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ABSTRACT 

We analyze several pulse-height analysis schemes aimed at realizing maximum precision with 
TES (transition-edge sensor) microcalorimeter x-ray detectors. Issues of concern are 
nonstationary noise when the pulse takes the TES element into a higher resistance region, and 
variability of pulse shape with energy. Furthermore, system noise affects the precision analysis 
of pulse heights in two different ways: inaccuracy of the pulse height and variation in the 
triggering position on the pulse. We show that the weighted fitting of an entire pulse shape to 
obtain pulse height is an efficient way to obtain high resolution. We give a prescription for 
obtaining the best estimated pulse shape. A comparison is made between results with pulse 
shapes derived from different energy regions. 

INTRODUCTION 

Microcalorimeter x-ray detectors of different types have been employed in x-ray spectroscopy 
for a quarter of a century (Wollman et al., 1997; Kenik et al., 2004; Rodriguez et al., 2008), but 
their use is still not widespread. The advantages of these detectors are high energy resolution and 
a wide energy range (Enss and McCammon, 2008). The disadvantages are a relatively low count 
rate per absorption element and the lack of a fixed energy scale. Nevertheless, improvements in 
performance, with the development of multiple detector elements and commercially reliable 
superconducting electronics, have completely transformed these detectors. Coupled with 
advances in the pulse-processing hardware and software, they can be seriously considered as a 
routine tool for energy-dispersive x-ray microanalysis (EDXMA) on electron microprobe 
instruments. 

A microcalorimeter detector is simply an absorber of individual x-ray photons coupled to a 
temperature sensor. The most common type of sensor is the transition-edge sensor (TES), a thin 
superconducting film that is biased somewhere in the middle of the superconducting-normal 
phase transition (Irwin and Hilton, 2005). Very small changes in the temperature of the absorber 
lead to measurable changes in the resistance of the sensor, and the absorption of a single x-ray 
photon gives rise to a negative current pulse.  

The ultimate limits in the precision of the detector energy resolution are determined by system 
noise, the nonlinearity of the TES, and the issue of pulse pileup. These factors also affect the 
count rates that can be achieved. Thus, the performance of the detector is really a question of 
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pulse processing. Microcalorimeter x-ray detectors are designed with absorbers suitable for a 
specific energy range Er and are typically capable of resolution on the order of 5 × 10-4 of that 
range (Fowler et al., 2016). In this paper we shall discuss the tradeoffs that have been employed 
to balance count rate and resolution. We propose an approach suited to real-time pulse 
processing which is likely to give the best resolution with practical count rates for use with 
scanning electron microscopes and electron microprobes. 

CURRENT STATE OF PULSE MEASUREMENT METHODS 

The characteristics discussed in this work apply to TES detectors designed for an energy range Er 
of 200 eV to 10 keV, which is comparable to conventional silicon drift detectors used in 
microanalysis. A plot of our TES resistance as a function of bias voltage applied in a typical 
circuit (Lindeman et al., 2004) is shown in Fig. 1. The TES is totally superconducting at zero 
bias and undergoes a gradual transition to a totally normal state with a resistance of 
approximately 6 mΩ at around 0.7 V bias. By choosing to operate at the bias point shown, X-ray 
photons heating the absorber  will drive the TES further into the normal resistance region. 
Theoretical treatments of the equations governing the TES behavior show the amplitude of the 
current pulses saturating at increasing energy while their area increases (Cabrera, 2008).  

Figure 1. Plot of the resistance of a typical TES sensor as a function of a bias voltage showing the transition between 
the superconducting state (at Vbias = 0) and the totally normal state. The operating bias point is indicated. 

A plot of the normalized pulse shape for the same TES detector is shown in Fig. 2 as a function 
of  photon energy. It is seen that for incident photons up to approximately 7 or 8 keV energy, 
while the pulse amplitude may vary, the pulse shape remains relatively constant. Pulses due to 
photons beyond that energy are not only progressively nonlinear, but the noise spectrum 
becomes nonstationary. Successive noise and TES operating characteristics then depend on the 
previous values of the pulse. In the interest of operating over the maximum energy range 
possible, covariance matrix methods have been developed to extract pulse energies from pulse 
heights with the maximum resolution (Fixsen et al., 2004; Fowler et al., 2016). If each pulse is 
digitized over a time series of n samples, an n x n covariance matrix must be inverted after 
sufficient pulses are collected to ensure convergence. If the noise level is low, this can require 

Bias point 
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collecting a very large quantity of data, since the matrix will converge slowly. An optimal filter 
can be constructed from the covariance matrix and the model pulse shape using the method of 
least squares (Fixsen et al., 2014). The pulse height of any further pulses can be determined by 
application of this filter. If the pulse shape or noise distribution is changing rapidly with energy, 
a series of optimal filters must be fashioned to cover successive windows of energy. 

Similar challenges to resolution arise over the issue of pulse pileup. The thermal relaxation 
inherent in microcalorimeter detectors leads to pulse rise times of the order of 10 μs and decay 
times of the order of 200 μs. Significant pulse pileup will result at even modest count rates of 
100/s for a single detector element. In order to realize the resolution of 5 eV promised for the 
energy range specified above, pulse heights have to be accurately measured to 1 part in 2000. 
Methods devised to extract pileup pulses without forsaking energy resolution again require a 
covariance matrix approach, even when the noise is taken to be stationary (Fowler et al., 2015). 

Figure 2. Calculated pulse shapes (normalized) as a function of incident photon energy for a representative TES 
detector, showing the nonlinear effect of saturation as the sensor goes increasingly normal.   

DESCRIPTION OF PROPOSED MEASUREMENT METHOD 

There are applications where operating the microcalorimeter TES detectors at the limits of 
energy range or count rate are highly desirable. In the interest of developing a pulse processing 
system that is sufficiently straightforward for use with EDXMA on electron microprobe 
instruments, a more conservative set of operating conditions can lead to a simplification of 
computation while achieving good energy resolution. We limit our energy range to 
approximately 75% of Er (i.e., 7 keV-8 keV) and apply strong rejection of pileup pulses. Finally, 
we determine the optimal method to measure pulse heights under the constraints of stationary 
noise and discrete sampling. The method achieves an increased resolution compared to a 
conventional pulse height measurement while retaining the real-time counting performance. It 
also decreases the variation between detector elements. 

Our procedure for the strong rejection of pileup pulses has been described previously (Jach and 
Thurgate, 2019; Thurgate and Jach, 2021). Briefly, a number of pulses whose amplitudes have 
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been digitized as time sequences is averaged to minimize the effects of pileup and noise. A 
second sequence of pulses, rejecting those with a low correlation coefficient with the previous 
average pulse, is then averaged in the same manner. This process is repeated multiple times, with 
successively tight correlation coefficients, to arrive at a “model pulse” that also has a stable, flat 
baseline. The final step is to record a sequence of pulses over the desired energy range with 
strong correlation to the model pulse, and to determine their pulse heights and areas. A 
polynomial fit to the ratio of pulse heights to pulse areas is used as the template for selecting 
pulses undistorted by pileup when obtaining actual spectra. 

The pulse heights thus determined relied on polynomial fits to only the peak region of a pulse, 
calculated relative to the stable baseline. It was realized, however, that system noise affects the 
precision analysis of pulse heights in two different ways: inaccuracy of the pulse height and 
variation in the triggering position on the pulse. Once the pulse amplitude exceeds a threshold 
value, the pulse is digitized by a time sequence of samples. There are two components that relate 
to the trigger level. The random arrival of pulses relative to the fixed timing of digital sampling 
produces an ensemble of pulse displacements determined by Poisson statistics (Fowler et al., 
2016). In addition, amplitude noise on each pulse, ∆𝑣𝑣, in affecting the trigger level, results in an 
effective time offset of the leading edge of the pulse by an amount 

∆𝑡𝑡 = ∆𝑣𝑣 �𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

�
−1

, (1) 

where 𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑡𝑡 is the slope of the pulse leading edge. These effects cause a variation in position 
of the actual maximum of the pulse, relative to the sampling points in the time sequence. They 
are responsible for a significant variation in the pulse height obtained by a polynomial fit to the 
peak, as determined from the digitized values.  

This is readily seen by doing least squares fits of each entire pulse to the model pulse. The least 
squares method can be carried out very efficiently using the methods of linear algebra. In this 
case, let  𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) be the n discrete sampled values of the model pulse, and 𝑏𝑏 =
(𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑛𝑛) be the n discrete sampled values of any given pulse. Then the height 𝑥𝑥1 and offset 
𝑥𝑥2 of each pulse can be fit by the matrix equation 

𝐴𝐴𝑥𝑥 = 𝑏𝑏, (2) 

where 𝐴𝐴 = �

𝑎𝑎1
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∙
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�  , (3)        

and 𝑥𝑥 = �
𝑥𝑥1
𝑥𝑥2�        . (4) 

The least squares solution is given by 

𝐴𝐴𝑇𝑇𝐴𝐴𝑥𝑥 = 𝐴𝐴𝑇𝑇𝑏𝑏 , (5) 

leading to
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𝑥𝑥 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑏𝑏 . (6) 

The variance of each point is given by 

𝜎𝜎𝑖𝑖2 = |𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖|2 . (7)

Figure 3. Plot of the residuals averaged over 25,000 pulses relative to the position of the model pulse (not to scale). 
The vertical scale describes the amplitude of the residuals assuming a model pulse height normalized to 1 V.   

Fig. 3 shows the residuals at each sampled point in an individual pulse, as obtained in a least-
squares fit to the model pulse, averaged over actual data from 25,000 pulses, and normalized to a 
pulse height of 1 V (the model pulse is shown for comparison). The least errors along the 
digitized values of the entire pulse are relatively uniform, except in the region of the leading 
edge and the peak of the pulse, where they are significantly greater. It suggests that the effective 
way to obtain a better estimate of pulse height is 1) to fit the entire pulse, instead of a polynomial 
approximation of the peak, and 2) to do a weighted fit which minimizes the effects of noise on 
triggering at the leading edge.  

In that case, we weight each of the sampled points in a pulse by 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛), and define 
a diagonal weighting matrix by 𝑊𝑊𝑚𝑚𝑛𝑛 = 𝑤𝑤𝑚𝑚𝛿𝛿𝑚𝑚𝑛𝑛 

In that case, matrix equation (eqn. 2) is modified to  

𝑊𝑊𝐴𝐴𝑥𝑥 = 𝑊𝑊𝑏𝑏, (8) 

And the least squares solution is given by 

𝑥𝑥 = (𝐴𝐴𝑇𝑇𝑊𝑊𝑇𝑇𝑊𝑊𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑊𝑊𝑇𝑇𝑊𝑊𝑏𝑏 . (9) 

Note that the least-squares fit is essentially a fit restricted to values along the main diagonal of 
the covariance matrix in the method cited previously (Fixsen et al., 2004), so the computation is 
considerably simplified. Since the weighting matrix is diagonal, the addition of the weighting 
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matrix to the least squares fit of each pulse also has a minimal effect on the ability to do the 
calculations on each pulse from multiple detectors in real time.  

While normally the weights are given by 𝑤𝑤𝑖𝑖 =  (𝜎𝜎𝑖𝑖2)−1, we employed a weighting matrix that 
imposed stricter constraints on the fitting process than usual. In the tail of the pulse, the standard 
deviation is the standard deviation of the errors relative to the model pulse once the individual 
pulses are normalized to 1. The weighting function in this region is defined as 

𝑤𝑤𝑖𝑖 = 1 − 𝜎𝜎𝑖𝑖
𝑆𝑆𝑖𝑖

  , (10) 

where 𝜎𝜎𝑖𝑖 is the standard deviation of the ith sample in the time series of the pulse, and 𝑆𝑆𝑖𝑖 is the 
value of the model pulse at that time. The contribution to fitting any pulse to the model pulse 
decreases in the asymptotic value of the tail, and the weighting function becomes unreliable. At 
the point where 𝑆𝑆𝑖𝑖 is less than 3 𝜎𝜎𝑖𝑖, we  truncate the weighting function by setting
  𝑤𝑤𝑖𝑖 = 1 − 0.333 . 

To deal with the weight around the leading edge of the pulse, the maximum slope of the model 
pulse 𝑑𝑑𝑏𝑏 𝑑𝑑𝑡𝑡⁄  is calculated from the slope at the inflection point of the pulse. Individual phase 
delays are defined as the calculated value for the inflection point of each pulse relative to the 
trigger point. The standard deviation of all these phase delays 𝜎𝜎𝑡𝑡 is computed, and a standard 
deviation for the leading-edge height is assigned as 

𝜎𝜎𝑖𝑖𝑛𝑛 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡
𝜎𝜎𝑡𝑡 , (11)

with a weighting 

𝑤𝑤𝑖𝑖𝑛𝑛 = 1 − 𝜎𝜎𝑖𝑖𝑖𝑖
𝑆𝑆𝑖𝑖𝑖𝑖

  , (12) 

where 𝑆𝑆𝑖𝑖𝑛𝑛 is the value of the model pulse at the inflection point. Fig. 4 shows a plot of the 
weighting function relative to the model pulse.  

Table I shows the improvement in resolution realized by an array of 8 TES detectors for the Si 
Kα1,2 line excited by electrons in an SEM. The first column is the line width obtained using the 
polynomial fit to the peak of pulses to obtain the energy. The second column shows the line 
widths obtained by a weighted fitting of each entire pulse. The effect of fitting the entire pulse is 
to improve the average resolution by 12%. Furthermore, the standard deviation of resolutions 
from the ensemble of detectors improves by 33%. Thus, the effect of fitting the entire pulse 
brings the collective performance of the detectors into greater uniformity. 
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Figure 4. Plot of the weighting function determined by the residuals shown in Fig.3. The weights are scaled relative 
to the model pulse normalized to unity. 

Table I 

Detector Old Resolution 
(eV) 

New Resolution (eV) 

A 5.18 4.55 

B 5.32 4.58 

C 5.45 4.72 

D 5.10 4.55 

E 5.71 4.93 

F 5.12 4.60 

G 4.68 4.24 

H 5.10 4.41 
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A final question to be answered is whether the effect of adding pulses of different energies (and 
therefore slightly different lineshapes) to obtain the model pulse affects the overall resolution for 
the detector element. Fig. 5 shows the actual fit to the energy spectrum from a single detector 
element in the region of the Si Kα1,2 line using a model pulse constructed from pulses of x-rays 
from all energies in the spectrum.  To test the effect of pulse shape variation with energy, “model 
pulses” were then constructed not from data but  generated from the characteristics of our TES 
detector elements (Cabrera, 2008) at two different energies. The same data were fitted using 
model pulses as they  were calculated to look at the energy of the Si Kα1,2 line (1740 eV) and the 
Fe Kα1 line (6404 eV). After obtaining pulse energies by refitting the same data to the low 
energy “model pulse” and the high energy “model pulse”, the width of the Si Kα1,2 line obtained 
from the lower energy model pulse was 4.54 eV, and from the higher energy model pulse was 
4.77 eV. Thus, for a detector limited in operation to 75% of its range of 10 keV, the effects of 
pulse nonlinearity have a minimal effect on the resolution. 

Figure 5. Plot of a fit to the Si Kα1,2 line using the improved least squares solution detailed in Eq.9. The sensitivity 
to the energies used to determine the model pulse are described in the text. 

CONCLUSIONS 

We describe a system for extracting the energy of x-ray pulses from the TES microcalorimeter x-
ray detector that provides superior energy resolution over simple pulse height analysis while 
proving computationally more economical that previously described covariant matrix methods. 
The weighted least-squares fitting of individual pulses to a model pulse in real time is easily 
accomplished and lends itself to high-resolution EDXMA detectors on an electron microprobe. 
The simplification is achieved at some cost of the ultimate detector energy range and by strict 
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rejection of pileup pulses, but incorporation of multiple detector elements make this less of an 
issue. 

The system that we describe has been implemented in real-time operation with NI® ADC 
electronics and LabVIEW® software*. It has been operated with up to 16 detector elements at 
over 100 counts/s and could be extended to a larger number of elements. We believe that this 
represents a system that would be of practical value for EDXMA on electron microprobe 
instruments. 
*Any mention of commercial products is for information only; it does not imply recommendation or endorsement by
the National Institute of Standards and Technology.
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