repeats, which are a common source of systematic sequencing and mapping errors, and frequently cause structural variants. (b) 
Systematic indel errors occur in homopolymers and STRs, usually with one extra or one missing copy of the repeat unit. In this 
example, the first read has one missing A and the last read has one extra A. This happens most in methods like 454/Ion 
Torrent/Ultima and ONT, often in raw PacBio, somewhat in PacBio HiFi and PCR-based short reads, and rarely except in very 
long homopolymers for PCR-free sequencing by synthesis like Illumina and Element. (c) Systematic errors occur in C and G 
homopolymers for Illumina due to sequencing chemistry biases. The SNV and indel errors tend to happen after the 
homopolymer ends. (d) X represents the tandem repeat unit, which may be two to hundreds of base pairs in size and is repeated 
many times, though there frequently are some differences between units, denoted as Y. When tandem repeats are longer than the 
read length, reads map ambiguously to the repeat sequence, so traditional variant callers miss true variants and sometimes call 
false positives. For example, because the Y sequence is only in the reads and not in the reference, short read mappers can 
ambiguously map sequencing containing Y multiple places within the tandem repeat, resulting in false positive and/or false 
negative variant calls. In contrast, if long reads traverse the entire repeat and flanking sequence, the variants can be accurately 
called. Although long reads sometimes have systematic errors at tandem repeats, these can often be averaged to the true variant 
call because reads can be partitioned by haplotype (except in highly homozygous regions or where the long reads are very 
noisy). (e) Mappability of sequencing reads based on the relationship between read length and repeat length along with read 
accuracy and repeat identity, assuming there are no variants. Variants, particularly large or complex variants, can further hinder 
accurate mapping, but pangenome references can improve mapping for these variants.  
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Figure 2: Remaining challenges in representing and benchmarking complex variants due to lack of reliable benchmarks and/or 
lack of comparison tools for benchmarking. (a) Diagram showing vertically and horizontally complex variants, where nearby 
variants occur on opposite haplotypes or the same haplotype, respectively. (b) Small horizontally complex variant that is 
represented as an adjacent insertion and deletion in the assembly alignment and as SNVs and 1 bp deletions in the HiFi 
alignment. Comparing different representations of variants requires sophisticated benchmarking tools like hap.py and vcfeval 
for small variants, or truvari for larger variants. (c) Duplication in HG002 relative to reference in KIR region causes dense false 
heterozygous variants, as well as coverage frequently higher than the average coverage (horizontal dashed lines) due to reads 
incorrectly mapping from the duplicated sequence (see also Figure 3b). (d) Differing alignments around a gap in the GRCh38 
reference in the C1R gene, where short reads do not align to the gap but assemblies and long reads align across the gap with 
deletions and many SNVs. Benchmarking tools currently do not work robustly in these regions. (e) When aligning the chrX 
HSat region of HG002 chrX to CHM13 chrX, the assembly is aligned to the reference very differently from HiFi reads with 
standard mapping methods, where HiFi reads have highly variable coverage, resulting in highly discordant variant calls (vertical 
blue bars). 
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Figure 3: Mapping challenges in segmental duplications and large structural variants. (a) Shows a highly identical segmental 
duplication that is larger than short or highly accurate long reads but shorter than noisier ultralong reads. In this case, the 
segmental duplications are close to each other (tandem duplications), but they can also be distant. Short reads generally cannot 
map reads or call variants with confidence except very near paralogous sequence variants (PSVs, green, marked by vertical 
lines) that differentiate the duplicated sequence. False positives result from reads mapped to the other copy (different color) of 
the segmental duplication. Sophisticated long read mappers can use nearby PSVs to align the variant to the correct copy of the 
segmental duplication. Ultralong reads can also correctly align across the segmental duplication and flanking sequences despite 
their higher error rate, but sophisticated variant calling methods are needed to distinguish true variants from sequencing errors. 
(b) A large structural variation, specifically a tandem duplication, is in the individual but not the reference. When short or long 
reads are shorter than or about the same size as the duplicated region, reads from the duplicated sequence are often mapped to 
the existing sequence in the reference, resulting in higher-than-normal coverage and denser variants due to PSVs in the new 
duplication. When long read assemblies or ultralong reads traverse the duplication and flanking sequences, then the duplicated 
sequence can be detected as an insertion of sequence similar, but not identical, to the reference sequence. (c) Gene conversion, 
where the PSVs in the second copy of the segmental duplication replace the sequence of the first copy. This typically results in 
no short reads mapping confidently to the first copy of the segmental duplication, since there are no PSVs from it. Long reads 
that are shorter than the duplication may map confidently to the second copy because they do not contain the PSVs, even if they 
actually originate from the first copy (red reads). When long read assemblies or ultralong reads traverse the entire region and 
flanking sequences, then the variants may be detected accurately in the entire region. 
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Figure 4: Diagram of four variant calling workflows. Workflows are distinguished by read alignment method, read 
mapping (top) vs. de novo assembly (bottom), and by reference genome structure, linear vs. pangenome. Raw 
reads or a de novo assembly are mapped to the linear or pangenome reference, in this case depicted as a graph. The 
alignments are then used for variant calling and subsequent filtering. Raw reads are from two haplotypes and align 
to genome segments A, B, and C. Segment B is present in the pangenome but not the linear reference. In this case, 
the large insertion of segment B is missed by reads mapping to the linear reference because the reads from segment 
B remain unmapped. 

 
Figure 5: Considerations when generating and using benchmark sets for evaluating variant calling methods. (a) Primary 
components of a benchmark set, benchmark variants and benchmark regions, and their usage. (b) Diagram of the RIDE (reliable 
identification of errors) principle for determining if a benchmark is fit for purpose. (c) Benchmarking variant calls using genome 
stratifications to provide within genomic context variant callset performance. (d) Visualization and curation of benchmarking 
results, with three layers of analysis 1) high-level overview - overall summary statistics, 2) zoom and filter - performance in 
stratifications representing different types of genomic repeats, and 3) details on demand - visualization of aligned read support 
for variant calls, typically in a genome browser like IGV. 
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Box 1: Transparency for Variant Detection Methods and Pangenome Construction 
It is increasingly important to summarize attributes of variant detection methods using 
transparency techniques such as Model Cards, Transparency Notes, and AI360.159 Historically, 
variant detection methods relied on classic statistical models, but they increasingly rely on 
models trained using machine learning techniques. Benchmarking allows for comparison 
between variant calling methods based on performance metrics, including stratifying by 
genomic context to understand strengths and weaknesses. A complementary approach to 
compare methods is evaluating the algorithmic performance and modelling approach.160 
Modelling inherently relies on assumptions about the data and estimated function 
characteristics as well as hyperparameter selection, which impacts results of machine learning 
solutions. We expect that adopting prominent transparency approaches from the machine 
learning community could enable improved comparison of variant detection models. We 
propose that developers of both statistical and machine learning-based variant detection 
methods use these transparency techniques to explicitly summarize characteristics and 
limitations of the training and test data, model attributes, hyperparameter search space explored, 
known biases or limitations of the method, data used in graph-based reference genomes, and 
expected use cases. Making transparent both how benchmark sets are used and attributes of the 
model helps users determine the best approach for their application. Similarly, transparency for 
samples used in pangenome graph construction as well as sequencing data and parameters used 
to generate input haplotypes will be increasingly important moving forward. For example, 
samples used for benchmarking should be excluded from the graph to avoid biases. A minimum 
communication method such as the discussed transparency techniques will mitigate potential 
issues regarding interpretation and reproducibility of resulting variants when moving from a 
linear reference to pangenome graphs.  
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Box 2: Importance of broad consent for benchmark samples 
Guidelines regarding informed consent for sharing human genomic data have 
evolved over time as potential risks are understood, and explicit consent for 
broad public sharing of genome data is particularly important for benchmark 
samples that will be widely used by the community. The family trios who 
provided samples characterized by the Genome in a Bottle Consortium (GIAB) 
are broadly consented under the Personal Genome Project for genome data 
sharing and commercial distribution of products based on their cell lines.  This 
broad consent has enabled a number of applications, including adding spike-in 
DNA to test accuracy for particularly challenging variants and somatic variants, 
as well as mimicking clinical samples such as formalin-fixed paraffin-embedded 
(FFPE) and cell-free and circulating tumor DNA.  Other benchmark samples, 
such as NA12878 (GIAB’s pilot genome and Platinum Genomes sample) were 
consented for public release of genome data but not for commercial 
redistribution. The 11 children of NA12878 used in the Platinum Genomes 
analysis119 were not consented for public release of genomic data, so their data 
are in the restricted access database dbGaP, making them less accessible as 
benchmark data.  The cell lines used in the synthetic diploid sample are not in a 
public repository, so the existing public data can be used to benchmark 
bioinformatics pipelines, but limited access hinders experimental work to  
benchmark a laboratory’s particular sequencing method. Similarly, data from the 
COLO829/COLO829BL benchmark study from Craig et al.148 and the deeply 
sequenced WashU AML cohort146 were deposited in the dbGaP restricted access 
repository due to consent. No current benchmark tumor–normal cell lines are 
explicitly consented for public genome sequence release, so new cell lines are 
needed for broad use as genomic reference samples. 

Glossary 
 
Acrocentric arms: short arms of the human chromosomes 13, 14, 15, 21 and 22, known to be enriched 
with satellite DNA, segmental duplication, and transposable element insertions.  Contain long tracts of 
ribosomal DNAs.  Highly similar in repeat structure and sequence content. 
 
Admixed ancestry: individuals with ancestors coming from multiple populations that had previously 
diverged 
 
Benchmarking variants: the process of comparing a variant callset (the query callset) to the benchmark 
callset in the benchmark regions, in order to identify true positives, false positives, and false negatives 
 
Benchmark set: the set of variants and regions defined to reliably identify false positives and false 
negatives, also sometimes called high-confidence, truth, baseline, and gold standard. 
 
Centromere: a genomic site that maps the location of kinetochore assembly, typically marked as a 
primary constriction on a chromosome 
 
Circular consensus sequencing (CCS): sequencing method in which a single molecule is sequenced 
multiple times to improve accuracy (e.g., in PacBio HiFi sequencing). 
 
De novo assembly: Analysis of DNA reads to produce an individual’s genome sequence without 
mapping individual reads to a reference genome. Increasingly, human genome assemblies can be 
haplotype-resolved (aka phased), such that separate assembled sequences are produced for the copies of 
each chromosome coming from the mother and father. 
 
Genome in a Bottle Consortium (GIAB): A public-private-academic consortium formed by the 
National Institute of Standards and Technology in 2013 to develop authoritatively characterized 
genomes that can be used to benchmark human genome variant calls. 
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Germline variant: a variant attributed to an organism’s initial sequence at conception, and typically 
found in all the cells in an individual 
 
Haplotype: a region of DNA containing multiple variants (or alleles) that frequently inherited together 
 
Indels: variants that are insertions and deletions of sequence, typically 1 to 49 base pairs in size. 
 
k-mer: a sequence of length k. Unique k-mers in the genome can be used to assist in read mapping 
 
Long interspersed nuclear elements (LINEs): a family of non-LTR transposons, with on the order of 
100,000 truncated copies and a few thousand full-length 6000 base-pair copies in the human genome, 
causing mapping challenges  
 
Long Terminal Repeats (LTRs): pairs of several hundred bp sequences that are transposons and 
comprise about 8 % of the human genome, causing mapping challenges 
 
N50: A summary measure of read length distribution, where 50 % of the bases in the reads are in reads 
longer than the N50 value. Similarly, for de novo assemblies, 50 % of the bases in the assembled 
contigs are in contigs longer than the N50 value. 
 
Pangenome reference: A collection of many genomes used as a reference (sometimes, but not always, 
represented as a graph) in addition to the standard linear genome reference assemblies. 
 
Pericentromeric regions: Typically multi-megabase sized regions directly adjacent to centromeres 
which are enriched with satellite DNA, segmental duplications, and transposable elements.  These 
regions are associated with darkly staining constitutive heterochromatin 
 
Phasing: process of assigning heterozygous variants to the same haplotype (e.g., the maternal copy of 
the chromosome contains both variants) or to opposite haplotypes (e.g., one variant is on the maternal 
copy and the other is on the paternal copy) 
 
Precision: fraction of query variants in the benchmark regions that match the benchmark variants, or 
true positives/(true positives+false positives) 
 
Read: a small sequence fragment from a larger molecule generated by a given sequencing technology; 
the length can range from 100 bp to >1 million bp depending on the sequencing method 
 
Read Mapping: aligning a given read to a reference 
 
Recall: fraction of benchmark variants that are matched by query variants, or true positives/(true 
positives+false negatives) 
 
Reference Genome Assembly: A haploid genome assembly to which sequencing reads are mapped and 
variants are called. The current versions in common use are GRCh37/hg19, GRCh38/hg38, and T2T-
CHM13. 
 
Reference Material: a material that is sufficiently stable (over time) and homogeneous (between vials) 
for its applications. For example, NIST’s genomic reference materials are extensively characterized to 
develop benchmark variants and regions to reliable identify false positives and false negatives. 
 
Scaffolding: process of connecting assembled contigs even when the intervening sequence is unknown 
 
Satellite DNA: Highly repetitive regions that originally were defined by their density due to a unique 
composition of bases A, C, G, and T.  Often characterized by tandem repeats organized in very long 
and are embedded in regions known to be enriched in silent, constitutive heterochromatin. 
 
Segmental Duplications: long DNA sequences that are highly similar to each other in the reference 
genome assembly, typically at least 1000 base-pairs in length and not a transposable element (LINE, 
SINE, or LTR), tandem repeat, or satellite DNA. There is some overlap between VNTR and segmental 
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duplication annotations, particularly for tandem repeat unit sizes longer than 1,000 bp as occurs in the 
medically-relevant genes LPA and CR1. 
 
Sequencing Quality Control Consortium (SEQC): Consortium formed by the FDA to compare 
sequencing methods and understand sources of variability 
 
Short Tandem Repeats (STRs): many consecutive repeats of 2 to 6 base-pair sequence units. 
 
Short interspersed nuclear elements (SINEs): short sequences 100 to 600 base-pairs in length that are 
repeated many times in the genome. The most common type, Alus, are about 300 base-pairs. 
 
Single nucleotide variants (SNVs): Variants that are single base substitutions, also commonly called 
single nucleotide polymorphisms (SNPs). 
 
Somatic Variant: a variant attributed to a mutation after conception; only some cells in the organism 
will have this variant, most frequently detected in cancer tissues or blood 
 
Structural Variants (SVs): typically defined as variants at least 50 base-pairs in size. Variants smaller 
than 50 base-pairs are the primary focus of this review 
 
Variable Number Tandem Repeats (VNTRs): many consecutive repeats of >6 base-pair sequence units 
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