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Abstract: Emerging neuromorphic hardware promises to

solve certain problems faster and with higher energy

efficiency than traditional computing by using physical

processes that take place at the device level as the compu-

tational primitives in neural networks. While initial results

in photonic neuromorphic hardware are very promising,

such hardware requires programming or “training” that is

often power-hungry and time-consuming. In this article, we

examine the online learning paradigm, where the machin-

ery for training is built deeply into the hardware itself. We

argue that some form of online learning will be necessary

if photonic neuromorphic hardware is to achieve its true

potential.

Keywords: integrated photonics; neural networks; neuro-

morphic photonics.

1 Introduction

Neuromorphic engineering aims to implement neural net-

works in hardware by combining neurophysiological prin-

ciples with engineered device physics [1]. Neuromorphic

hardware could break the limitation of conventional dig-

ital computers in terms of speed and energy efficiency

[2] for implementing artificial intelligence (AI) applications

enabled by machine learning. A wide variety of devices

have been proposed for this new paradigm, including ana-

log, digital, and hybrid analog–digital CMOS technology
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[3, 4], memristive devices [5], magnetic tunnel junctions [6],

superconducting devices [7], and indeed a variety of pho-

tonic platforms. Neuromorphic photonics [8]—combining

photonic device physics with distributed processing mod-

els—has resulted in a new class of ultrafast information

processors [9]. Free space optical neural networkswere first

demonstrated in the 1980s and 1990s [10–12] while more

recent neuromorphic photonic demonstrations range from

free-space [13, 14] to integrated [15, 16] implementations,

spiking neural networks [17–19] and artificial and deep

neural networks [20, 21], to reservoir computing [22–24].

However, the training of neuromorphic hardware is still

primarily performed on conventional computers. Referred

to as offline learning, in this paradigm, network parameters

(e.g., weights and biases) are determined in software based

on a computational model of the physical system, and then

these parameters are mapped to the physical device which

is used for inference. Offline learning has proven to be a

valuable tool in neuromorphic engineering, well-suited to

mass production, where the results of a single simulation

can be mapped to large numbers of devices. For offline

learning to be effective, very accurate models of the indi-

vidual network devices must be developed. One significant

body of ongoing work in photonic neuromorphic engineer-

ing is optimizing the reliability of the design, fabrication,

andmanufacture of optical devices such that offline training

leads to reproducible results. However, offline training may

rule out various devices that cannot be easily modeled and

simulated in this way – for example analog devices, or non-

standard architectures such as highly recurrent or nonlin-

ear networks. Offline learning is also very power-hungry

for applications that often need retraining, resulting in a

static model that is hard to adapt to new data and adjust for

different scenarios [25]. An alternative approach is needed

for these cases. Online learning may be just this alternative,

allowing new classes of devices and architectures to be

developed and providing other new capabilities that can-

not be provided with offline training alone. In fact, many

large-scale neuromorphic demonstrations in both photonics

[13, 26–28] and other platforms [29–32] have leveraged some

form of online learning.

Online learning refers to training that takes place on the

same hardware that is used for inference. Online learning
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can be either supervised or unsupervised; the critical fea-

ture is that it is done without requiring an external model

of the device being trained. This article will focus on super-

vised learning, as it is the most common type of training

used on photonic hardware.While reliable digital platforms

such as very large-scale integration (VLSI) devices may be

effectively simulated and do not necessarily require online

learning [33], online learning is already a topic of signifi-

cant investigation in analog VLSI systems [34], memristive

crossbar arrays [29, 30, 35, 36] and a variety of other novel

architectures with complex, recurrent or nonlinear interac-

tions that cannot be easily modeled or describedmathemat-

ically [32, 37–39]. At the device level, variability can lead to

degradation in the measured inference accuracy compared

to the expected, offline-simulated inference accuracy. This is

an endemic, historically significant issue for many types of

emerging hardware. In Section 2,wewill discuss how recent

approaches have addressed variability for photonic devices.

Ultimately, many of these offline training solutions require

sacrificing some of the inference capabilities of the device

to make it more “trainable” or adding models that include

individual device data to the training simulation. At the

system level, new architectures could have significant com-

putational power [40] if a feasible training technique could

be identified, and nonlinear effects and crosstalk could be

harnessed rather than compensated. In Section 3, we dis-

cuss the experimental progress on implementing differ-

ent online training techniques and how they have already

enabled improved performance at certain tasks.

From a hardware perspective, the complexity of the

devices used for online learning will need to be increased

compared to inference-only devices. The exact nature of

these new devices and components will depend on the

specific learning algorithm and the degree of autonomy

required. However, this complexity would also bring a great

deal of flexibility to these systems; allowing them to com-

pensate for variability andnoise, ultimately leading tomuch

larger networks and enabling us to take full advantage of its

information processing capabilities. In Section 4, we make

the argument that photonics, in particular, is a good candi-

date for online learning and that many successful experi-

mental demonstrations of photonic neuromorphic systems,

from the 1980s to the present day, have involved some form

of online training. Although the problem of training opti-

cal neuromorphic hardware has been considered since the

1980s [11] and likely earlier, a one size fits all solution has not

been found. The further development of online algorithms

and the associated physical implementations will greatly

enable the scaling of photonic neuromorphic systems and

enhance their performance. Online learning could allow

photonic neuromorphic systems to entirely avoid issues

with imperfect modeling and thermal and electrical cross-

talk, and could help foster the next generation of photonic

neuromorphic systems that are competitive with digital

electronic systems at AI tasks.

2 Training: from offline to online

2.1 Offline training

Training for most machine learning systems is done with

an optimization technique known as gradient descent, using

the backpropagation algorithm to calculate the gradient

[41, 42]. The idea is that a large quantity of “training data”

is fed into the network, while the network’s output is com-

pared to the known, desired output, and an error or cost

is computed. The gradient of the weights and biases with

respect to the cost is calculated, and theweights are adjusted

in the opposite direction to this gradient. When training

on hardware for machine learning, the most common tech-

nique is to map the weights and biases from a computer-

modeled network trained in-silico using gradient descent

via backpropagation to an equivalent hardware network.

This is “offline” training, and it works very well for digi-

tal systems in which all device characteristics are known

with high accuracy. While it is possible to perform other

types of training and map them to hardware, in practice,

offline training is almost always accomplished via back-

propagation. There are many advantages to this type of

training. With offline training, hardware can leverage the

latest software techniques/computational power for train-

ing neural networks. One training simulation can be used

to program the weights and biases on multiple, identical

devices – assuming those devices do not have too much

variability. Theweight update process in hardware does not

need to be fast, as the weights are programmed into the

system and do not need to be modified regularly.

However, there are also some significant disadvantages

to offline training.Many emerging hardware platforms, par-

ticularly analog hardware, suffer from deviations from the

original design parameters. These imperfections can signif-

icantly degrade the effectiveness of offline training, result-

ing in an inference accuracy that will ultimately be much

lower than the simulated model accuracy without further

optimization ormeasurements. This is due to the fact that in

a deep network or general hierarchical process, even a few

per cent difference between the simulatedmodel and reality

can result in large inaccuracies. Ref. [43] describes this for

a very simple hierarchical model, where a 0.5% change in
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one of the model parameters can lead to a 30% difference

in the output after 20 layers. Additionally, it is often difficult

or impossible to accurately model effects such as noise or

cross-talk for offline-training. Even when these effects are

small, they can distort the in-silico training process and sig-

nificantly reduce the inference accuracy obtained in hard-

ware compared to the expected modeled accuracy.

Training on models that account for hardware

considerations and imperfections is often known as

“hardware-aware” training. Although hardware-aware

training improves accuracy and can improve other

parameters such as static and dynamic power consumption

[44], it typically makes the simulations more complicated,

cumbersome, and slow. The measurement and evaluation

of individual devices needed to buildmore hardware-aware

models can also be involved and may limit ultimate device

scaling. For example, in crossbar arrays with ReRAM

devices, an analog memory technology being heavily

investigated in both industry and academia, it is still typical

for the training simulation to include a physicalmodel of the

device and to monitor and re-adjust conductance values of

the devices during programming to improve performance

[45]. In optical devices, similar hardware-aware approaches

are common, with compensation both for the behavior of

individual devices and device cross-talk between devices

[46, 47], which adds significantly to time and energy costs

of training.

Another approach tomitigate the device-to-device vari-

ability is to model and operate the hardware as a low-bit-

depth digital system, where the bit depth is chosen such

that the system can be modeled accurately despite device-

to-device variations. This is common in other neuromorphic

hardware platforms, such as memristive crossbar arrays

[48] or phase change materials [35], where bit depths of 6–8

can be achieved by careful device engineering and char-

acterization. In photonic systems, achieving high bit-depth

typically means using feedback and measurement mecha-

nisms to improve the stability of the weights, increasing the

overall effective bit depth and therefore the ease ofmapping

the model to hardware [49]. Bit-depth can also be increased

by implementing the weights in a time-multiplexed digital

configuration [50]. These solutions increase overhead in

time, experimental complexity, or device size. Alternatively,

some researchers have focused on developing training tech-

niques that work with extremely low bit-depth, even limit-

ing themselves in some cases to single bit [51]. In either case,

even though inference tasks can, in principle, be done with

analog representations of numerical values, the hardware

is instead operated in a digital configuration so that the

trained model can be more easily mapped to the hardware.

2.2 Autonomous online learning

One potential solution to many of these issues is to build

hardware that can train itself, in a process that we refer

to here as “autonomous online learning”. In this type of

self-training device, also referred to as a physical learning

machine [39], the training data and labels would be fed

directly into the device, and it would adjust its weights

and biases autonomously in response. No computer would

be required in any part of the process, and therefore

there would be no need to bring the chip offline for train-

ing, as it could be retrained in the field. Online training

would allow training of fully analog systems, with fab-

rication imperfections accounted for during the training,

obviating the need for making numerous measurements

to characterize individual components. This is possible in

online training because the machinery for compensating

for the non-idealities is built into the device. Autonomous

online learning has been implemented in several digital

hardware platforms as a means to reduce the energy cost

of training [25, 52], and great progress has been made in

circuits for autonomous online learning in analog or ana-

log–digital platforms such as platforms based on analog

CMOS [36],memristive crossbar arrays [35], and indeed pho-

tonics [28, 53, 54].

Truly autonomous learning has yet to be demonstrated

in photonics. This is due to the complexity of including

all of the components needed for training in hardware.

Implementing autonomous online learning is particularly

onerous in the case of the backpropagation algorithm as it

requires hardware implementation of backward communi-

cation channels, baked-in knowledge of nonlinear deriva-

tives, and more. Because of this, although there have been

proposals for performing backpropagation on free space

[53, 55–58] and integrated photonic hardware [54, 59], many

other online training proposals suggest altering the train-

ing algorithm to make it more hardware-friendly [28, 60]

(see Section 3). However, no matter what algorithm is used,

one difficulty in photonic hardware is that fast weight

updates are needed, as weights are always dynamically

updated during online training. Thermal tuning with ring

resonators [15, 61] or Mach–Zehnder interferometers [20]

(MZIs) is one of the main techniques for implementing

weights in integrated photonic hardware. While simple to

implement with heaters, thermo-optic tuning can be slow

(kHz), power-hungry (often requiringmilliwatts of constant

power draw per weight), and their stabilization can be

challenging; however, with feedback control techniques,

record weight precision of 7 bits [62] and recently, 9 bits

[49] have been reported. The high-power consumption of

thermal tuning is an issue for offline and online training
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and will require further advances. While other options

exist for fast (GHz) and energy-efficient tuning, including

carrier injection (forward-bias PIN junctions) or carrier

depletion (reverse-biased PN junctions), their limited tuning

range means that the ring resonators need to be supple-

mented with post-fabrication trimming techniques [63]. In

contrast, carrier effects do not typically achieve the index

changes necessary to operate MZI neural networks. Other

potential technologies being investigated for weight tun-

ing include micro- and nano-electromechanical effects [64],

piezo-optomechanical effects [65], and optical phase change

materials [66, 67], which all promise faster tuning with

lower static power consumption, but present newmaterials

and integration challenges.

2.3 Hardware-in-the-loop

In practice, training does not need to be either fully offline

or online; instead, there may be a continuum between

offline and online autonomous training. This is shown in

Figure 1. One approach oftenused is “hardware-in-the-loop”

or “chip-in-the-loop” training. Rather than internal com-

putations performing self-adjustments during training, the

device parameters will be read out externally to a computer

that computes the necessary weight updates. This is done

in a “loop” such that the weights are dynamically updated

during the training. Hardware-in-the-loop algorithms may

require offline computations that use some or all of (i) the

output of forward pass (inferences) read from the device

during training, (ii) weights dynamically read from the

device during training, and (iii) a physical simulation of the

device. The fewer these elements required, the closer the

training becomes to being “autonomous online”. The on-

chip part of the calculations used in hardware-in-the-loop

can compensate for fabrication imperfections or differences

between model and reality. Depending on the algorithm

used, it is possible to avoid building a hardware simulation

model. Therefore chip-in-the-loop is more suited to analog

systems than offline training. As with online training, fast

weight updates are needed, as weights are dynamically

updated during training. Since all of the weights must be

updated in a loop, theremay be I/O issues causing speed bot-

tlenecks during this type of training, especially as the system

is scaled up. Like online training, hardware-in-the-loopmay

also benefit fromalgorithms other than backpropagation. In

practice, due to the complexity of electronic-photonic inte-

gration, most of the online training that has been demon-

strated so far has been some form of hardware-in-the-loop

training.

2.4 On-chip “fine-tune” training

In between chip-in-the-loop and offline training is another

case that we call “fine-tune” training, which is also some-

times referred to as adaptive training. In this case, a “coarse”

training is initially performed in-silico via backpropagation

on a simulated network, and the trained parameters are

programmed to the photonic device. After weights are pro-

grammed, the device’s performance is evaluated, and the

weights may be updated via either further simulation or

hardware-in-the-loop type updates. Fine-tune training can

combine some of the advantages of offline training with the
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Figure 1: Training on photonic hardware ranging from fully offline to fully online. (a) Offline training, where a model of the physical system and the

training dataset are trained on a computer, and the weights are transferred to the device. (b) “Fine-tune training”, where the system is trained as in

(a), but the weights are adjusted to improve the accuracy after transfer to the device. (c) Hardware-in-the-loop involves measuring the chip during

training, but some portion of the calculations for training still happen on a computer. (d) Fully autonomous online learning. In this case, only the

training dataset is input to the device, which can adjust its weights autonomously as it learns.
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Figure 2: Proposals for training photonic hardware. (a) and (b) Simulations of fully autonomous online learning proposals for gradient descent via

backpropagation in (a) integrated photonics [59] and (b) free space [56]. (c)–(f) Experimentally demonstrated hardware-in-the-loop. (c) The measured

activation functions are used in the hardware-aware training of micro-ring resonator based neuromorphic device for optical signal processing [61]. (d)

Integrated implementation of DFA where the backward pass is computed on-chip [60]. (e) Fine-tune training of the network increases the accuracy of

handwritten digit recognition from 63.9% to 96% [68]. (f) Training of a free-space physical neural network where the calculation of the forward pass in

the device prevents accumulation of errors that can happen in offline training [43].

benefits of online training. Fine-tune training can reach a

higher accuracy than just offline training [68] because the

on-chip fine-tuning compensates for defects/variations. It

can also be used to reduce the energy cost of the trained

model, for example, by setting certain inconsequential volt-

ages to zero and repeating training. For hardwarewith slow

weight updates, fine-tune training could help to account

for fabrication variability without requiring as many

dynamic weight changes. The major disadvantage is that it

requires multiple training techniques, which can add over-

head to training. The more fine tuning needed, the more

the speed of the weight changematters (e.g., thermal tuning

will be very slow). The more measurements that need to

be made, the further away from being truly “offline” that

it is. The best training approach will generally depend on

the hardware and the application. However, online training

could have many advantages if it is truly realized in pho-

tonic hardware.

2.5 Other approaches

While these considerations apply to most photonic neural

networks, it is worth mentioning a few special cases for

which some of the above discussions do not apply. Spik-

ing neural networks are a class of neuromorphic networks

that try to emulate how information is encoded in the

brain. Many photonic hardware platforms have been pro-

posed using spiking optical signals [18, 69, 70]. However, the

brain’s algorithm for learning with spiking signals is not

well understood. There are many techniques for encoding

information in spiking signals, each requiring special treat-

ment. Learning in spiking systems is beyond the scope of

this article, but a detailed introduction to the issues and

challenges can be found in Ref. [71].

Reservoir computing is another proposed type of

computing with many potential photonic implementations

[23, 24, 72, 73]. The idea with reservoir computing is not to

train on the hardware but instead to take a complicated,
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linearly inseparable problem and, using hardware, per-

form a complex nonlinear transformation to turn it into

a problem that can be solved more easily in software (for

example with a linear solve), or another simpler hard-

ware device at the input/output of the reservoir [73, 74].

Reservoir computing is simpler than many other network

types to implement in photonics because it does not require

hardware training. Despite the relative ease of implementa-

tion of reservoir computing, current theory cannot connect

reservoir characteristics – such as size, network topology

and nonlinearities – to computational performance. There-

fore, its potential for reliably solving larger-scale problems

in realistic contexts has yet to be demonstrated. In the case

of reservoir computing, online learning for the internal

reservoir weights likely will not apply.

3 Experimental progress in online

training of photonic hardware

3.1 Backpropagation in hardware

Backpropagation is an algorithm for calculating the gradi-

ent of the cost with respect to network parameters for gra-

dient descent optimization [41]. Backpropagation followed

by gradient descent is the most commonly used technique

for training deep neural networks in software and there-

fore has been an obvious choice for direct implementation

in hardware for online training. Although hardware for

implementing backpropagation is still in the development

phase in most hardware platforms, there has been signif-

icant progress in fully analog networks where circuits for

weight updates have been demonstrated [36], and memris-

tive crossbar arrays [35], where the relevant circuits have

been simulated and evaluated.

The backpropagation algorithm involves computing

the derivatives of the cost with respect to the outputs of

neurons in the last network layer, and then recursively

computing loss gradients in previous layers using the chain

rule. The chain rule computation requires a layer-wise mul-

tiplication of the transpose of the weight matrix by the

error signal. This part of the backpropagation calculation

is very well suited to optical implementations: most pho-

tonic neural network backpropagation schemes leverage

the fact that optical synapses or weights are bi-directional

[55]. A common hardware implementation uses a conjugate

mirror to reflect an optical error signal through the same

optical path as in the forward direction, thus propagating

it through the transpose of the weight matrix in the for-

ward direction, a technique that was first employed in the

1980s in free space optical networks [10, 53]. The major

difficulty is that this symmetry provides only one part of the

backpropagation computation – it does not account for the

nonlinearity, which must be implemented differently in the

forward and backward processes. Proposals have typically

approached this by using a different optical frequency or

power in the backward direction and choosing amaterial or

device with an optical nonlinearity that behaves differently

in this configuration, such as Fabry–Perot etalons [53] or sat-

urable absorbers [57]. Another proposal [75] is to use a spe-

cific activation function with a constant derivative. Alter-

natively, Hughes et al. [59] propose computing the required

function digitally and applying it to the backpropagating

signal electro-optically. Some experimental proposals for

backpropagation in hardware are shown in Figure 2.

A fully autonomous online implementation of back-

propagation in photonic hardware has not yet been real-

ized experimentally due to the challenging nature of the

proposed experiments. In an integrated demonstration,

Pai et al. [54] implemented the error computation pro-

posed in Ref. [59] experimentally in an MZI vector-matrix

multiplier by implementing beam taps to read off the

forward and error signal and perform the necessary com-

putations for the weight adjustments in a hardware-in-the-

loop configuration. Similarly, the proposal of Wagner et al.

[53] was partially implemented experimentally, with the

requisite nonlinearity calculation computed on an exter-

nal computer. The success of these hardware-in-the-loop

demonstrations shows the importance of adding an online

training to photonic neuromorphic hardware. Despite this

progress, these proposals are all significantly more chal-

lenging than inference-only operation. These difficulties are

due to the properties of the backpropagation algorithm,

which has motivated the investigation of more hardware-

friendly algorithmic approaches.

In an alternative to online error computation, several

papers [43, 76] showed that inference accuracy could be

improved by implementing only the forward pass in hard-

ware and computing the errors and nonlinear activations

in software in another variation of a hardware-in-the-loop

technique. The advantage of this technique is that differ-

ences betweenmodel and experiment are partially compen-

sated for in each pass, as there is experimental feedback.

Even though a model of the system is needed for training,

the model accuracy may not need to be as good due to

this forward-pass compensation. It is important that, going

forward, the effectiveness of these techniques are evaluated

for large-scale networks, where, for example, approxima-

tions made in the backward direction may have more of

a detrimental effect. Many techniques that work on small,
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shallow networks can break down on the larger deep neural

networks used to classify modern datasets, so investigation

at scale is crucial [77, 78].

3.2 Approximate gradient descent in
hardware

An important point to note is that backpropagation is not the

optimization algorithm used on neural networks but rather

just a technique used to calculate the gradient. In fact, there

are alternativemethods for calculation or approximation of

the gradient. One of the conceptually most straightforward

methods is the finite difference. In finite difference, every

weight in the network is perturbed by a small amount,

Δ𝑤, and the change in the cost, ΔC, is recorded. The ratio
ΔC∕Δ𝑤 is used as an approximation for the partial deriva-

tives 𝜕C∕𝜕𝑤, which are combined to construct the gradient

and perform a step in gradient descent. As the perturba-

tion size goes to zero, the gradient approximation becomes

exact. A hardware implementation was demonstrated in

Ref. [20] as a method for training an MZI optical neural

network. However, the disadvantage of this technique is

that it requires perturbing every parameter before taking

a step, keeping track of the order of perturbation glob-

ally, and, if implemented on-chip, it requires an extra per-

synapse memory to keep track of each gradient component.

Together, these issues have kept finite difference an unap-

pealing technique.

These challenges canbe overcome inhardware bymod-

ifying the gradient approximation technique, for example,

by perturbing parameters simultaneously and performing

updates more frequently, as in the simultaneous perturba-

tion stochastic approximation (SPSA) algorithm [80]. SPSA

significantly speeds up the training process when compared

to finite-difference, and eliminates the need for individual

memories at each parameter to store the gradient com-

ponent. Additionally, the parameter perturbations can be

randomand either analog or discrete, making the technique

asynchronous and flexible for different types of weight

implementations. SPSA was first implemented in analog

VLSI hardware in the 1990s [81, 82] on small-scale problems

such as 2 bit parity and has even been shown to be effective

on recurrent neural networks [83]. More recently, there has

been a resurgence of interest in this type of training on

emerging analog neuromorphic hardware platforms, from

memristive crossbars [84] to a recent demonstration onpho-

tonic MZI neural networks with integrated nonlinearities

[28] solving a vowel recognition problem. Many different

perturbative algorithms, including SPSA, can be imple-

mented on-chip or as ahardware-in-the-loopprocess using a

hardware-friendly framework called multiplexed gradient

descent MGD. It has recently been shown that using MGD

with realistic hardware parameters, MGD can be competi-

tive with backpropagation in terms of speed and accuracy

as it is scaled up to large problems [85].

Figure 3(a) shows a comparison of the SPSA algorithm

(as implemented in MGD [85]) to backpropagation, train-

ing on the CIFAR-10 dataset in a network with ≈30, 000
weights and biases. The MGD simulations have indicated

that, for realistic hardware parameters (for example, hard-

ware in which the weights can be perturbed at kHz-MHz

speeds), it could be competitive in training speed with back-

propagation on a standard GPU for the CIFAR10 and Fash-

ionMNIST image recognition datasets. Additionally, tests of

this framework have shown that it is robust to realistic

types of noise and defects present in photonic neural net-

works such as fabrication imperfections and analog noise.

As a result, these techniques avoid many of the pitfalls of

implementing backpropagation on hardware – they can

be implemented on existing inference-only chips and are

robust against practical defects. Shown in Figure 3(b) is

a schematic demonstration of how MGD could be imple-

mented in a microring resonator based photonic neural

network by adding a small, discrete perturbation to the

weights on MRRs. These perturbations generate a corre-

sponding change in the cost that can be used for the training

signal. Since MGD does not require a model of the system

or knowledge of architecture, activation functions or activa-

tion function derivatives, the same approach will work on

physical neural networks, recurrent networks, and a vari-

ety of photonic neural networks, including MZI networks,

superconducting opto-electronic networks, and even other,

more exotic network types.

Another technique proposed in Ref. [86] is feedback

alignment. Feedback alignment replaces the weight matrix

transpose used for backpropagation with a random matrix

while keeping the other elements of the backpropagation

algorithm the same. Despite this no longer being a good

calculation for the gradient, it turns out that the system

will still move toward decreasing cost due to the over-

defined nature of most neural networks. Furthermore, an

even simpler follow-up to this technique, called direct feed-

back alignment (DFA), was proposed in Ref. [87]. Instead of

propagating the error signal layer by layer via the chain

rule, the error from the last layer is used everywhere in the

network. DFA has been shown empirically to be effective in

some networks. Optically, this is appealing, as a single ran-

dom scattering medium can implement the large, random

weight matrix needed. This has been demonstrated in free
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Figure 3: (a) CIFAR10 testing accuracy versus time during training with SPSA in the MGD framework, as compared to SGD with backpropagation. The

time axis has been scaled for MGD operating with 20 kHz weight perturbations, compared to wallclock time for backpropagation performed on a

standard desktop GPU. (b) Schematic illustration of perturbing the weights in a microring resonator implementation of photonic neuromorphic

hardware. The implementation is shown in a two-layer waveguide process that allows simple waveguide crossings [79] for illustrative purposes; the

network can also be realized in a single waveguide layer as in ref. [15].

space optics to train on the MNIST dataset in a hardware-in-

the-loop configuration with the optics performing the ran-

dom matrix multiplication [27]. There has also been work

towards implementing DFA in an integrated platform with

on-chipmicroring resonatorweight banks [60], inwhich the

algorithm was simulated with realistic hardware parame-

ters. Like SPSA, since DFA does not require the chain rule

step of backpropagation or feedback alignment, it can also

be applied to physical or recurrent neural networks, or as

feedback to a reservoir, as was demonstrated in Ref. [74].

The main issue with DFA is that while it has been shown

to work for smaller, shallow networks, there is evidence

that neither feedback alignment nor DFA generalizes to

larger, deeper networks [77, 78]. However, modifications

to the feedback alignment algorithm appear to ameliorate

this issue [88], although, in practice, these may prove more

challenging to implement in hardware. Figure 2 shows some

experimental progress towards implementing these types of

approximate gradient descent training techniques in pho-

tonic hardware.

Other approaches for approximating gradient infor-

mation have also been proposed. These include subspace

descent [89] and others. It seems likely that these types of

algorithms will become more and more prevalent as new

machine learning hardware develops. All this research is

relatively new, and our understanding of these algorithms

will likely continue to evolve and improve.

3.3 Other training techniques

Gradient descent is not the only optimization technique

used for training neural networks. In particular, genetic

algorithms and evolutionary optimization have proved

effective for training recurrent neural networks that per-

form time-dependent control functions. Typically, these

algorithms rely on a global reward parameter for training

and do not require large, labeled datasets, which can appeal

to many applications in which training data is unavail-

able. An example of a free space optical implementation

of a genetic algorithm used to solve a control problem was

shown in ref. [90]. There have also been proposals for evo-

lutionary optimization of photonic spiking networks [91].

These algorithms can be used to train the network archi-

tecture and parameters. However, they will be tricky to

implement in online learning, as the training rules often

involve evaluating multiple configurations and generating

diverse network candidates that are subsequently evalu-

ated and pruned. Evolutionary and genetic algorithms will

likely be essential for spiking and recurrent networks, but

more experimental investigations are needed.

A particularly effective approach for control tasks is the

class of algorithms known as reinforcement learning. Like

evolutionary and genetic algorithms, reinforcement learn-

ing only requires a global reward function rather than large,

labeled training datasets. In Ref. [13], Bueno et al. demon-

strated a free space version of an optical reinforcement
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learning algorithm. Reinforcement learning may be a good

candidate for online training, and although many different

versions exist,much research remains to determine the best

option for photonic hardware.

Another important class of training algorithms is

energy-based, in that the systemdynamically settles to some

minimum energy, and this minimum energy in some way

contributes to solving the problem. These have been exten-

sively explored for hardware implementations, as energy

minimization is a natural phenomenon in physical systems.

If it can be appropriately harnessed, the physics of the

system could be used to solve machine learning problems.

Examples of energy-based training algorithms include the

training ofHopfieldnetworks [92], Boltzmannmachines [93]

and, more recently, equilibrium propagation [94].

Early optical demonstrations of energy-based optical

networks included free-space holographic [95, 96] and opto-

electronic [97] implementations, although these were used

in relatively small networks. More recently, energy-based

systems have been attracting renewed interest across many

different hardware platforms, with examples of recent

demonstrations including a Boltzmann machine comprised

of magnetic tunnel junctions that autonomously learns by

contrastive divergence [6], as well as a recent demonstra-

tion of autonomous training by equilibrium propagation

in a table-top resistive network [32]. There has also been

a resurgence of work on optical Ising machines [98, 99]

using the physics of coupled optical parametric oscilla-

tors (OPOs) to perform the necessary energy minimization.

These OPOs have been scaled up to systems of hundreds

of thousands of optical spins [100] and have already sur-

passed CPUs at specific problems [101]. It is notable that

this class of algorithms and training share similarities with

adiabatic quantum computing which is currently viewed as

a promising pathway for solving computational problems

using near-term, noisy intermediate scale quantum devices.

Work to use these to solve interesting machine learning

problems is ongoing.

There is also a class of biologically inspired, local, unsu-

pervised algorithms based on Hebbian learning rules that

we have not discussed in this article. For a review that

includes examples of such learning, see Ref. [102].

4 The future of training photonic

hardware

The development of photonic neuromorphic hardware is

still an active research area with many potential paths

forward. However, the development of photonic hardware

must go hand-in-hand with the development of novel train-

ing techniques. The exact training techniques employedwill

depend on both the hardware and the application, and

there will likely not be one single strategy. Currently, most

photonic hardware is trained offline, which will remain an

important technique. There is significant ongoing research

to address current issues and improve the quality of offline

training. However, in addition to offline training, wewill see

more and more of the training process being implemented

in the hardware, i.e., online. Ultimately, full utilization of

hardware compute capabilities will require some degree of

online training to provide a way to account for hardware

non-idealities, allow analog operation, and for the training

of systems with novel device physics that may not be easily

simulated in software. New online training techniques will

span a range from “fine-tune training” to fully autonomous

online training.

The scaling of photonic hardware is another ongo-

ing challenge that must be addressed with new training

techniques. For offline training, device-to-device variabil-

ity poses more significant challenges at scale. At the

same time, many new algorithms and techniques being

developed for more efficient training also fail for larger-

scale networks. A truly scalable online training tech-

nique will likely need to be implemented autonomously to

overcome I/O challenges associated with in-the-loop tech-

niques. However, in the near term, the experimental

challenges of a fully-autonomous systemmean that demon-

strations are likely to include some amount of “in-the-loop”

character – this is true even for many photonic inference

demonstrations, where the vector-matrix multiplications

are performed in hardware, but the implementation of

the nonlinearity is often performed using traditional dig-

ital arithmetic sandwiched between analog-to-digital and

digital-to-analog converters.

Experimentally, for online training to be truly viable,

electronics and photonics must be integrated into a single

system at a low level. This is becoming possible with the

recent development of large-scale high-performance com-

mercial joint electronics-photonics processes [103] and com-

mercial platforms with high-speed electrical connections

between photonic and electronic chips [104]. Low-power

static and dynamic weights must be developed, as current

techniques in integrated photonic platforms are power-

hungry and too slow for efficient online training. It will

be exciting to see the progress in this field and the new

advances that spring from research in this direction. We

believe that there are many intermediate opportunities for

improving existing techniques by adding on-chip elements
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to the training algorithms. While a photonic neuromor-

phic device that truly trains itself is perhaps a long-term

and high-risk research goal, if realized it could be truly

transformational.
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