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A B S T R A C T

An accurate multiclass classification strategy is crucial to interpreting antibody tests. However, traditional
methods based on confidence intervals or receiver operating characteristics lack clear extensions to settings
with more than two classes. We address this problem by developing a multiclass classification based on prob-
abilistic modeling and optimal decision theory that minimizes the convex combination of false classification
rates. The classification process is challenging when the relative fraction of the population in each class, or
generalized prevalence, is unknown. Thus, we also develop a method for estimating the generalized prevalence
of test data that is independent of classification of the test data. We validate our approach on serological data
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naïve, previously infected, and vaccinated
classes. Synthetic data are used to demonstrate that (i) prevalence estimates are unbiased and converge to true
values and (ii) our procedure applies to arbitrary measurement dimensions. In contrast to the binary problem,
the multiclass setting offers wide-reaching utility as the most general framework and provides new insight into
prevalence estimation best practices.
1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) pandemic has highlighted the importance of accurate classification
of antibody test results. Most work has focused on labeling data as
previously infected (seropositive) or naïve. Due to the deployment
of SARS-CoV-2 vaccines in late 2020, there is a clear need for a
classification scheme that correctly distinguishes between naïve, pre-
viously infected, and uninfected but vaccinated individuals. However,
the traditional diagnostic classification methods of confidence intervals
and receiver operating characteristics have no obvious extensions to a
multiclass setting.

Current multiclass applications in diagnostic classification are
mostly limited to supervised learning and discriminant analysis (DA)
and often do not address the central role of mathematical model-
ing in diagnostics. Example studies in the field of machine learning
include the application of support-vector machines to automatically
sort endomysial autoantibody tests of celiac disease into one of four
classes [1], and another that trained deep neural networks to label
resting-state functional magnetic resonance imaging (MRI) results with
one of six Alzheimer’s disease state [2]. Some research (e.g., see Li
et al. [3]) suggests DA approaches may be preferable to machine
learning for multiclass classification. One example project used linear
DA (LDA) to classify echocardiogram signals into five groups related
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to cardiac arrhythmia [4]. Some studies use DA and machine learning
in combination. One obtained intermediate scores by applying LDA to
multimodal data and then used an extreme learning machine-based
decision tree to classify these measurements into three or four classes
of Alzheimer’s stages [5].

However, both supervised learning and common implementations
of DA such as LDA and quadratic DA (QDA) may not accurately model
training populations or account for the role of prevalence, both of
which should inform the classification procedure. In contrast, modeling
can overcome these limitations. Binary (two class) examples include
two-dimensional (2D) modeling of antigen targets coupled with optimal
decision theory [6], statistical modeling applied to either antibody or
viral-load tests [7], and an approach to the time-dependent problem for
antibody measurements [8]. However, none of these works discussed
multiclass extensions.

This paper uses mathematical modeling to fully address the task
of multiclass classification in the context of diagnostic testing. We
begin by showing that the notion of generalized prevalence–the relative
fraction of the population in each class–is fundamental for defining
our objective function, the convex combination of false classification
rates (Section 3). Minimization thereof yields optimal classification.
Interestingly, we show that these prevalences can be computed without
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Fig. 1. Illustration of classification domains 𝐷1 , 𝐷2, and 𝐷3 in which the sets of equal
probability of a measurement belonging to two or more classes are shown as lines
separating the optimal regions.

classification by solving a linear system. We validate our methods
using a SARS-CoV-2 serological data set with naïve, previously infected,
and vaccinated classes [9,10]1 (Section 4). We then computationally
validate the convergence of generalized prevalence estimates to the
true values in mean square and illustrate a generalization to 2D data
(Section 5). Finally, the discussion includes further analysis of preva-
lence estimation, connections and comparison to DA, extensions, and
limitations (Section 6).

2. Notation

This work combines set and measure theory with applied diagnos-
tics; readers will likely not be experts in both. In order for the ideas
of this paper to be readily implemented by diagnostics experts and
the applications understood by mathematicians, we provide baseline
terminology from both fields.

2.1. Definitions from applied diagnostics

• The naïve class comprises individuals that have not been pre-
viously infected or vaccinated. In a binary classification, such
samples are often referred to as ‘negative’.

• The previously infected class comprises individuals with a prior
infection but who are unvaccinated. In a binary classification,
such samples are often referred to as ‘positive’.

• The vaccinated class comprises individuals who have been inoc-
ulated against a disease without a prior infection.

• Training data correspond to samples for which the true classes
are known. Typically, such data are used to construct conditional
probability models.

• Test data correspond to samples for which the true classes are
unknown or assumed to be unknown for validation purposes.
Typically, a classification procedure is applied to such data.

• Generalized prevalence is the relative fraction of samples in a
population that belong to each class.

1 Certain commercial equipment, instruments, software, or materials are
dentified in this paper in order to specify the experimental procedure ad-
quately. Such identification is not intended to imply recommendation or
ndorsement by the National Institute of Standards and Technology, nor is
t intended to imply that the materials or equipment identified are necessarily
he best available for the purpose.
2

2.2. Definitions from measure theory

• A set is a collection of objects, e.g. measurement values. A domain
is a set in a continuous measurement space; see Fig. 1 for an
example.

• The symbol R denotes the set of all real numbers. The symbol R𝑚

denotes the real coordinate space of dimension 𝑚 consisting of all
real-valued vectors of length 𝑚.

• The symbol ∈ indicates set inclusion. The expression 𝒓 ∈ 𝐴 means
𝒓 is in set 𝐴.

• The symbol ⊂ denotes the subset relationship of two sets. The
expression 𝐴 ⊂ 𝐵 means that all elements in 𝐴 are contained in
𝐵.

• The use of a superscript 𝐶 denotes the complement of a set. The
set 𝐷𝐶 contains all elements in the measurement space not in 𝐷.

• The symbol ∅ denotes the empty set, which contains no elements.
• The operator ∪ denotes the union of two sets. The set 𝐶 = 𝐴 ∪ 𝐵

contains all elements in either 𝐴 or 𝐵 or both.
• The operator ∩ denotes the intersection of two sets. The set 𝐶 =
𝐴 ∩ 𝐵 contains all elements in both 𝐴 and 𝐵.

• The operator ⧵ denotes the set difference. The set 𝐶 = 𝐴 ⧵ 𝐵
contains all objects in 𝐴 that are not also in 𝐵. An equivalent
interpretation is that 𝐴 ⧵𝐵 is the result of removing the common
elements of 𝐴 and 𝐵 from 𝐴.

• The notation 𝐴 = {𝒓 ∶∗} defines the set 𝐴 as all 𝒓 that satisfy
condition ∗.

.3. Notation specific to this paper

• The set 𝛺 denotes the entire measurement space.
• The label 𝐶𝑗 refers to the 𝑗th class.
• The generalized prevalence for class 𝐶𝑗 is denoted by 𝑞𝑗 .
• The set 𝐷𝑗 denotes a domain corresponding to 𝐶𝑗 .
• The use of a superscript ⋆ denotes an optimal quantity. For exam-

ple, 𝐷⋆
𝑗 could be an optimal classification domain corresponding

to class 𝐶𝑗 .

3. Generalized prevalence estimation of test data and multiclass
classification

Prevalence estimation of test data and classification of both training
and test data rely on the same framework of antibody measurements.2
For each individual or sample, we represent corresponding measure-
ments as a vector 𝒓 = (𝑟1,… , 𝑟𝑚) ∈ 𝛺 ⊂ R𝑚. Here, 𝒓 could denote 𝑚
antibody types targeting different parts of a virus as measured in me-
dian fluorescence intensity (MFI). Let 𝑃𝑗 (𝒓) describe the probability that
a sample from class 𝐶𝑗 yields measurement value 𝒓. These conditional
probability density functions (PDFs) are assumed known in this section;
their construction is considered for example serological training data in
Section 4.1.

The generalized prevalence 𝑞𝑗 is the relative fraction of the popula-
tion corresponding to class 𝐶𝑗 . In what follows we assume there are 𝑛
classes. The generalized prevalences must sum to one,3 which implies
𝑛
∑

𝑗=1
𝑞𝑗 = 1, (1a)

𝑞𝑘 = 1 −
𝑛
∑

𝑗=1
𝑗≠𝑘

𝑞𝑗 , for 𝑘 ∈ {1,… , 𝑛}. (1b)

2 We assume the prevalences of training data are known or verified
eparately.

3 The vector of prevalences {𝑞1,… , 𝑞𝑛} takes values on 𝛥1
𝑛−1, the (𝑛 − 1)

dimensional simplex with total mass 1, or probability simplex. This is an
equivalent geometric formulation of the property given by (1).
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The probability density 𝑄(𝒓) of a measurement 𝒓 for a test sample is
given by

𝑄(𝒓) =
𝑛
∑

𝑗=1
𝑞𝑗𝑃𝑗 (𝒓). (2)

The product 𝑞𝑗𝑃𝑗 (𝒓) is the probability that a random sample both
belongs to class 𝐶𝑗 and has measurement value 𝒓; thus, the expression
for 𝑄 is an instance of the law of total probability. This quantity
plays an important role in prevalence estimation of test data and
classification of both training and test data.

3.1. Generalized prevalence estimation

To demonstrate the importance of prevalence in diagnostic classi-
fication, consider the United States population’s SARS-CoV-2 antibody
response. In early 2020, most samples should have been classified as
naïve because the disease prevalence was small. By February 2022, the
disease prevalence was estimated at 57.7 % [11]; a significant fraction
of samples should have been classified as previously infected. Crucially,
the same measurement value may be classified differently depending on
the disease prevalence. This example shows that prevalence plays an
integral role in classifying diagnostic tests and should be estimated
before classification of test data. We address this need by designing
unbiased estimators for the prevalences {𝑞𝑗} of test data.

For 𝑛 classes, consider an arbitrary partition {𝐷𝑗} that separates the
measurement space 𝛺 into 𝑛 nonempty domains. It is important to note
that these 𝐷𝑗 are not classification domains. Define

𝑄𝑗 = ∫𝐷𝑗

𝑄(𝒓)𝑑𝒓 = ∫𝐷𝑗

𝑛
∑

𝑘=1
𝑞𝑘𝑃𝑘(𝒓)𝑑𝒓 =

𝑛
∑

𝑘=1
𝑞𝑘 ∫𝐷𝑗

𝑃𝑘(𝒓)𝑑𝒓 =
𝑛
∑

𝑘=1
𝑃𝑗,𝑘𝑞𝑘,

(3)

where

𝑃𝑗,𝑘 = ∫𝐷𝑗

𝑃𝑘(𝒓)𝑑𝒓. (4)

Writing this as a linear system yields

⎡

⎢

⎢

⎣

𝑄1
⋮
𝑄𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑃1,1 … 𝑃1,𝑛
⋮ ⋱ ⋮

𝑃𝑛,1 … 𝑃𝑛,𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞1
⋮
𝑞𝑛

⎤

⎥

⎥

⎦

. (5)

Taking 𝑘 = 𝑛 in (1b) implies

⎡

⎢

⎢

⎣

𝑄1
⋮

𝑄𝑛−1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑃1,𝑛
⋮

𝑃𝑛−1,𝑛

⎤

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑃1,1 … 𝑃1,𝑛−1
⋮ ⋱ ⋮

𝑃𝑛−1,1 … 𝑃𝑛−1,𝑛−1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑃1,𝑛
⋮

𝑃𝑛−1,𝑛

⎤

⎥

⎥

⎦

[1,… , 1]
⏟⏞⏟⏞⏟

𝑛−1

⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎣

𝑞1
⋮

𝑞𝑛−1

⎤

⎥

⎥

⎦

. (6)

his yields the prevalences 𝒒 as the solution to the system

= (𝑷 − 𝑷 𝒏)−1
(

𝑸 − 𝑷 𝒏

)

, (7a)

𝑘 ≥ 0 for 𝑘 = 1, 2,… , 𝑛 − 1, (7b)

where 𝒒 is the vector of length 𝑛 − 1 whose 𝑗th entry is 𝑞𝑗 , 𝑷 is the
(𝑛−1)×(𝑛−1) matrix whose (𝑖, 𝑗)th entry is 𝑃𝑖,𝑗 , 𝑷 𝒏 is the (𝑛−1)×(𝑛−1)
matrix whose (𝑖, 𝑗)th entry is 𝑃𝑖,𝑛, 𝑸 is the vector of length 𝑛− 1 whose
th entry is 𝑄𝑗 , and 𝑷 𝒏 is the vector of length 𝑛 − 1 whose 𝑗th entry is
𝑃𝑗,𝑛. The last prevalence 𝑞𝑛 is found via (1b) with 𝑘 = 𝑛. We assume that
the inverse of the matrix 𝑷 −𝑷 𝒏 exists; Section 6.1 further discusses the
matrices 𝑷 and 𝑷 − 𝑷 𝒏.

To estimate the generalized prevalences, estimate the 𝑄𝑗 by �̂�𝑗 ,
where

𝑄𝑗 ≈ �̂�𝑗 =
1

𝑆
∑

I(𝒓𝑖 ∈ 𝐷𝑗 ). (8)

𝑆 𝑖=1

3

Here, 𝑆 is the total number of samples and I denotes the indicator
function. This Monte Carlo estimate of 𝑄𝑗 is the empirical relative
frequency of points in domain 𝐷𝑗 . Substituting �̂�𝑗 for 𝑄𝑗 in (7) yields
an estimate 𝑞𝑘 for 𝑞𝑘:

�̂� = (𝑷 − 𝑷 𝒏)−1
(

�̂� − 𝑷 𝒏

)

. (9)

Then 𝑞𝑛 is given by 𝑞𝑛 = 1 −
∑𝑛−1

𝑗=1 𝑞𝑗 . When the PDFs 𝑃𝑗 (𝒓) are known
and (𝑷 − 𝑷 𝒏)−1 exists, these estimates 𝑞𝑘 are unbiased, i.e., 𝐸[𝑞𝑘] = 𝑞𝑘.
This follows directly from the fact that �̂�𝑗 is a Monte Carlo estimator of
𝑄𝑗 . Further, the generalized prevalence estimates converge to the true
values in mean square as the number of samples is increased [12]. This
is illustrated in Section 5.1.

We note that the generalized prevalence estimates are not unique
due to the arbitrariness of the {𝐷𝑗}. However, the non-uniqueness
llows us to select any reasonable partition over which to find the
stimators {�̂�𝑗}. In this way, the prevalence estimates are also not
ecessarily optimal (in the sense of minimizing variances). This is
iscussed further in Section 6.1.

.2. Optimal classification

Our task is to define a partition {𝐷𝑗} (not necessarily the same as
or prevalence estimation) of the measurement space 𝛺 such that each
omain corresponds to one and only one class 𝐶𝑗 . A measurement 𝒓 is
ssigned to class 𝑗 if 𝒓 ∈ 𝐷𝑗 . We require

𝑗

( 𝑛
⋃

𝑘=1
𝐷𝑘

)

= 1 ∀𝑗 ∈ {1,… , 𝑛}, (10a)

𝜇𝓁(𝐷𝑗 ∩𝐷𝑘) = 0 for 𝑗 ≠ 𝑘, ∀𝓁 = 1, 2,… , 𝑛, (10b)

where 𝜇𝓁(𝑋) = ∫𝑋 𝑃𝓁(𝒓)𝑑𝒓. Here, (10a) ensures that any sample can
be classified and (10b) enforces single-label classification (up to sets of
measure zero). To identify an optimal partition {𝐷⋆

𝑗 }, we construct the
loss function

ℒ (𝐷1,… , 𝐷𝑛) =
𝑛
∑

𝑗=1
𝑞𝑗 ∫𝛺⧵𝐷𝑗

𝑃𝑗 (𝒓)𝑑𝒓. (11)

Here, (11) is the generalized prevalence-weighted convex combination
of false classification rates as a function of the domains 𝐷𝑗 . Intuitively,
we expect that a sample with measurement 𝒓 should be assigned
to the class domain 𝐷𝑗 to which it has the highest probability of
belonging; that is, the highest value of 𝑞𝑗𝑃𝑗 (𝒓) for all 𝑗. Accordingly,
the loss function (11) penalizes misclassified measurements 𝒓 with high
probability values. The optimization problem yields optimal domains as
the solution to

{𝐷⋆
1 ,… , 𝐷⋆

𝑛 } = argmin
𝐷1 ,…,𝐷𝑛

ℒ (𝐷1,… , 𝐷𝑛). (12)

To address situations in which a measurement has an equal highest
probability of belonging to two or more classes, we introduce the
following set for each class 𝐶𝑗 :

ℰ𝑗 =
𝑛
⋃

𝑘=1
𝑘≠𝑗

{𝒓 ∶ 𝑞𝑘𝑃𝑘(𝒓) = 𝑞𝑗𝑃𝑗 (𝒓) = max
𝑖

𝑞𝑖𝑃𝑖(𝒓)}. (13)

In most practical implementations all ℰ𝑗 have measure zero, and the
domains

𝐷⋆
𝑗 = {𝒓 ∶ 𝑞𝑗𝑃𝑗 (𝒓) > 𝑞𝑘𝑃𝑘(𝒓) for 𝑘 ≠ 𝑗} (14)

minimize the loss function ℒ up to sets of measure zero. The proof is
shown in Appendix A and involves a straightforward application of set
theory; see also Rasmussen and Williams [13] for similar ideas.

If ℰ𝑗 has nonzero measure, randomly assigning a measurement in

ℰ𝑗 to one of the classes to which it has equal maximal probability of



R.A. Luke, A.J. Kearsley and P.N. Patrone Mathematical Biosciences 358 (2023) 108982

b
a

𝐷

w
a

𝑍

𝑍

Fig. 2. Histograms of previously infected, naïve, and vaccinated data from Ainsworth et al. (2020) and Wei et al. (2021).
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elonging does not effect the loss ℒ . In this case, the optimal domains
re generalized to
⋆
𝑗 = {𝒓 ∶ 𝑞𝑗𝑃𝑗 (𝒓) > 𝑞𝑘𝑃𝑘(𝒓) for 𝑘 ≠ 𝑗} ∪𝑍ℰ𝑗

, (15)

here 𝑍ℰ𝑗
is an element of a partition of ℰ𝑗 that we define iteratively

s follows.

ℰ1
= ℰ1, (16a)

ℰ𝑘
= ℰ𝑘

\

𝑘−1
⋃

𝑗=1
ℰ𝑗 , 𝑘 ∈ {2,… , 𝑛}. (16b)

This ensures that no measurement in a set ℰ𝑗 is assigned to more than
one optimal domain. Note that by construction, 𝑍ℰ𝑛

is empty.
Fig. 1 shows a 2D conceptual illustration of {ℰ𝑗}, which are the lines

delineating the optimal regions. In 2D, line segments have Lebesgue
measure zero. Thus, classification follows (14). Note that the ‘‘multi-
point" at which the lines meet has equal probability of belonging to all
three classes. We discuss this further in Section 6.2.

4. Example applied to SARS-CoV-2 antibody data with three
classes

To demonstrate the concepts developed in Section 3, we apply
our methods to serological data with three classes. Publicly available
data sets associated with Ainsworth et al. [9] and Wei et al. [10]
provide previously infected, naïve, and vaccinated antibody measure-
ments. The vaccine data [10] are recorded for individuals that were
inoculated with one of two vaccines. We refer to these as Vaccine A
and Vaccine B and analyze the populations separately and together.
The studies provide SARS-CoV-2 anti-spike immunoglobulin G (IgG)
antibody measurements; see Appendix B for measurement details. We
use one-dimensional (1D) data to illustrate a straightforward multiclass
example; Section 5.2 demonstrates that our analysis holds for higher
measurement dimensions.

All data are transformed to a logarithmic scale as follows:

𝑟 = log2(𝑟 + 2) − 1. (17)

Here, 𝑟 and 𝑟 represent the original and log-transformed values; 𝑟 has
units of ng/mL and 𝑟 is nondimensional. This transformation puts the
data on the scale of bits and allows for better viewing of measure-
ments that range over several decades of MFI values in the original
units. Wei et al. [10] truncated vaccinated samples, with lower and
upper transformed limits of 1 and roughly 8.

Fig. 2 shows a histogram of the data with the vaccinated category
split by vaccine manufacturer (Fig. 2(a)) and combined (Fig. 2(b)).
Previously infected samples have the largest spike IgG antibody levels
and naïve samples the smallest; the vaccinated class falls in the middle.
4

he vaccinated class overlaps with some naïve and previously infected
amples. Due to the truncation of vaccinated measurements, the corre-
ponding right-most histogram bin contains many samples. We separate
he data into randomly generated training (80 % of samples) and test
20 %) populations.

.1. Conditional probability distributions

We fit the training data to probability distributions to model the
aïve, previously infected, and vaccinated antibody responses. For our
urposes, we assume these are distinct classes; a sample belongs to
ne and only one of the three categories. To construct the condi-
ional PDF for each population, we select a parameterized model that
mpirically characterizes the shape and spread of the samples. We
etermine parameters separately for the three training populations by
aximum likelihood estimation (MLE). Several parameterized models
ere originally considered and fit by each training population; we

elect the model with the highest MLE value among those considered.
The naïve training population is fit to a Burr distribution

(𝑟) = 𝑐𝑘
𝜆

( 𝑟
𝜆

)𝑐−1 [
1 +

( 𝑟
𝜆

)𝑐]−𝑘−1
, (18)

which describes a right-skewed sample population.
The previously infected training population is fit to a stable distri-

bution described by characteristic function

𝜙(𝑟) = exp
{

𝑖𝑟𝛿 − |𝛾𝑟|𝛼
[

1 + 𝑖𝛽sgn(𝑟) tan
(𝜋𝛼

2

)

(|𝛾𝑟|1−𝛼 − 1)
]}

(19)

or 𝛼 ≠ 1. Here, 𝑖 is the imaginary unit and sgn is the sign function,
hich returns +1, -1, or 0. This distribution describes a left-skewed

ample population.
We fit the vaccinated training populations to an extreme-value

istribution after observing the mostly symmetric shape of the data
ith a spike at the right truncation limit:

(𝑟) = 1
𝜎
exp

( 𝑟 − 𝜇
𝜎

)

exp
[

−exp
( 𝑟 − 𝜇

𝜎

)]

. (20)

We apply data censoring to better fit the truncated data; this is de-
scribed in Appendix C.

The analysis in this section is identical for all three visualizations
of the vaccinated class. In what follows, we report all results but show
only the Vaccine A figures as examples. Corresponding figures for the
Vaccine B and combined visualizations of the vaccine class are left to
the Supplemental Data.

Fig. 3 shows the conditional PDFs, represented as continuous curves,
trained on the three-class training data with a Vaccine A vaccinated
class. The blue, red, and black curves correspond to the naïve, previ-
ously infected, and vaccinated models. The effect of truncating the data

at the upper limit is visible in the right-most bin of the vaccinated class
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Fig. 3. Conditional PDFs for the naïve, previously infected, and vaccinated classes
trained on the training data for a Vaccine A visualization of the vaccinated class. See
Supplemental Figure S1 for the PDFs of the Vaccine B and combined visualizations.

Fig. 4. Test data 𝑘-means partitioning with a Vaccine A vaccinated class for generalized
prevalence estimates. We use 𝑘 = 3 classes; the clustered domains are labeled as 𝐷1 , 𝐷2,
and 𝐷3. See Supplemental Figure S2 for the partitions of the Vaccine B and combined
visualizations of the vaccinated class.

histogram; this is accounted for by the data-censoring. As a result, the
vaccinated class PDF exhibits spikes at the upper and lower truncation
values. This spike is an artifact of the original data collection process
and not a typical problem.

4.2. Generalized prevalence estimation

Recall that prevalence estimation of test data requires a partition
that separates the measurement space 𝛺 into 𝑛 nonempty domains.
Here, the number of classes is 𝑛 = 3. We create a partition using 𝑘-

eans clustering with 𝑘 = 3, which assigns each measurement to the
luster with the closest mean. Fig. 4 shows the partition for our test data
et with a Vaccine A vaccinated class. The clustering separates the three
opulations reasonably well; see Section 6.1 for the importance of this
tatement. The partition need not perfectly separate the data by class
o estimate prevalences with high accuracy. We estimate generalized
revalences for the test data via (9) and record true and estimated
alues in Table 1.

.3. Optimal classification

We classify the training data using known generalized prevalences
ia (14). Fig. 5(a) shows the optimal domains, labeled 𝐷⋆

𝑁 , 𝐷⋆
𝑉 , and 𝐷⋆

𝑃 ,
for a Vaccine A vaccinated class. For this 1D example with three classes,
the optimal classification domain boundaries can be represented by
upper and lower threshold levels. Samples with measurements below
5

the smaller level are classified as naïve, samples with measurements
between the thresholds as vaccinated, and samples with measurements
above the larger level as previously infected. All three populations have
overlapping PDFs, which reduces classification accuracy.

Accurate classification of test data is possible with reasonably close
prevalence estimates. We classify the test data using estimated gener-
alized prevalences and display the optimal classification domains for a
Vaccine A vaccinated class in Fig. 5(b).

Training and test data classification errors are recorded in Table 2.
Taken over the three considerations of the vaccinated class, the average
error for the training data is 7.61 % and the same for the test data is
5.11 %.

5. Computational validation

We numerically demonstrate two important features of our gen-
eralized prevalence estimation and multiclass optimal classification
procedures. First, we show the convergence of our prevalence estimates
to the true values as the number of samples is increased. Second, we
present a 2D tri-class problem to show how the method generalizes to
higher dimensional measurement spaces.

5.1. Convergence of prevalence estimates

We use our probability models (18)–(20) to generate synthetic data
sets whose relative frequencies match the generalized prevalences of
the Ainsworth et al. [9] and Wei et al. [10] data. We systematically
increase 𝑆, the number of elements in each synthetic data set, from
102 to 105 while holding generalized prevalences fixed to study the
effect of sample size on prevalence convergence. For each 𝑆, we
randomly generate 1000 synthetic data sets by sampling from the class
probability models and compute statistics on this set of 1000 data sets.

Fig. 6 shows our analysis for the Vaccine A vaccinated class.
Fig. 6(b) shows a boxchart of the statistics for 𝑆 = 102, 103, 104,
nd 105. The estimates have more outliers and variation when few
amples are used, which decreases as 𝑆 is increased. Even with few
amples, the median generalized prevalence estimates are close to the
rue generalized prevalences. Table 3 records the mean and standard
eviations taken over the 1000 data sets for each 𝑆. Even for only 𝑆 =
03 samples, our estimates agree with the true generalized prevalences
ith roughly 2 % relative error.

Fig. 6(c) plots the standard deviation of the prevalence estimate
rror taken over the 1000 data sets on a log–log scale against number
f samples 𝑆. The standard deviation should decrease with the inverse
quare root of 𝑆 [12], which is plotted for comparison. Our empirical
onvergence rates all agree with the theory through 𝑆 = 104 samples;
he rate is maintained for the Vaccine A vaccinated class.

.2. Generalization to higher dimensions

We now explore a 2D synthetic numerical validation of generalized
revalence estimation and multiclass optimal classification. See Luke
t al. [14] for a discussion of the implications of higher-dimensional
odeling on diagnostic testing accuracy. The synthetic values we use

re modeled off the receptor-binding domain (RBD) and nucleocapsid
N) SARS-CoV-2 antibody targets; together these form a measurement
ouble 𝒓. Details about the models and information about the data
re given in Appendix D. Fig. 7(a) shows an example of 2D synthetic
ntibody measurements with naïve, previously infected, and vaccinated
lasses with true prevalences of 0.3, 0.2, and 0.5. The conditional
DFs are shown as contour lines of constant probability. We generate
synthetic data set with 𝑆 = 103.

To quantify uncertainty in the prevalence estimates, we randomly
enerate 1000 synthetic data sets using fixed prevalences. We then
artition the measurement space via 𝑘-means clustering using one
ynthetic data set (see Fig. 7(b)), fix the partition, and use (9) to
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f

Fig. 5. Training (a) and test (b) data with a Vaccine A vaccinated class with optimal decision thresholds using a known prevalence. Vertical dashed lines indicate the optimal
decision boundaries. The optimal naïve, vaccinated, and previously infected domains are labeled 𝐷⋆

𝑁 , 𝐷⋆
𝑉 , and 𝐷⋆

𝑃 . See Supplemental Figures S3 and S4 for the optimal domains
or Vaccine B and combined visualizations of the vaccinated class.
Table 1
Estimated and true generalized prevalences for the test data naïve (N), previously infected (P), and vaccinated (V) classes. Vaccine A (A) and Vaccine B (B) are
considered separately and together (All).

Vaccine data set
Estimated (true) generalized prevalence

Errors
(%)

Avg.
errors
(%)A B All A B All

Class
𝑁 0.523 (0.521) 0.538 (0.531) 0.445 (0.444) 0.377 1.02 0.223 0.540
𝑃 0.300 (0.286) 0.313 (0.292) 0.285 (0.244) 4.69 7.10 17.0 9.93
𝑉 0.177 (0.193) 0.149 (0.177) 0.270 (0.312) 7.99 15.0 13.6 12.2

Avg. 4.74 7.67 10.3 7.55
Table 2
Classification errors for training data using known prevalences
and test data with estimated prevalences. Vaccine A and
Vaccine B are considered separately and together (Combined).

Training
classification
error (%)

Test
classification
error (%)

Vaccine A 7.87 5.08
Vaccine B 7.07 5.46
Combined 7.90 4.78

generate prevalence estimates for all sets. The results are shown in
Table 4. Fig. 8 shows histograms of the generalized prevalence esti-
mates and true values, which fall within the middle of each distribution.
We classify using these estimated prevalences via (14) and find an
average error of 1.58 %. Fig. 7(c) shows example optimal classification
domains. The gold region is the previously infected domain, the purple
is the vaccinated, and the remainder of the measurement space, colored
in light blue, defines the naïve domain. For this example, the false
classification rate is 1.8 %.

6. Discussion

In this section, we include a further analysis of prevalence estima-
tion, connections and comparison to discriminant analysis, extensions,
and limitations. First, we note that our methods extend the binary
prevalence estimation and classification procedures of Patrone and
Kearsley [6] and may provide insight into the simpler setting. More
precisely, the multiclass framework reduces to the binary problem
when 𝑛 = 2.

6.1. Limiting cases of prevalence estimation and implications for assay
design

An interesting observation of our prevalence estimation scheme
is that the structure of the matrix underpinning the linear system
6

encodes information about overlap between populations. As such, the
matrix potentially informs best practices for prevalence estimation.
Here we examine limiting cases of prevalence estimation and connect
characteristics of the matrix 𝑷 to assay accuracy.

We explore interpretations of equivalent definitions of singularity of
the matrix 𝑷 . Recall that the quantity 𝑃𝑗,𝑘 gives the probability density
of class 𝑘 falling in domain 𝐷𝑗 . If all elements of a row (column) of the
matrix 𝑷 are zero, the probability of any measurement value falling in
(belonging to) the corresponding domain (class) is zero. If the columns
of 𝑷 are linearly dependent, the probability of a sample belonging to
class 𝐶𝑘 having a measurement in domain 𝐷𝑗 is a linear combination
of the probabilities of samples belonging to all other classes having
measurements in domain 𝐷𝑗 . This occurs for a choice of partition where
all points fall in a single domain 𝐷𝑗 . In this extreme case, there is an
apparent dependence (in the linear algebra sense) of the measurement
values of different classes. As a related example, for the 1D SARS-CoV-
2 antibody data from Ainsworth et al. [9] and Wei et al. [10], we
can construct a partition where one trial domain is empty, both 𝑷 and
𝑷 −𝑷 𝒏 are singular, and therefore prevalence estimation is not possible.

To avoid this situation, one should select nonempty trial domains,
i.e., training data should lie in each element of the partition. In the
limiting case that 𝑃𝑖𝑗 = 0, the measurement of a sample in class 𝐶𝑗 has
zero probability of falling in domain 𝐷𝑖. The most extreme separation
of training data occurs when the PDFs have nonzero support only on
mutually exclusive elements of the partition. In this setting, the matrix
𝑷 is a permutation matrix, and the prevalence estimates are merely the
relative fractions �̂� of measurements in each domain. If the partition
elements are correctly matched to the classes, this extreme separation
corresponds to a perfect assay because there are no misclassifications.
We note that the matrices that result from a 𝑘-means partition of the
1D SARS-CoV-2 tri-class data are close to permutation matrices; one
example is

𝑷 =
⎡

⎢

⎢

0.9749 0.0058 0.1055
0.0237 0.0495 0.8101

⎤

⎥

⎥

. (21)

⎣ 0.0015 0.9447 0.0844 ⎦
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Fig. 6. Prevalence estimation convergence for synthetic data using a Vaccine A vaccinated class (1000 simulations). In (b), the boxes display the median and upper and lower
uartiles as the line inside the box and its top and bottom edges. The whiskers show non-outlier maximum and minimum values; outliers vary from the median by more that 1.5
imes the difference between the upper and lower quartiles, and are shown as circles. In (b) and (c), the subscripts 𝑁 , 𝑃 , and 𝐴 denote naïve, previously infected, and Vaccine A
accinated. The number of samples is 𝑆.
Table 3
Generalized prevalence estimate means and standard deviations taken over 1000 simulations of synthetic data generated from
the probability models for increasing number of samples 𝑆 for a Vaccine A vaccinated class.

Naïve Previously infected Vaccine A

True generalized
prevalences

0.521 0.286 0.193

Number of samples

102 0.518 ± 0.0212 0.289 ± 0.0211 0.193 ± 0.0299
103 0.522 ± 0.0067 0.286 ± 0.0061 0.193 ± 0.0093
104 0.522 ± 0.0021 0.285 ± 0.0020 0.193 ± 0.0030
105 0.522 ± 0.0007 0.285 ± 0.0007 0.193 ± 0.0011
w
p
o
i
[

f
b
o

Table 4
Statistics for the data shown in Fig. 8. The true values of the prevalences
are given along with the mean 𝜇, standard deviation 𝜎, and coefficient
of variation (CV) of the estimates.

True val 𝜇 𝜎 CV
(

𝜎
𝜇

)

𝑞1 0.3 0.300 9.6 × 10−3 0.0319
𝑞2 0.2 0.200 7.4 × 10−3 0.0371
𝑞3 0.5 0.500 6.3 × 10−3 0.0126

Selection of trial domains with a high degree of class separation may
be a key to our low-error prevalence estimates.

We speculate that under certain conditions a matrix 𝑷 that is a
ermutation matrix may be optimal in the sense that it minimizes the
revalence estimate error. In 1D, it may be possible to construct an
 i

7

optimization in terms of the samples assigned to each element of the
partition, such as

argmin
𝑓1(𝑥),𝑓2(𝑥),𝑷 𝝅

‖𝑷 𝝅𝑷 − 𝑰‖22, (22)

here 𝑓1(𝑥) and 𝑓2(𝑥) are indicator functions determining which sam-
les are assigned to elements 1 and 2 of the partition (without loss
f generality). Here, 𝑷 𝝅𝑷 is the row permutation of 𝑷 closest to the
dentity matrix, 𝑰 . For the matrix 𝑷 given by (21), for example, 𝑷 𝝅 =
𝒆1; 𝒆3; 𝒆2], where 𝒆𝑗 is the 𝑗th standard basis vector.

We leave a search for the minimum prevalence error estimate to
uture work; see Patrone and Kearsley [15] for an approach to the
inary case. The extension of their work to the multiclass setting is not
bvious because the objective function to minimize can be generalized
n many different ways.



R.A. Luke, A.J. Kearsley and P.N. Patrone Mathematical Biosciences 358 (2023) 108982

t

t
a
z

6

m
c
t
t
g
s

𝑍

Fig. 7. (a) Level sets of conditional PDFs with example synthetic data, (b) 𝑘-means clustering, (c) optimal classification domains with estimated generalized prevalences. In (c),
he subscripts 𝑁 , 𝑃 , and 𝑉 denote naïve, previously infected, and vaccinated.
As a final note on extreme cases of prevalence estimation, in expec-
ation, the problem is unconstrained. The constrained problem may be
viable alternative when it is known that one prevalence is close to

ero.

.2. Local accuracy

Recall that in Section 3.2 we needed to consider sets of measure-
ents with equal probability of belonging to more than one class. This

oncept is related to local accuracy, 𝑍, which compares the probability
hat a test sample belongs to a particular class and has measurement 𝒓
o the measurement density of a test sample with measurement 𝒓. We
eneralize the binary version from Patrone et al. [16] to the multiclass
etting:

(𝒓, 𝐷1,… , 𝐷𝑛) =
𝑞𝑘𝑃𝑘(𝒓)
𝑄(𝒓)

=
𝑞𝑘𝑃𝑘(𝒓)

∑𝑛
𝑗=1 𝑞𝑗𝑃𝑗 (𝒓)

, 𝒓 ∈ 𝐷𝑘, (23)

where {𝐷𝑘} partitions 𝛺. Let 𝑍⋆(𝒓) = 𝑍(𝒓, 𝐷⋆
1 ,… , 𝐷⋆

𝑛 ) be the local
accuracy of the optimal solution to the multiclass problem. It is straight-
forward to show that 1∕𝑛 ≤ 𝑍⋆ ≤ 1. Due to optimality, if 𝒓 ∈ 𝐷⋆

𝑘 , we
have 𝑞𝑘𝑃𝑘(𝒓) ≥ 𝑞𝑗𝑃𝑗 (𝒓) for 𝑗 ≠ 𝑘. Then

𝑛𝑞𝑘𝑃𝑘(𝒓) ≥
𝑛
∑

𝑗=1
𝑞𝑗𝑃𝑗 (𝒓) = 𝑄(𝒓), (24)

and so 𝑞𝑘𝑃𝑘(𝒓)∕𝑄(𝒓) = 𝑍⋆(𝒓) ≥ 1∕𝑛 for 𝑟 ∈ 𝐷⋆
𝑘 . 𝑍⋆ is maximized at

1 when 𝑄(𝒓) = 𝑞𝑘𝑃𝑘(𝒓) for 𝒓 ∈ 𝐷⋆
𝑘 . In the multiclass setting, we have

𝑍⋆ = 1∕𝑛 when
𝑞1𝑃1(𝒓) = ⋯ = 𝑞𝑛𝑃𝑛(𝒓). (25)

8

We will refer to such an 𝒓, if it exists, as a multipoint of the optimal
domains. The lower bound on 𝑍⋆ is only attained at a multipoint.
To see this, consider some measurement 𝒗 that is not a multipoint.
Then there exist 𝑗, 𝑘 ∈ {1,… , 𝑛}, 𝑗 ≠ 𝑘, such that 𝑞𝑗𝑃𝑗 (𝒗) < 𝑞𝑘𝑃𝑘(𝒗).
Then, since the classification is optimal, 𝒗 ∉ 𝐷⋆

𝑗 and 𝒗 ∈ 𝐷⋆
𝑚 for

some 𝑚 (it may be that 𝑚 = 𝑘). Clearly, 𝑞𝑗𝑃𝑗 (𝒗) < 𝑞𝑚𝑃𝑚(𝒗). Further,
𝑞𝓁𝑃𝓁(𝒗) ≤ 𝑞𝑚𝑃𝑚(𝒗) for 𝓁 ≠ 𝑗. It follows that

𝑄(𝒗) =
⎡

⎢

⎢

⎢

⎣

𝑛
∑

𝑖=1
𝑖≠𝑗

𝑞𝑖𝑃𝑖(𝒗)
⎤

⎥

⎥

⎥

⎦

+ 𝑞𝑗𝑃𝑗 (𝒗) < (𝑛 − 1)𝑞𝑚𝑃𝑚(𝒗) + 𝑞𝑚𝑃𝑚(𝒗) (26)

and so 𝑄(𝒗) < 𝑛𝑞𝑚𝑃𝑚(𝒗), which gives 1∕𝑛 < 𝑍⋆(𝒗) for a non-multipoint.
The concept of local accuracy could be used to decide which values

to hold out in an indeterminate class in order to meet a global accuracy
target (see [16]). For any measurement, we can compute what the
local accuracy would be if we chose to assign it to each class in turn.
Using the SARS-CoV-2 tri-class example as an illustration, conducting
this procedure on a measurement 𝒓 may result in, say, similarly high
local accuracies for the previously infected and vaccinated classes, but
a low local accuracy for the naïve class. In this situation and without an
optimal classification scheme, we may not feel confident labeling the
sample as previously infected or as vaccinated, since their probabilities
are similar, but we can say the sample is almost certainly not naïve.
This leads naturally to the observation that any subset of classes can
be combined to make a new class. In particular, we can reduce the
problem to a binary classifier. For our serological example, perhaps
it is desirable to consider previously infected and vaccinated samples

together, or equally possible that it is difficult to tell them apart for a
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Fig. 8. (a–c): Histograms of generalized prevalence estimates from 1000 synthetic data sets. Ten bins are used for each histogram and the true prevalence is shown as a vertical
red line.
particular assay, and so our goal becomes to classify them separately
from naïves. Conversely, we may want to reduce a multiclass problem
to a binary classification in which our ‘‘negative’’ to prior infection class
includes samples from vaccinated individuals.

This reduction of the problem size by combining classes is in a sense
a projection onto a lower class space. Specifically, consider

𝑄(𝒓) =
𝑛
∑

𝑗=1
𝑞𝑗𝑃𝑗 (𝒓) =

𝑘
∑

𝑗=1
𝑞𝑗𝑃𝑗 (𝒓)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑞1𝑃1(𝒓)

+
𝑛
∑

𝑗=𝑘+1
𝑞𝑗𝑃𝑗 (𝒓)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑞2𝑃2(𝒓)

, (27)

where 𝑃1(𝒓) and 𝑃2(𝒓) are newly-created PDFs with associated preva-
lences 𝑞1 and 𝑞2 = 1 − 𝑞1. The task becomes to find 𝑞1, for which there
may be an optimal strategy.

The diagnostic community’s current analog to local accuracy is
the concept of a likelihood ratio (LR), calculated as 𝑠𝑒∕(1 − 𝑠𝑝) for a
previously infected test result, where 𝑠𝑒 and 𝑠𝑝 represent sensitivity and
specificity. The previously infected LR can be interpreted as the ratio of
probabilities of correctly to incorrectly predicting a previously infected
result [17]. These values use average population information through
𝑠𝑒 and 𝑠𝑝 values, which may not always be available or representative.
In contrast, local accuracy uses local information, since the latter is
conditioned on knowing individual measurement values.

6.3. Connections and comparison to discriminant analysis

An alternative to our classification method is DA, which classifies
observations into known groups [13]. Most realizations of DA do
not optimize an accuracy-related objective relevant to most diagnos-

tic applications [3]. In contrast, we ground our work in probability

9

theory and modeling by directly minimizing the misclassification rate
adapted to a given assay. Diagnostic classification benefits from un-
certainty quantification. Although DA supports this, it also makes as-
sumptions that increase model form errors [18]. Our method addresses
this shortcoming by using the data to inform the underlying probability
distributions and prevalences used for classification.

In more detail, our approach, which generalizes DA, connects sev-
eral strategies together, including Bayesian classification methods. The
latter, which are most closely aligned with our approach, still assume
a prior probability of being in each class without reference to the test
data. However, the decision rule is essentially identical to ours and
corresponds to the Bayes 0–1 loss [19], except that it does not address
boundary cases associated with (13), (15), and (16). Thus, our method
extends the Bayes rule to cover this situation.

LDA, a common implementation, assumes all training populations
are well-approximated by normal distributions with the same covari-
ance [19]. QDA relaxes the equal covariance assumption. In contrast to
LDA and QDA, the first step of our procedure is to select appropriate,
and not necessarily normal, distributions for each training class. The
modeling exercise is important because many biological populations
are not normally distributed. Rasmussen and Williams [13] note, and
we find, that if the normality assumption is inappropriate, this may
lead to poor performance of the classification method. This assumption
is also a characteristic of traditional binary methods such as using
confidence intervals, which have been outperformed in related work [6,
14,16].

We perform LDA and QDA using fitcdiscr and predict in
MATLAB with default options (MathWorks, Natick, MA, USA). In Ta-
ble 5 we compare classification errors for the example data in Figs. 5(b)
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Fig. 9. Comparison of our optimal classification method to linear (LDA) and quadratic (QDA) discriminant analysis. The optimal classification domains are colored whereas the
discriminant analysis thresholds are shown as dashed lines.
Table 5
Classification errors for our optimal method compared to linear (LDA)
and quadratic (QDA) discriminant analysis. The examples correspond to
the data from Figs. 5(b) and 7(c). We show the example 2D comparison
in Fig. 9.
Classification method Classification error (%)

1D example 2D example

Optimal classification 5.08 1.80
LDA 7.22 5.20
QDA 7.22 2.20

and 7(c) for our method against those from LDA and QDA. For both ex-
amples, our method outperforms the discriminant analyses. Our results
range from an 18.2 % to 65.4 % reduction in classification error. We
show the 2D comparison in Fig. 9. An observation about Fig. 9 is that
the previously infected and vaccinated populations are not normally
distributed, as LDA and QDA assume. Thus, it is not surprising that
a discriminant threshold cuts directly through a population in the
linear case. In contrast to both DA implementations, the power of our
modeling is evident in the form of the optimal classification boundaries,
thereby reducing the error rate.

6.4. Extensions

Multiclass methods are readily equipped to handle further strat-
ification of antibody data, such as by age group, biological sex, or
coronavirus disease of 2019 (COVID-19) booster status. An additional
class could be added for individuals who are both vaccinated and
previously infected. Studies have demonstrated a greater antibody re-
sponse post-vaccination for previously-infected versus COVID-19 naïve
recipients [20,21]; this could allow for these populations to be dis-
tinguished by our classification scheme. Further, we minimize the
prevalence-weighted combination of misclassifications, but the opti-
mization problem can be rewritten for any desired objective function.
Reformulations include ‘‘rule-in’’ or ‘‘rule-out’’ tests that meet desired
sensitivity or specificity targets [22]. Our methods may even be gener-
alizable to multi-label classification, in which a sample can be assigned
to more than one class; we anticipate challenges designing the corre-
sponding optimization problem. Finally, the methods presented here
can be applied to any setting where class size estimation and population
labeling are required; an example is cell sorting in flow cytometry.

6.5. Limitations

Model selection is inherently subjective; Schwartz [23] showed that
the error goes to zero as more data points are added. As the number
10
of antibody measurements increases, corresponding to viewing the
data in higher dimensions, additional modeling choices become avail-
able. Patrone and Kearsley [6] suggest the possibility of minimizing
misclassifications over a family of models; see also Smith [18] for a
discussion of model form errors. Classification accuracy and prevalence
estimation of the 1D data sets from Ainsworth et al. [9] and Wei
et al. [10] suffer from overlap between their spike IgG values. If more
measurements were available per sample, modeling the data in a higher
dimension could improve class separation and thereby lower error rates
(see [14]). Further, our models do not account for time-dependence.
This concept is important when classifying antibody tests, which are
known to have a half life on the order of several months post infection
or vaccination [24,25]. See Bedekar et al. [8] for a time-dependent
approach to the binary setting.

6.6. Implications for assay developers

We have solved the multiclass diagnostic classification problem,
which was previously unresolved. Antibody measurements from vac-
cinated individuals can now be distinguished from previously infected
and naïve samples.

Our work is the first to obtain unbiased predictions of the relative
fractions of vaccinated, previously infected, and naïve individuals in a
population. These estimates are improved as more samples are added.
Best practices for conducting these predictions include dividing the
range of all possible measurement values into nonempty regions that
create separation between samples of neighboring regions. This can be
easily achieved using pre-defined clustering algorithms. Our procedure
hinges on selecting probability distributions to model training popu-
lations, which can be conducted automatically for measurements of a
single antibody target in several open-source programming languages.
Our classification scheme is also easily implementable, and can be mod-
ified to prioritize specificity if desired. Regardless of the reformulation,
the error is minimized by construction.
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Appendix A. Optimality of classification domains

Lemma 1. Let the PDFs 𝑃𝑗 (𝒓) be bounded and summable functions on 𝛺
nd suppose that the measure of a single measurement 𝒓 is zero with respect
o all distributions. Further, suppose the boundary set ℰ𝑗 has measure zero
or all 𝑗. Define the loss function ℒ as in (11). Then the domains given by
14) minimize the loss function ℒ .

roof. Consider a partition of 𝛺 given by {𝐷⋆
𝑗 } for which each 𝐷⋆

𝑗
atisfies the criteria given in (10) and (14). Without loss of generality,
bsorb each 𝑞𝑗 into 𝑃𝑗 (𝒓), and consider the loss function

(𝐷1,… , 𝐷𝑛) =
𝑛
∑

𝑗=1
∫𝛺⧵𝐷𝑗

𝑃𝑗 (𝒓)𝑑𝒓. (A.1)

ow consider a different partition of the measurement space {�̂�𝑗},
here at least two elements �̂�𝑘 and �̂�𝑖 differ from 𝐷⋆

𝑘 and 𝐷⋆
𝑖 by

ore than a set of measure zero.4 Without loss of generality, suppose
he elements of the partitions {�̂�𝑗} and {𝐷⋆

𝑗 } are ordered such that
�̂�1,… �̂�𝑀 differ from 𝐷⋆

1 ,… , 𝐷⋆
𝑀 by more than a set of measure zero

and �̂�𝑀+1,… �̂�𝑛 and 𝐷⋆
𝑀+1,… , 𝐷⋆

𝑛 do not. Note that 𝛺 ⧵ �̂�𝑗 = (�̂�𝑗 )𝐶 .
As a slight abuse of notation, we will rewrite (�̂�𝑗 )𝐶 and subsequent,
similar expressions as

(�̂�𝑗 )𝐶 =
𝑛
⋃

𝑘=1
𝑘≠𝑗

�̂�𝑘 (A.2)

with the understanding that this is true up to sets of measure zero
and that the discrepancy does not affect integration. Then we may
decompose the loss function (A.1) as

ℒ (�̂�1,… , �̂�𝑛) =
𝑛
∑

𝑗=1
∫∪𝑘,𝑘≠𝑗 �̂�𝑘

𝑃𝑗 (𝒓)𝑑𝒓. (A.3)

Likewise,

ℒ (𝐷⋆
1 ,… , 𝐷⋆

𝑛 ) =
𝑛
∑

𝑗=1
∫∪𝑘,𝑘≠𝑗𝐷⋆

𝑘

𝑃𝑗 (𝒓)𝑑𝒓. (A.4)

Decomposing (�̂�𝑗 )𝐶 further gives

(�̂�𝑗 )𝐶 =
𝑛
⋃

𝑘=1
𝑘≠𝑗

�̂�𝑘 =
𝑛
⋃

𝑘=1
𝑘≠𝑗

[

(�̂�𝑘 ∩𝐷⋆
𝑘 ) ∪ (�̂�𝑘 ⧵𝐷⋆

𝑘 )
]

=

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝑘=1
𝑘≠𝑗

(�̂�𝑘 ∩𝐷⋆
𝑘 )

⎤

⎥

⎥

⎥

⎦

∪

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝑘=1
𝑘≠𝑗

(�̂�𝑘 ⧵𝐷⋆
𝑘 )

⎤

⎥

⎥

⎥

⎦

. (A.5)

4 If only one element �̂�𝑘 differed by more than a set of measure zero from
̂ ⋆, the set {�̂� } would no longer form a partition of 𝛺.
𝑘 𝑗

11
Here, (A.5) can be further decomposed using our assumptions on which
elements of the partitions are equivalent up to sets of measure zero:

(�̂�𝑗 )𝐶 =

⎡

⎢

⎢

⎢

⎣

𝑀
⋃

𝑘=1
𝑘≠𝑗

(�̂�𝑘 ∩𝐷⋆
𝑘 )

⎤

⎥

⎥

⎥

⎦

∪

⎡

⎢

⎢

⎢

⎣

𝑀
⋃

𝑘=1
𝑘≠𝑗

(�̂�𝑘 ⧵𝐷⋆
𝑘 )

⎤

⎥

⎥

⎥

⎦

∪

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝑘=𝑀+1
𝑘≠𝑗

(�̂�𝑘 ∩𝐷⋆
𝑘 )

⎤

⎥

⎥

⎥

⎦

∪

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝑘=𝑀+1
𝑘≠𝑗

(�̂�𝑘 ⧵𝐷⋆
𝑘 )

⎤

⎥

⎥

⎥

⎦

,

(A.6)

The third term in square brackets in (A.6) has the same measure as
∪𝑛
𝑘=𝑀+1,𝑘≠𝑗�̂�𝑘 and the last term has measure zero by our assumptions.

We let the first term be denoted by �̂�𝑗∩, the second by �̂�𝑗⧵, and the
third by �̂�𝑗∪. Define 𝐷⋆

𝑗∩, 𝐷⋆
𝑗⧵, and 𝐷⋆

𝑗∪ similarly as the first, second,
and third terms in (A.6) but with ∧ and ⋆ swapped. Note that all terms
in (A.6) are disjoint. Thus, subtracting (A.4) from (A.3) gives

𝛥ℒ = ℒ (�̂�1,… , �̂�𝑛) −ℒ (𝐷⋆
1 ,… , 𝐷⋆

𝑛 )

=
𝑛
∑

𝑗=1
∫�̂�𝑗∩

𝑃𝑗 (𝒓)𝑑𝒓 +
𝑛
∑

𝑗=1
∫�̂�𝑗⧵

𝑃𝑗 (𝒓)𝑑𝒓 +
𝑛
∑

𝑗=1
∫�̂�𝑗∪

𝑃𝑗 (𝒓)𝑑𝒓

−
𝑛
∑

𝑗=1
∫𝐷⋆

𝑗∩

𝑃𝑗 (𝒓)𝑑𝒓 −
𝑛
∑

𝑗=1
∫𝐷⋆

𝑗⧵

𝑃𝑗 (𝒓)𝑑𝒓 −
𝑛
∑

𝑗=1
∫𝐷⋆

𝑗∪

𝑃𝑗 (𝒓)𝑑𝒓

=
𝑛
∑

𝑗=1
∫�̂�𝑗⧵

𝑃𝑗 (𝒓)𝑑𝒓 −
𝑛
∑

𝑗=1
∫𝐷⋆

𝑗⧵

𝑃𝑗 (𝒓)𝑑𝒓,

(A.7)

where we have used our assumption that �̂�𝑗∪ = 𝐷⋆
𝑗∪ up to sets of

measure zero and

�̂�𝑗∩ =
⋃

𝑘=1
𝑘≠𝑗

(�̂�𝑘 ∩𝐷⋆
𝑘 ) =

⋃

𝑘=1
𝑘≠𝑗

(𝐷⋆
𝑘 ∩ �̂�𝑘) = 𝐷⋆

𝑗∩. (A.8)

Since {�̂�𝑗} and {𝐷⋆
𝑗 } partition 𝛺, we may write

𝛥ℒ =
𝑛
∑

𝑗=1

𝑀
∑

𝑘=1
𝑘≠𝑗

[

∫�̂�𝑘⧵𝐷⋆
𝑘

𝑃𝑗 (𝒓)𝑑𝒓 − ∫𝐷⋆
𝑘 ⧵�̂�𝑘

𝑃𝑗 (𝒓)𝑑𝒓

]

. (A.9)

From our assumption that �̂�𝑗 differs from 𝐷⋆
𝑗 by a measurable set for

all 𝑗 ∈ {1,… ,𝑀}, each set �̂�𝑘 ⧵ 𝐷⋆
𝑘 in �̂�𝑗⧵ and 𝐷⋆

𝑖 ⧵ �̂�𝑖 in 𝐷⋆
𝑗⧵ have

nonzero measure. Next, we may write

�̂�𝑗⧵ =
𝑀
⋃

𝑘=1
𝑘≠𝑗

�̂�𝑘 ⧵𝐷⋆
𝑘 =

𝑀
⋃

𝑘=1
𝑘≠𝑗

{[

(�̂�𝑘 ⧵𝐷⋆
𝑘 ) ∩𝐷⋆

𝑗

]

∪
[

(�̂�𝑘 ⧵𝐷⋆
𝑘 ) ⧵𝐷

⋆
𝑗

]}

=

⎧

⎪

⎨

⎪

⎩

𝑀
⋃

𝑘=1
𝑘≠𝑗

[

(�̂�𝑘 ⧵𝐷⋆
𝑘 ) ∩𝐷⋆

𝑗

]

⎫

⎪

⎬

⎪

⎭

∪

⎧

⎪

⎨

⎪

⎩

𝑀
⋃

𝑘=1
𝑘≠𝑗

[

(�̂�𝑘 ⧵𝐷⋆
𝑘 ) ⧵𝐷

⋆
𝑗

]

⎫

⎪

⎬

⎪

⎭

,

(A.10)

and similarly for 𝐷⋆
𝑗⧵ =

⋃

𝑘=1
𝑘≠𝑗

𝐷⋆
𝑘 ⧵ �̂�𝑘. Call the first term in curly

braces in (A.10) �̂�𝑗⧵∩ and the second �̂�𝑗⧵⧵, and let 𝐷⋆
𝑗⧵∩ and 𝐷⋆

𝑗⧵⧵ be
similarly defined. Note that �̂�𝑗∩⧵ and 𝐷⋆

𝑗⧵⧵ are disjoint by construction.
This allows us to write

𝛥ℒ =
𝑛
∑

𝑗=1

𝑀
∑

𝑘=1
𝑘≠𝑗

[

∫�̂�𝑗⧵∩

𝑃𝑗 (𝒓)𝑑𝒓 + ∫�̂�𝑗⧵⧵

𝑃𝑗 (𝒓)𝑑𝒓

−∫𝐷⋆
𝑗⧵∩

𝑃𝑗 (𝒓)𝑑𝒓 − ∫𝐷⋆
𝑗⧵⧵

𝑃𝑗 (𝒓)𝑑𝒓

]

. (A.11)
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(

w
d

𝑁

We rewrite (𝐷⋆
𝑗 )

𝐶 to find

�̂�𝑘 ⧵𝐷⋆
𝑘 ) ⧵𝐷

⋆
𝑗 = (�̂�𝑘 ⧵𝐷⋆

𝑘 ) ∩

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝑖=1
𝑖≠𝑗

𝐷⋆
𝑖

⎤

⎥

⎥

⎥

⎦

= �̂�𝑘 ∩

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝓁=1
𝓁≠𝑘

𝐷⋆
𝓁

⎤

⎥

⎥

⎥

⎦

∩

⎡

⎢

⎢

⎢

⎣

𝑛
⋃

𝑖=1
𝑖≠𝑗

𝐷⋆
𝑖

⎤

⎥

⎥

⎥

⎦

=
𝑛
⋃

𝑖=1
𝑖≠𝑗,𝑘

�̂�𝑘 ∩𝐷⋆
𝑖 . (A.12)

We rewrite (�̂�𝑗 )𝐶 similarly. Here, (A.12) and the symmetry of the
intersection operator give

�̂�𝑗⧵⧵ =
𝑛
⋃

𝑖=1
𝑖≠𝑗,𝑘

�̂�𝑘 ∩𝐷⋆
𝑖 =

𝑛
⋃

𝑖=1
𝑖≠𝑗,𝑘

𝐷⋆
𝑘 ∩ �̂�𝑖 = 𝐷⋆

𝑗⧵⧵. (A.13)

Thus, these terms in (A.11) are equal and of opposite signs, and cancel.
This leaves

𝛥ℒ =
𝑛
∑

𝑗=1

𝑀
∑

𝑘=1
𝑘≠𝑗

[

∫�̂�𝑗⧵∩

𝑃𝑗 (𝒓)𝑑𝒓 − ∫𝐷⋆
𝑗⧵∩

𝑃𝑗 (𝒓)𝑑𝒓

]

. (A.14)

Since

𝐷⋆
𝑗⧵∩ =

⋃

𝑘=1
𝑘≠𝑗

(𝐷⋆
𝑘 ⧵ �̂�𝑘) ∩ �̂�𝑗 ⊂ (𝐷⋆

𝑗 )
𝐶 , (A.15)

we have 𝜇(𝐷⋆
𝑗⧵∩ ∩ 𝐷⋆

𝑗 ) ≤ 𝜇((𝐷⋆
𝑗 )

𝐶 ∩ 𝐷⋆
𝑗 ) = 0. Thus, since there is no

measurable overlap with the maximal set 𝐷⋆
𝑗 , we have 𝑃𝑗 (𝒓) ≤ 𝑃𝑘(𝒓) on

𝐷⋆
𝑗⧵∩ for 𝑘 ≠ 𝑗. In contrast, �̂�𝑗⧵∩∩𝐷⋆

𝑗 = (�̂�𝑘⧵𝐷⋆
𝑘 )∩𝐷

⋆
𝑗 is by construction

a subset of 𝐷⋆
𝑗 , and in totality ⋃

𝑗 �̂�𝑗⧵∩∩𝐷⋆
𝑗 ≠ ∅ since we have assumed

that �̂�1,… , �̂�𝑀 differ from 𝐷⋆
1 ,… , 𝐷⋆

𝑀 by a set of nonzero measure.
Thus 𝑃𝑗 (𝒓) ≥ 𝑃𝑘(𝒓) on �̂�𝑗⧵∩ for 𝑘 ≠ 𝑗.

Since 𝑃𝑗 is maximal on each �̂�𝑗⧵∩ and submaximal on each 𝐷⋆
𝑗⧵∩,

and ⋃

𝑗 �̂�𝑗⧵∩ has nonzero measure, we have

𝛥ℒ =
𝑛
∑

𝑗=1

𝑀
∑

𝑘=1
𝑘≠𝑗

[

∫�̂�𝑗⧵∩

𝑃𝑗 (𝒓)𝑑𝒓 − ∫𝐷⋆
𝑗⧵∩

𝑃𝑗 (𝒓)𝑑𝒓

]

≥ 0, (A.16)

which proves that {𝐷⋆
𝑗 } as defined minimizes the loss function ℒ . □

Appendix B. Measurement details

Ainsworth et al. [9] provide SARS-CoV-2 serological anti-spike
IgG antibody measurements for previously infected and naïve samples
(which they refer to as positive and negative). Ainsworth et al. [9] used
a true negative rate of 99 % to set a positivity threshold of 8 million
MFI units. Previously infected samples were taken at least 20 days post
symptom onset from individuals whose infections were confirmed via
reverse transcription polymerase chain reaction (RT-PCR) by a nose or
throat swab. The naïve samples were collected pre-pandemic.

Wei et al. [10] provide SARS-CoV-2 serological anti-spike IgG
antibody measurements for vaccinated samples. Measurements were
recorded from individuals that had been inoculated with either the
Oxford–AstraZeneca ChAdOx1 nCoV-19 (Vaccine A) or the Pfizer-
BioNTech BNT162b2 (Vaccine B). The vaccinated samples were col-
lected at various time points relative to the first inoculation, ranging
from 14 days prior to 66 days after. To control for variation resulting
from the length of time after inoculation, we use only data from 28
days post first dose.

Ainsworth et al. [9] recorded antibody measurements in MFI. For
comparison, Wei et al. [10] convert from MFI to ng/mL following:

log10(𝑚) = 𝐴 + 𝐵𝑓 + 𝐶I𝑓>𝐷(𝑓 −𝐷), (B1)

where the constants 𝐴,𝐵, 𝐶, and 𝐷 are given by 𝐴 = 0.221738, 𝐵 =
1.751889 × 10−7, 𝐶 = 5.416675 × 10−7, and 𝐷 = 9.19031 × 106. Here,
𝑚 is the measurement in ng/mL, 𝑓 is the measurement in MFI, and I
denotes the indicator function on all MFI values, returning one if the
12
measurement is above 𝐷 and zero otherwise. Wei et al. [10] truncated
vaccinated measurements below 2 ng/mL (0.4 % of total data) and
above 500 ng/mL (7 % of total data). The truncation was not applied
to the previously infected and naïve samples because they were first
reported in Ainsworth et al. [9].

In total, there are 976 naïve, 536 previously infected, and 686
vaccinated samples (362 Vaccine A and 324 Vaccine B samples taken
at the 28 day mark).

As a note on the specific choice of antibody studied, immunoglobu-
lin M (IgM) and immunoglobulin A (IgA) could also be suitable candi-
dates for such an analysis. IgG and IgM have been shown to exhibit high
sensitivity and specificity in binary serological tests [26] and blood-
based samples of all three of IgG, IgM, and IgA showed high separation
of values for known positive and negative samples [27]. Separation of
training data populations is important to prevalence estimation because
it can result in nonoverlapping class conditional probability distribu-
tions, which admits the possibility of zero-error prevalence estimation
if the partition is suitably chosen (see Section 6.1).

Appendix C. Data censoring

Given a general distribution 𝑓 (𝑥;𝝋) of parameters 𝝋 that fits the
data between the truncation limits 𝑥min < 𝑥 < 𝑥max, the probability that
a measurement is above the upper truncation limit is

𝑝max = ∫

∞

𝑥max

𝑓 (𝑥)𝑑𝑥, (C1)

and the probability that a measurement is below the lower truncation
limit is

𝑝min = ∫

𝑥min

−∞
𝑓 (𝑥)𝑑𝑥. (C2)

These definitions of 𝑝max and 𝑝min are used in the updated likelihood
function

𝐿(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑝min, 𝑥 = 𝑥min,
𝑓 (𝑥), 𝑥min < 𝑥 < 𝑥max,
𝑝max, 𝑥 = 𝑥max.

(C3)

The PDF can be written as

𝑓 (𝑥) = 𝑓 (𝑥)I(𝑥 ∈ (𝑥min, 𝑥max)) + 𝛿(𝑥 − 𝑥min)𝑝min + 𝛿(𝑥 − 𝑥max)𝑝max. (C4)

Appendix D. 2D synthetic probability models

Our 2D exploration builds off work by Patrone and Kearsley [6],
which used data from an assay developed in Liu et al. [26]. The two
dimensions correspond to measurements taken at the receptor-binding
domain (RBD), a substructure of the spike protein of the SARS-CoV-2
molecule, and the nucleocapsid (N) that stabilizes the ribonucleic acid
(RNA). Values are recorded as MFIs but follow the same logarithmic
scale given by (17). The log-transformed RBD values are 𝑥 and N values
are 𝑦. All model parameters are determined via MLE. The naïve samples
should have relatively low values of both RBD and N since they have
no specific immune response to SARS-CoV-2. However, we still expect
small naïve signals due to cross-reactivity with other coronaviruses
such as NL63 and HKU1, which are versions of the common cold. In
contrast, previously infected samples should have produced a relatively
high immune response to both RBD and N.

It is natural to expect some correlation between the signals, which
motivates a change of variables 𝑧 = (𝑥 + 𝑦)∕

√

2, 𝑤 = (𝑥 − 𝑦)∕
√

2. This
ill cause the data to be distributed along the diagonal. Our naïve
istribution 𝑁 is given by

(𝑧,𝑤; 𝑘, 𝛼, 𝜃, 𝛽, 𝜇) = 𝑧𝑘−1
√

2𝜋𝛼𝛤 (𝑘)𝜃𝑘
exp

(

− 𝑧
𝜃
− 𝑧

𝛽
−

(𝑤 − 𝜇)2

2𝛼2 exp(2𝑧∕𝛽)

)

.

(D1)
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This is a hybrid gamma-normal distribution where the variance of the
variable corresponding to the direction perpendicular to the diagonal,
𝑤, depends on the variance of the variable corresponding to the diago-
nal, 𝑧: 𝜎𝑤 = 𝛼 exp(𝑧∕𝛽). This allows for the data to fan out slightly away
rom the origin along the diagonal.

The previously infected distribution 𝑃 is given by

(𝜁,𝑤; 𝛼, 𝛽, 𝜃, 𝜇) =
𝛤 (𝛼 + 𝛽)

𝜃
√

2𝜋𝜁𝛤 (𝛼)𝛤 (𝛽)
𝜁𝛼−1(1 − 𝜁 )𝛽−1 exp

(

−
(𝑤 − 𝜇)2

2𝜃2𝜁

)

.

(D2)

his is a hybrid beta-normal distribution. Here, we use a different
hange of variables for the diagonal direction to rescale the beta
istribution to its domain [0, 1]: 𝜁 = (𝑥 + 𝑦)∕(9

√

2). Again, the variance
f the second variable 𝑤 depends on the first, 𝜁 : 𝜎𝑤 = 𝜃

√

𝜁 . This is a
modeling choice that allows for a slightly wider distribution for large N
and RBD values. The beta distribution is selected because we recognize
that the previously infected samples should span the entire diagonal
line 𝑦 = 𝑥.

When creating a synthetic vaccinated category, we consider char-
acteristics that set vaccinated and previously infected individuals’ anti-
body measurements apart. Since the vaccines target the binding site on
the spike protein, we expect both vaccinated and previously infected
individuals to have high RBD values. However, only naturally infected
individuals should exhibit high N values. Thus, we create a vaccinated
category that is clustered in the bottom right of an N vs. RBD plot.

For the vaccinated (𝑉 ) population, we use a hybrid Weibull–normal
istribution:

(𝑧,𝑤; 𝛼, 𝛽, 𝛿, 𝜆, 𝜇) = 𝛿

𝜆𝛼
√

2𝜋

( 𝑧
𝜆

)𝛿−1
exp

[

−
( 𝑧
𝜆

)𝛿
− 𝑧

𝛽
−

(𝑤 − 𝜇)2

2𝛼2 exp(2𝑧∕𝛽)

]

.

(D3)

he variance of the second variable 𝑤 depends on the first, 𝑧, and is
he same form as that for the naïve distribution.

ppendix E. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.mbs.2023.108982.
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