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Quantum computers based on gate-defined quantum dots (QDs) are expected to scale. However,
as the number of qubits increases, the burden of manually calibrating these systems becomes unrea-
sonable and autonomous tuning must be used. There has been a range of recent demonstrations of
automated tuning of various QD parameters such as coarse gate ranges, global state topology (e.g.
single QD, double QD), charge, and tunnel coupling with a variety of methods. Here, we demon-
strate an intuitive, reliable, and data-efficient set of tools for an automated global state and charge
tuning in a framework deemed physics-informed tuning (PIT). The first module of PIT is an action-
based algorithm that combines a machine learning classifier with physics knowledge to navigate to a
target global state. The second module uses a series of one-dimensional measurements to tune to a
target charge state by first emptying the QDs of charge, followed by calibrating capacitive couplings
and navigating to the target charge state. The success rate for the action-based tuning consistently
surpasses 95 % on both simulated and experimental data suitable for off-line testing. The success
rate for charge setting is comparable when testing with simulated data, at 95.5(5.4) %, and only
slightly worse for off-line experimental tests, with an average of 89.7(17.4) % (median 97.5 %). It
is noteworthy that the high performance is demonstrated both on data from samples fabricated in
an academic cleanroom as well as on an industrial 300-mm process line, further underlining the
device agnosticism of PIT. Together, these tests on a range of simulated and experimental devices
demonstrate the effectiveness and robustness of PIT.

I. INTRODUCTION1

Quantum dot (QD) arrays, in which individual charge2

carriers are trapped in localized potential wells, are a3

promising platform to realize useful quantum computing4

applications [1–3]. Advantages of this platform include a5

small device footprint [4–7], compatibility with industrial6

semiconductor fabrication techniques [4–6], and potential7

for operation with baseband pulses [7]. However, because8

single charge carriers have electrochemical sensitivity to9

minor impurities or imperfections, calibration and tuning10

of QD devices is a nontrivial and time-consuming process.11

Each QD requires a careful adjustment of gate voltages12

to define charge number and tunnel couplings to other13

QDs or reservoirs [8, 9]. Although manual calibration14

is achievable for small, few-QD devices, the control pa-15

rameter space grows quickly for larger arrays, necessitat-16

ing autonomous tune-up. Moreover, even for automated17

methods, the size of the voltage gate space that must be18

explored can become prohibitively large. Reducing the19

dimensionality of the voltage space for large QD arrays20

to a series of single- and double-QD systems will be im-21

portant for mitigating this challenge [9–11]. As device22

integration improves and moves from few-QD to many-23

QD devices, autotuning algorithms must maximize the24

information of measured data to ensure efficient tuning.25

To date, there have been numerous demonstrations of26

automation for the various phases of the tuning process27
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for both single- and double-QD devices [12]. Some ap-28

proaches seek to tackle tuning starting from device turn-29

on to coarse tuning [13–16]. Other methods assume that30

bootstrapping and basic tuning have been completed,31

leading to more targeted automation and coarse-tuning32

approaches [17–21]. However, the imperfect machine33

learning (ML) predictions or suboptimal fitting routines34

implemented in these algorithms can cause unexpected35

failures. These problems can be largely mitigated by36

training and testing on suitable data [22, 23] and em-37

ploying data quality control (DQC) systems [23]. Major38

factors hindering the efficiency and effectiveness of navi-39

gation of the voltage space are large voltage sweeps and40

simplistic navigation methods.41

Here, we demonstrate a physics-informed tuning (PIT)42

algorithm for navigating to a target charge configuration43

that is both effective and data efficient [24]. PIT consists44

of a pair of modules for automated coarse and charge45

tuning of a double-QD system. The coarse-tuning mod-46

ule combines a data quality control system and a robust47

ML classifier [19, 20] with device physics knowledge and48

heuristics (as opposed to using classical optimization or49

ML) to navigate to a target global state corresponding50

to a set of charge islands (i.e., single or double QD). The51

charge-tuning module uses a series of one-dimensional52

(1D) measurements and custom peak-finding techniques53

to find a desired charge configuration. The incorpora-54

tion of virtual gates during charge tuning allows for in-55

tuitive, efficient, and reliable targeted loading. Together,56

these modules navigate from a roughly estimated start-57

ing point to a target charge state. In particular, for the58

starting point, we assume that reasonable estimates for59
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each plunger and barrier gate voltage of the double-QD1

system were previously identified and that the charge2

sensor is calibrated [25].3

We show that this approach can be highly success-4

ful in off-line tests on both realistic simulated data [23]5

and large experimentally acquired two-dimensional (2D)6

scans [5, 26]. Furthermore, by incorporating a DQC sys-7

tem [23] into the action-based coarse-tuning module, and8

using noise-robust peak-finding tools for charge configu-9

ration, we show that the failure modes observed in off-10

line tests can be largely avoided. To do so, we build an11

interactive simulated tuner with built-in realistic noise12

variation mimicking experimental conditions and device13

recalibration, and consistently find a charge-setting suc-14

cess rate around 95 %, regardless of the target charge15

configuration. Together, these results demonstrate an16

automated approach for tuning a double-QD system to17

a target charge state in a data-efficient manner without18

sacrificing effectiveness—a core component for the auto-19

tuning of large QD arrays [9–11, 27]. Gate virtualiza-20

tion, also implemented in PIT, enables the isolation of21

the chemical potentials, allowing for targeted tuning of22

individual double-QD systems in a larger QD array using23

PIT. As PIT does not make strong assumptions on the24

device connectivity, autonomous tune-up of large 2D ar-25

rays with almost arbitrary connectivity becomes feasible.26

The remainder of the paper is organized as follows: In27

Sec. II we give an overview of the design of the PIT al-28

gorithm. The specifics of the PIT configuration for all29

tests in this work are described in Sec. III A. The perfor-30

mance on simulated and experimental data is discussed31

in Secs. III B and III C, respectively. Results of the in-32

teractive tuning are presented in Sec. III D. We conclude33

with a discussion of the potential modifications to further34

improve the proposed autotuning technique in Sec. IV.35

II. PHYSICS-INFORMED TUNING: METHODS36

The flow of the PIT algorithm is depicted in Fig. 1.37

PIT assumes that the device initialization (bootstrap-38

ping) is complete and that the device is brought into39

an appropriate parameter range for coarse tuning. This40

includes establishing operational local sensing systems,41

determining a reference of acceptable parameter varia-42

tions, i.e., the safety limits for all gates (“sandbox”), and43

approximating charging energies for each QD (extracted44

from the spacing between Coulomb peaks during pinch-45

off tests; for a detailed discussion of the bootstrapping46

phase, see, e.g., Ref. [12]). The safe ranges for the plunger47

gates are used to determine the measurement limits and48

the approximate charging energies are used to determine49

the ray length (for all ray-based measurements) and the50

size of the 2D images (for the image-based coarse tuning).51

We also assume that charge carriers in the device are52

electrons when discussing the signs of voltage changes;53

for holes, the signs would need to be reversed.54

The PIT algorithm consists of two modules: the55

action-based coarse tuning and the ray-based charge tun-56

ing; see Fig. 1. The coarse-tuning module combines57

ML techniques [28]—used to assess the captured global58

state of the device in the relevant gate space—with a59

physics-inspired navigation algorithm. The global state60

here means the set of charge islands formed in the device61

while the charge state is the exact charge configuration62

on the QDs. Depending on the experimental setup, the63

state assessment in PIT can be done using traditional 2D64

images [19, 28] or via 1D rays [20, 29, 30].65

The charge-tuning module implemented in PIT fol-66

lows the typical strategy of first unloading the QDs of all67

charges and then loading the desired number of charges68

on each QD [16, 18, 21]. However, unlike in previous69

implementations, the emptying phase in PIT is followed70

by a gate-virtualization step [11, 31, 32] to ensure tar-71

geted control of each QD. The linear combinations of72

gate voltages determined in this phase compensate for the73

capacitive cross-talk and allow for control of the electro-74

chemical potential of individual QDs during the loading75

process [10]. A high-level description of both modules is76

presented in the following sections. The specific details77

about the PIT configuration used to perform all tests78

reported in this work are presented in Sec. III A.79

A. Action-based coarse-tuning module80

The action-based coarse-tuning algorithm used in PIT81

to bring the device to the desired global state lever-82

ages the overall state topology in the gate space and83

the intended effect of each plunger gate on the global84

device state. Ideally, changing voltages on a particular85

plunger gate should only affect the electrochemical poten-86

tial (and, thus, the number of charge carriers) on the QD87

it is designed to control, e.g., gate P2 should load elec-88

trons onto the left dot and P1 should load electrons onto89

the right dot; see the inset in Fig. 1(a). Because of the ca-90

pacitive cross-talk between the gate electrodes, such fine91

control of charge occupation with individual gates is not92

possible; however, the relationship between globally de-93

fined states is preserved. It is therefore possible to move94

from a left-QD state towards a double QD by steadily95

increasing VP1
or from a central single QD to double QD96

by decreasing both plunger gates; see Fig. 1(a).97

The action-based tuning combines a ML algorithm98

used to determine the global state of the device near a99

given point in the (VP1
, VP2

) plunger-plunger gate volt-100

age space with a physics-informed navigation strategy. It101

takes as an input a point xc ∈ (VP1
, VP2

), an acceptable102

exit threshold δtr, and a preferred classifier. Provided the103

choice of a state classifier, the PIT algorithm initiates ei-104

ther a series of ray-based measurements [for the ray-based105

classification (RBC) framework [20, 29]] or 2D scans (for106

a convolutional neural network-based model [19, 28]) fol-107

lowed by the state assessment. The returned state vector,108

109

p(xc) = (pND, pSDL
, pSDC

, pSDR
, pDD), (1)
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FIG. 1. The flow of the PIT algorithm visualized using an idealized simulated double-QD device. (a) The action-based coarse-
tuning module combines ML state predictions with the overall QD state topology to navigate the (P1, P2) plunger-plunger gate
space. The orientation and size of the arrows overlaying the scan correspond to the suggested gate voltage adjustment direction
and magnitude, respectively. The expected outcome for the coarse-tuning module is a gate voltage configuration defining a
double-QD state. The inset shows a representative double-QD potential profile. (b)–(d) The ray-based charge-tuning module.
The charge-tuning process involves three steps: (b) unloading the double QD of all electrons using the physical gates space
with the termination point marked with an “x”, (c) tuning to a region near the first charge transitions for both QDs (marked
with a dot) and determining virtual gates, (d) loading the desired number of electrons on each QD using the virtual gate space.
Panels (b)–(d) show charge-tuning paths for two sample points, with the magnitude of the arrows representing the size of the
consecutive steps and the color lightness indicating the progress of the unloading process.

represents the probability of each possible global state1

being captured in the measurement, with ND indicating2

that no QD is formed, SDL, SDC , and SDR denoting the3

left, central, and right single QD, respectively, and DD4

denoting the double-QD state [see Fig. 1(a)]. If p(xc)5

is sufficiently close to the target DD state, as measured6

by some distance function δ, the algorithm terminates.7

Otherwise, a subsequent measurement is initiated at a8

voltage configuration determined by the action vector,9

vact := (V act
P1

, V act
P2

) = p(xc) · AT , (2)

where (·)T is a matrix transpose and the action array is10

defined as11

A = α diag(vEC
) ·

(
1 1 −1 0 0
1 0 −1 1 0

)
, (3)

where the parameter α is controlling the step size of the12

action-based algorithm. The diag(vEC
) in Eq.(3) is a di-13

agonal matrix whose entries are the approximate charg-14

ing energies for plunger gates P1 and P2 determined dur-15

ing bootstrapping, vEC
= (V EC

P1
, V EC

P2
). The definition16

of the action array, A, is rooted in the topology of the17

double-QD device state space [see Fig. 1(a)]. For any18

combination of global states detected by the classifier,19

the action vector vact is determined by taking the av-20

erage action on a given gate weighted by the estimated21

percentage of each state in the probability vector p. For22

example, when the device is assessed as being entirely23

in a single global state, the gate adjustment results in24

a simplified action assigned to that state, e.g., for SDC25

[teal arrows in Fig. 1(a)], vact = −α(V EC

P1
, V EC

P2
). If the26

predicted state indicates a transition between two global27

states, e.g., p(xc) = (0, 0, 0.5, 0.5, 0) (50 % SDC and 50 %28

SDR), the action vector vact would be defined as the av-29

erage of the per state actions: vact = α(0,−0.5V EC

P2
), as30

shown with blue arrows in the bottom right of Fig. 1(a).31

The tuning process is repeated until δtr is surpassed32

and the algorithm declares the DD state or a tolerance33

error is raised. The tolerance error indicates that the al-34

gorithm did not find a region in the plunger-plunger space35

that would meet the threshold requirements and results36

in an adjustment of the middle barrier gate. Finally, if37

the algorithm tries to go out of safety limits, the tuning38

process is terminated, an “out-of-bounds” termination is39

recorded, and the algorithm is reinitiated.40

B. Ray-based charge-tuning module41

The ray-based charge-tuning module relies on a series42

of 1D measurements (rays) acquired in a head-to-tail se-43

quence and conventional data processing techniques to44

identify and locate charge transitions within each ray.45

Navigation from an arbitrary double-QD charge state to46

a desired double-QD charge configuration (m,n), with m47

and n indicating the number of charges accumulated on48

the left and right QD, respectively, is also guided by a49

set of physics-inspired actions. The charge-tuning mod-50

ule proceeds in three steps: unloading the QD device of51

all charges [depicted in Fig. 1(b)], navigation to the inter-52

section of the first charge transitions and calibration of53

virtual gates [Fig. 1(c)], and loading to a desired (m,n)54

charge state [Fig. 1(d)]. Here, we present an overview of55
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FIG. 2. (a) Numerical derivative of a simulated 2D measure-
ment, capturing the intersection of the first charge transitions,
used to establish the virtual gate space. (b) The outcome of
the ML-based pixel classifier, with each pixel in the original
2D scan classified as no, left, central, or right transition or a
polarization line (NT, LT, CT, RT, or PL, respectively).

what these steps encompass and the desired output for1

each of them.2

1. Step 1: Unloading the QD3

The goal of the first step of charge tuning is to re-4

move all charges from a double-QD. Starting at a point5

xc in the DD state where the action-based algorithm ter-6

minated, the unloading process initiates a series of ray-7

based measurements, each combined with a peak-finding8

algorithm to check for the presence of charge transitions.9

Figure 1(b) depicts examples of unloading paths for two10

sample points. The rays’ directions alternate for consec-11

utive measurements between −VP1 and −VP2 , with the12

initial direction chosen randomly. The length of the rays,13

independent for each direction, is proportional to V EC

Pi
14

and is chosen to ensure that a transition is captured as15

long as the QD is not empty. If at any point the ray16

extends past the safety limits, its length is reduced to17

remain within bounds.18

The starting point for the consecutive measurements19

is determined based on the location of the last peak de-20

tected in a given ray. The peaks are identified using21

either a conventional peak-finding algorithm [33] or ML22

techniques [34]. If at least one peak is detected in a ray,23

the consecutive measurement is initiated past the last de-24

tected peak. If there are no peaks in a given ray, the di-25

rection is flagged as “potentially empty”. In cases where26

the starting point for the consecutive ray falls outside of27

the safety limits, the direction is flagged as “soft out-of-28

bounds” and the subsequent measurement is initiated at29

the same point.30

To prevent premature termination due to missed tran-31

sitions, the algorithm terminates only when both di-32

rections are consecutively flagged as potentially empty.33

Moreover, if both directions are flagged as soft out-of-34

bounds in consecutive measurements, the unloading is35

marked as “hard out-of-bounds.”36

2. Step 2: Establishing controllability37

In the presence of capacitive cross-talk between the38

various gate electrodes, changing voltages on a single gate39

affects not only the parameter it is designed to control40

(e.g., the electrochemical potential of a specific QD) but41

also other parameters (e.g., the electrochemical potential42

of the neighboring QDs and the tunnel barrier between43

adjacent QDs). To enable targeted control of specific44

QDs and to fill a QD array into a desired charge configu-45

ration, we employ virtual gates, i.e., linear combinations46

of multiple gate voltages chosen to address only a single47

electrochemical potential [11, 31, 32].48

The emptying process, performed in the physical gate49

voltage space, results in points distributed within a range50

of distances from the first charge transition. Given the51

local relevance of virtual gates and the necessity of ac-52

counting for transitions from both QDs for proper virtu-53

alization, it is desirable to navigate near the intersection54

of the first charge transitions prior to determining the ca-55

pacitive coupling between the QD gates. This is achieved56

in PIT through a simple feedback process involving a se-57

ries of ray measurements and position adjustments un-58

til both transitions are located within the same distance59

from each ray’s tail, as depicted in Fig. 1(c).60

Once the intersection of the final charge transitions is61

located, a 2D measurement capturing the intersection of62

transitions is performed; see Fig. 2(a). PIT leverages a63

ML-based pixel classifier [35] and conventional linear re-64

gression to determine virtual gates [36]. The pixel classi-65

fier is trained on simulated data to flag every pixel in the66

numerical gradient of the scan as either no, left, central,67

or right transition (NT, LT, CT, or RT, respectively), or68

as a polarization line (PL).69

The resulting contiguous regions of pixels are then fit70

by linear regression independently for each class This pro-71

cess yields images with classified pixels and correspond-72

ing fits, as shown in Fig. 2. Fitting the regions of LT and73

RT classes yields the off-diagonal terms of the capacitive74

coupling matrix, normalizing each row such that the di-75

agonal terms are equal 1.0 [37]. If multiple transitions76

are present within a class, the slopes are combined by77

an average weighted by the standard deviations of the78

fits. This method has the added benefit that the fits also79

give confidence intervals, and the labeled pixels give the80

locations of various key features of a scan.81

3. Step 3: Loading to (m,n) state82

The virtual gates information enables targeted control83

of the electrochemical potential of individual QDs. PIT84

sequentially loads each QD to the desired charge state.85

For example, the yellow path in Fig. 1(d) shows loading86

one charge to each QD, with the left QD being loaded87
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first. Similarly, the red path in Fig. 1(d) shows loading1

to the (2, 1) state, with PIT first loading two charges to2

the left QD, and then one electron to the right QD.3

The loading process, performed in the virtual gate4

space (VP ′
1
, VP ′

2
), starts at the same point where the 2D5

measurement used in step 2 was initiated. At each step, a6

ray of length approximately 3V EC

Pi
is measured, followed7

by the peak-finding module. If a peak is not found, the8

starting point for the next ray, xc, is set at 20 % before9

the end of the current ray and the measurement is re-10

peated [38]. The consecutive measurements are initiated11

at the midpoint between the first two peaks in a given12

ray. If only one peak is found, the measurement is re-13

peated. Once the first QD is loaded with the required14

number of charges, the loading direction is switched. To15

prevent a ray from going through a polarization instead16

of a transition line, a pair of auxiliary rays orthogonal17

to the loading direction is measured once at least one18

electron is loaded on each QD. These are used to repo-19

sition the starting points of the consecutive rays within20

the honeycomb; see Appendix B for details.21

Once PIT declares that the desired charge configu-22

ration has been established, a final check involving a23

pair of long rays measured in the unloading directions24

(−VP ′
1
,−VP ′

2
) is executed. The length of rays used in25

the check is set to (m + 1)V EC

P1
and (n + 1)V EC

P2
for the26

VP ′
1

and VP ′
2
, respectively, and (n,m) the target charge27

configuration. If the expected number of peaks is de-28

tected in each ray, PIT terminates. Otherwise, the full29

ray-based charge-tuning module is reinitiated from the30

current point, up to a maximum of three times.31

C. Data32

Both modules of the PIT algorithm are developed us-33

ing a set of ten simulated double-QD devices with a sim-34

ilar gate architecture and varying levels of noise [23]. An35

ensemble of additional seven qualitatively distinct simu-36

lated double-QD devices with varying levels of noise is37

used to test the performance of PIT. The benchmark38

noise level used in the simulation is established by ap-39

plying a quantitative version of a DQC module [23] to a40

dataset of 756 small experimentally measured 2D scans41

available via the National Institute of Standards and42

Technology (NIST) Science Data Portal [26].43

The reliability of PIT is further validated using a set44

of 23 large 2D experimentally measured scans: 7 in-45

cluded in the QFlow 2.0: Quantum dot data for machine46

learning [26] dataset and 16 new scans acquired using47

two double-QD configurations on two different three-QD48

Six/SiGe1−x devices, fabricated on an industrial 300-mm49

process line [5]. Electrostatic variations to the exact50

double-QD configuration were induced by changing the51

middle barrier and other adjacent gates for each scan.52

The simulated double-QD devices are also used to test53

the design of an autonomous tuning process that incor-54

porates both PIT and DQC [23]. In those tests, the noise55

level is adjusted throughout the tuning process in a feed-56

back loop in response to the DQC to mimic an online57

experimental test.58

III. RESULTS59

To validate the PIT algorithm, we use a set of qualita-60

tively distinct simulated double-QD devices with varying61

levels of noise as well as two sets of large experimentally62

acquired 2D scans discussed in Sec. II C. The noise levels63

used in all tests with simulated data are varied around a64

reference level of noise extracted from the experimental65

data that, for simplicity, we denote as 1.00 [39].66

In all tests, the tuning runs are executed automati-67

cally in a sequential manner, with the consecutive mod-68

ules and steps being initiated only for points that tuned69

successfully at the preceding step. The success rates re-70

ported throughout this section are determined based on71

the number of points for which each step was initiated72

to facilitate an unbiased comparison of the performance73

of PIT’s individual components. Given the high success74

rate for both tuning to the DD state and emptying steps,75

including all points would not significantly change the re-76

sults.77

A. Algorithm configuration78

The configuration of PIT used in this work is estab-79

lished based on a combination of prior work and tests80

on an ensemble of ten qualitatively similar double-QD81

simulations with varying noise levels [23]. The termi-82

nation of the action-based navigation algorithm in the83

coarse-tuning module relies on a distance function that84

approximates the distance from a measurement point to85

the target double QD, with a penalty function to fur-86

ther encourage termination away from undesired states,87

as proposed in Ref. [19]. The choice of the exit threshold88

δtr is determined based on the analysis of the simulated89

data and translates directly to how close in the state90

space the final point is to the DD region: δtr = 0.3 in-91

dicates at least 95 % of the DD state in the captured92

measurement while for δtr = 0.9 the algorithm will ter-93

minate as soon as the DD prediction surpasses 55 %. The94

δtr level can be made more or less restrictive, depending95

on the expected coupling of the double-QD system. PIT96

assumes by default δtr = 0.4 (which translates to about97

85 % of the DD requirement).98

The action-based tuning requires a single parameter99

defining the scale for the actions. For this, we set the100

scale α = 1.5V EC so that each step does not move into101

a completely unknown area. For the ray-based charge102

tuning, there are similar parameters defining the rel-103

ative lengths of rays at each stage. By default, the104

length of rays is ℓempty = 1.5V EC

Pi
for the emptying105

step, ℓcontrol = 2.25V EC

Pi
for the controllability step, and106
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ℓload = 3V EC

Pi
for the loading step, with Pi, i = 1, 2 indi-1

cating the plunger gates. These lengths are chosen such2

that the number of data points measured is balanced with3

the importance at each stage of finding a peak should it4

exist. On unloading it is assumed that a ray with no5

peaks indicates the direction is empty. Loading rays are6

required to have one peak in order to make a step.7

In all tests we are using the conventional peak-finding8

algorithm [33]. Thus, the last major parameter for ray-9

based charge tuning is the prominence of expected peaks.10

This prominence must be set to account for variations11

in peak height that might result from imperfect sensor12

compensation or increased tunneling at high charge oc-13

cupations. Here, we set a prominence equal to 1/3 of the14

maximum estimated from all rays measured in a given15

tuning run. This maximum is initiated using the final16

measurement of the action-based tuning stage and up-17

dated using a Metropolis-Hastings algorithm [40].18

B. Benchmarking with simulated data19

Testing PIT on simulated data facilitates a controlled20

study of how the various types, combinations, and preva-21

lence of noise impact the functioning of the tuner. The22

spectrum of device designs used in simulations is chosen23

to capture the effective realization of edge cases, such as24

strongly and weakly coupled QDs. In our preliminary25

tests we found that varying the “optimized” combina-26

tion of noise established in Ref. [23] results in a much27

higher likelihood of the telegraph noise than would be28

expected in typical experiments. This is likely because29

the noise optimization in Ref. [23] was performed using30

moderate to low-quality experimental data to ensure that31

the state classifier is reliable and robust. Thus, in all32

tests with simulated data, the lifetimes and magnitudes33

for the telegraph noise are kept fixed at a level consis-34

tent with experimental data determined through the ML35

assessment of experimental devices and visual inspection36

to be a 2 s lifetime for both the upper and lower states37

(assuming a 10 ms integration time) with a magnitude38

set to 4 times the relative magnitude used in Ref. [23]39

and the magnitudes for the telegraph, 1/f (pink), and40

white noise are varied between 0.2 and 2.5 of the refer-41

ence noise level. Additional results for varying levels of42

the telegraph noise are included in Appendix A.43

The three panels in Fig. 3 show the performance of44

the individual PIT components. The action-based coarse45

tuning to the DD state module seems to be quite robust46

against noise, with an overall performance of 94.6(2.9) %47

when using ray-based measurements and 98.9(2.1) %48

when tuning with small 2D scans [41].49

An analysis of failed tuning paths suggests that the50

slightly worse performance of the ray-based tuning is51

likely caused by the design of the action-based tuning52

that relies on the assumption that scans capturing tran-53

sition between states are properly quantified by partial54

labels returned by the classifier. In other words, there is55
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FIG. 3. Performance on simulated data for varying noise
levels, with each panel representing a consecutive step PIT
takes. Both the action-based coarse tuning (top panel) and
emptying (middle panel) show consistently high success rates
regardless of the noise level. The performance of the charge-
setting module deteriorates slowly as the noise level increases,
with a significant drop at around 2.0 (i.e., double the noise
level estimated from experimental data).

a smooth change in the predicted probability with incre-56

mental gate adjustments. The RBC, on the other hand,57

predicts the most likely state for a given point, which58

results in more abrupt changes in the probability vector.59

This makes the action-based navigation between states a60

little more challenging.61

For comparison, coarse tuning to the DD using62

Nelder-Mead optimization [19, 42, 43] results in signif-63

icantly lower success rates of 58.5(7.6) % with rays and64

82.5(6.3) % with 2D scans. The number of measure-65

ment iterations for the action-based tuning is reduced by66

a factor of 2 for ray-based coarse tuning [5.3(1.2) versus67

13.3(1.8) with Nelder-Mead optimization] and by a fac-68

tor of 3 for tuning with 2D scans [4.2(6) versus 12.9(2.0)69

with Nelder-Mead optimization]. This corresponds to an70

average overall data reduction at the DD tuning stage of71

about 60 % for action-based coarse tuning with rays and72

around 67 % data reduction for tuning with 2D scans.73

The performance for the emptying step, shown in the74

middle panel of Fig. 3, is also quite high, with an over-75

all 99.8(3) % success rate. However, we observe that76

the likelihood of the soft out-of-bounds termination in-77

creases with noise, from 2.6(3.6) % at a 0.25 noise level78

to 21.5(10.2) % at noise level 2.50. The likelihood for79

hard out-of-bounds termination is below 1 % regardless80

of the noise level.81

For setting a desired charge configuration, depicted in82
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FIG. 4. Performance of PIT algorithm on experimental data. (a) A box plot showing the off-line performance of the individual
components with three target charge-state configurations. The central lines indicate medians for each test and the central box
represents 50 % of the data. The whiskers extend to either the extreme values or 1.5 times the interquartile range, whichever
is closer to the median. The individual points on top of each box plot show the success rates for each device. (b) Histogram of
normalized distances from the center of the target honeycombs, with a kernel density estimate curve overlaid. The distances
are normalized on a per device basis by the radius of an inscribed circle centered within the target charge state. Distances of
no more than one guarantee success. These distributions confirm that PIT not only reliably terminates in the desired charge
configuration, but also converges well within the target charge hexagon.

the bottom panel of Fig. 3, there is a correlation between1

the performance of PIT and the noise level, as expected.2

The success rate decreases steadily with the increasing3

noise up to the noise level of 1.75 and then drops rapidly4

once the noise level surpasses about 2.00.5

C. Off-line tuning with PIT6

Tuning off-line—that is tuning within large experi-7

mentally measured 2D scans capturing multiple state8

configurations—enables validating PIT in the presence9

of real-world noise and implications. PIT is tested on10

two experimentally measured sets of scans. The first set,11

exp-1, consists of seven scans from the QFlow 2.0: Quan-12

tum dot data for machine learning [26]. These scans are13

measured over a fixed voltage range for the plunger gates14

(150 mV to 550 mV for the first gate and 100 mV to15

500 mV for the second gate). The second set, exp-2, in-16

cludes 16 scans, ranging in size from 400 mV by 400 mV17

to 600 mV by 600 mV. The performance of PIT on those18

two datasets is shown in Fig. 4(a). Since the measure-19

ment design for RBC implemented in PIT is not com-20

patible with the static off-line scans, coarse-tuning tests21

with experimental data are done only using the 2D scans.22

The starting points for tests within experimental scans23

are sampled in a grid with an exclusion of regions where24

the signal-to-noise ratio (SNR) is insufficient. The ex-25

clusion regions are determined prior to testing based on26

visual inspection of the data combined with analysis of27

the distribution of the charge sensor response for a se-28

ries of small 2D scans densely sampled within the large29

scan [20]. In an online implementation, the data quality30

control module [23] would initiate a charge sensor recal-31

ibration. In an off-line setting, such corrective actions32

are not possible (see Sec. III D for details). The overall33

number of points sampled is on average 1 800(16) for the34

exp-1 set while, for the exp-2 set, it varies between 34635

and 6 124. The larger variability in the number of points36

per scan for the exp-2 set is due to varying scan volt-37

age ranges, sampling initiation points at constant density38

in each scan, and excluding points from poorly charge-39

sensed regions. The bounds for off-line tuning are offset40

with respect to safety limits to ensure that the initial41

measurements can be sampled. However, during tuning,42

the algorithm can navigate toward the safety limits. If43

at any point the algorithm suggests going out of safety44

bounds, the tuning process is terminated and an out-of-45

bounds termination failure is recorded. The success rate46

for the action-based coarse tuning to the DD state using47

small 2D scans is slightly higher for exp-1, at 97.1(3.5) %,48

than for exp-2, at 92.5(6.5) %. For comparison, the suc-49

cess rate for tuning to a double-QD state reported in50

Ref. [14] was 80 % for a set of five double-QD devices51

over two thermal runs. Tuning using the Nelder-Mead52

optimization [19] results in success rates of 76.8(4.0) %53

for exp-1 and 83.5(15.7) % for exp-2. Similar to bench-54

marking with simulated data, the number of iterations is55

also about 2 to 3 times higher for Nelder-Mead optimiza-56

tion than for the action-based tuning, with 11.7(6) versus57
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3.9(2) for exp-1 and 8.4(4.0) versus 3.9(1.4) for exp-2.1

A post-testing analysis of the failing cases reveals that2

one of the two main causes for the action-based tuning3

failure is a repeated incorrect assessment of the state vec-4

tor p(xc) by the ML module, which is especially preva-5

lent in scans containing poorly-sensed regions. The worst6

case of this failure mode observed in the off-line tests is a7

true DD state identified as RD, which results in an action8

that is the opposite of the true best action.9

The second failure mode, relevant only to off-line test-10

ing, is related to the out-of-bounds termination: tuning11

runs are declared as failures whenever a measurement12

would surpass the scan limits. This is particularly prob-13

lematic for scans where the DD region reaches the edge of14

the scan. Out of the 16 large scans in exp-2, six fall into15

either one or both of these categories and have an over-16

all success rate significantly lower than for the remaining17

scans, at 85.0(2.8) % versus 97.1(2.2) %.18

There are a number of features implemented in PIT19

that are likely to significantly lower the likelihood of the20

out-of-bound termination but that could not be tested21

off-line. For example, an incorrect state assessment22

can be minimized with charge sensor recalibration based23

on quality control outputs [23]. To handle issues be-24

yond quality, adjustment of the exit threshold δtr for25

cases with strongly coupled QDs and a more sophisti-26

cated logic incorporating the memory of state measure-27

ments would likely improve the action-based tuning per-28

formance. However, an analysis of the out-of-bounds ter-29

mination cases for the off-line tests allows for a clearer30

understanding of the possible failure modes. This, in31

turn, can inform the design of the bootstrapping mod-32

ule to ensure the initialization of PIT in a configuration33

that gives the highest probability of success in an online34

deployment.35

For the emptying step, the (0, 0) state can be reached36

in three ways, with a proper and soft out-of-bounds37

termination (both considered a tuning success), and38

a hard out-of-bounds termination (considered a tuning39

failure). For this step, the success rate for exp-1 is40

94.5(2.8) % [with 10.4(10.5) % rate of soft out-of-bounds]41

and 97.9(2.5) % for exp-2 [with 6.8(9.9) % rate of the42

soft out-of-bounds]. The hard out-of-bounds failure rate43

is 0.1(2) % and 0.1(1.2) % for exp-1 and exp-2, respec-44

tively. For comparison, the success rate for ML-driven45

emptying reported in Ref. [18] was at 90 % over 160 on-46

line experimental runs.47

The summary statistics for the final stage of PIT, i.e.,48

setting a target charge configuration, are presented in49

Table I. Given the long tails of the charge-tuning success50

rate distributions as well as the presence of outliers, in51

addition to the overall average performance per target52

charge configuration, we report also the central tendency53

and dispersion of performance using median and median54

absolute deviation. We find that the success rate is fairly55

comparable between the two datasets, with tuning to the56

(2, 1) charge state being less successful than tuning to57

(1, 1) and (1, 2). This asymmetry in charge-tuning per-58

formance is likely due to the direction in which the data59

is acquired, with the fast scan direction typically giving a60

cleaner derivative than the slow scan direction, combined61

with the effect of off-line virtualization.62

Distributions of the final positions relative to the cen-63

ter of the target charge state across each experimental64

dataset can be found in Fig. 4(b). In order to compare65

performance between devices and charge states we nor-66

malize these distances by the radius of an inscribed circle67

for the target charge region. In these units a distance68

of no more than 1.0 guarantees success. An analysis of69

these distributions confirms that the final positions end70

up close to the center of the target region. Failures fall71

into two roughly equal-sized groups: those roughly one72

charge away and those far away. The nearby failures73

are primarily due to a single transition being missed on74

loading. The farther failures tend to be due to poor SNR75

causing excessive peaks to be found [ending in the (0, 0)76

state] or very few peaks to be found (ending at large77

charge occupation). The failure cases are especially ap-78

parent in the success rates of the outliers in Fig. 4, and79

are compounded by off-line scans exhibiting static noise80

that can potentially affect many tuning runs.81

In order to overcome some of these limitations we may82

apply a number of improvements. Incorporating a qual-83

ity assessment of rays to detect poor SNR could reduce84

the failures we see here. We may also use methods to85

reduce the impact of low SNR by taking ray measure-86

ments multiple times and comparing peaks found to en-87

sure more robust peak identification. For comparison,88

the success rate for a ML-driven online charge setting89

with the target state chosen randomly from a set of four90

possible configurations reported in Ref. [18] was about91

63 %.92

D. Simulated tuning with noise adjustment93

To better estimate the expected in situ performance94

of PIT, we implement a tuning framework proposed in95

Ref. [23] using the QD simulator [17]. To ensure that96

only reliable data is analyzed by the ML state classifier,97

we incorporate the DQC system into the action-based98

coarse-tuning module and add a recalibration step that99

is executed whenever the data is assessed as either mod-100

TABLE I. Summary of tuning success statistics for the two
experimental datasets, with the standard deviation (st. dev.)
and median absolute deviation (MAD) given in parentheses.

Target charge state
Set Statistics (1, 1) (1, 2) (2, 1)

Exp-1 Mean (st. dev.) 87.3(22.2) 89.5(11.7) 81.9(13.8)
Median (MAD) 95.2(14.2) 94.9(9.2) 79.5(10.6)

Exp-2 Mean (st. dev.) 94.9(10.9) 88.8(23.3) 87.1(18.9)
Median (MAD) 99.6(7.2) 98.9(13.9) 96.3(13.1)
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erate or low quality. Whenever recalibration is initiated,1

the device noise level is adjusted and another measure-2

ment is taken at the same point. In our simulated tests,3

we set each call of the recalibration function to reduce4

the noise level by 30 % of its current value. The process5

is repeated until the scan is deemed suitable for further6

processing. The purpose of the DQC system is to pre-7

vent the use for tuning data that would result in poor8

state estimation and, ultimately, a failure of the charge-9

tuning module. In an online implementation, it may be10

preferable to terminate tuning of the device altogether11

for a low-quality data assessment or if repeated sensor12

recalibration does not improve data quality.13

In all tests we assume that the SNR varies linearly14

with respect to each plunger gate, setting the maximum15

noise level for each scan to 30 times the reference noise,16

the minimum to 1.00, and an equal slope with respect to17

both gates to mimic an imperfectly compensated charge18

sensor. This range for noise magnitudes sets the center of19

each device to have a noise level roughly equivalent to the20

moderate quality in Ref. [23]. Using the set of seven simu-21

lated devices, we initiate 100 tuning runs per device, with22

the starting points randomly sampled within each scan.23

To verify the utility of the DQC and recalibration compo-24

nents of the tuning framework, we test tuning on devices25

with the same noise characteristics both with and with-26

out quality-aware noise adjustment. We find that even27

without noise adjustment the action-based tuning mod-28

ule is quite successful at 88.9(8.5) %. However, setting29

any target charge configuration fails almost completely30

with an overall 0.1(6) % success rate. With noise ad-31

justment, the success of the action-based tuning remains32

high at 88.3(4.6) %, but the tuning success rate increases33

for (1, 1) to 70.2(24.4) %, for (1, 2) to 68.1(10.0) %, and34

for (2, 1) to 71.0(14.6) %. Figure 5(a) shows the final35

charge configuration distribution overlaid on a schematic36

stability diagram. The color intensity corresponds to the37

frequency of a particular configuration averaged over all38

devices. In all cases, we label only those states at which39

a given series of test runs terminated.40

In all tests, PIT terminates at most two transitions41

away from the target state. The main factor affecting42

the charge-tuning success rates is either missing a tran-43

sition or identifying noise as transitions when loading44

charges. One way to overcome this limitation is to de-45

velop a DQC module for the ray-based measurements46

analogous to the one used for the 2D scans during coarse47

tuning. Another way to boost the performance is to im-48

plement a “repeated measurement with voting” strategy.49

The latter approach works by determining the presence50

of transitions based on a repeated measurement of a ray51

from the same point followed by a comparative analysis52

of peak locations found in all rays using an algorithm53

that resembles a majority vote approach.54

Similar to tests with a single ray, we test the repeat-55

and-vote strategy with three rays both without and with56

the noise-driven device recalibration. Without device57

recalibration, the voting strategy increases the perfor-58
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FIG. 5. The results of the simulated tuning with noise ad-
justment test runs (a) using a single ray per step during the
loading process and (b) following the “repeated measurement
with voting” strategy with three repeats, with the latter show-
ing a clear improvement in performance. The target states are
(1, 1), (1, 2), and (2, 1) for the top, middle, and bottom rows,
respectively. The palette corresponds to colors used in Fig. 3
and the intensity indicates the frequency of terminating at
a particular configuration, averaged over all devices. In all
cases, we label only those states at which a given series of
test runs terminated.

mance of tuning for (1, 1) to 37.1(29.8) %, for (1, 2)59

to 26.0(22.1) %, and for (2, 1) to 28.2(25.7) %. In-60

cluding both data quality adjustment and three-ray vot-61

ing yields charge-tuning performances of 98.0(2.9) % for62

(1, 1), 94.2(5.6) % for (1, 2), and 94.4(7.3) % for (2, 1); see63

Fig. 5(b). These results confirm that the repeated mea-64

surement with a voting strategy significantly improves65

the overall robustness of charge tuning against random66

noise.67

IV. SUMMARY AND OUTLOOK68

Our results show that the PIT algorithm is very effec-69

tive at device tuning with efficient use of measurements.70
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We show that action-based coarse tuning can navigate1

directly to a target global state using established ML2

approaches. Moreover, this state navigation is agnostic3

to details of the underlying ML tool, which allows fur-4

ther reductions in measurement burden by using a set5

of 1D measurements for state estimation [20, 29]. The6

ray-based charge-tuning module enables similarly data-7

efficient navigation from the coarse-tuning position to a8

target charge state with a high rate of success. Com-9

bining these modules gives a reliable and data-efficient10

algorithm for taking a device from a basic voltage esti-11

mate to a region suitable for fine-tuning and qubit op-12

eration. Continued improvements in device quality and13

understanding will lead to higher success in bootstrap-14

ping methods, further improving starting points for PIT15

and, therefore, increasing its efficiency.16

Given the success rate for our methods in off-line ex-17

perimental tests as well as successes when applied to sim-18

ulated data with noise adjustment, we expect that PIT19

will be highly effective in tuning experimental QD de-20

vices to various charge states in situ. An important dif-21

ference between the in situ and the off-line tests is that22

the experimental devices tuned online are not static and23

can have dynamic defects that alter SNR as tuning is24

performed. While this could work to our disadvantage,25

our demonstration of interactive tuning tests in Sec. III D26

shows how the recently developed ML tools for data qual-27

ity assessment [23] can be leveraged to flag data poten-28

tially unsuitable for ML or conventional analysis before29

it causes tuning failure. For the ray-based charge tuning30

in an online setting, the repeat-and-vote strategy of peak31

finding, also described in Sec. III D, can be used to allevi-32

ate the effects of device noise. While not possible during33

off-line testing, these simple adjustments to improve data34

quality and mitigate random noise, already implemented35

in PIT, are likely to make the in situ performance of PIT36

better than in off-line tests.37

Although here we only consider tuning of double-QD38

arrays, our methods are easily generalizable to larger ar-39

rays if an (n + 1) loading strategy is used [9]. In such40

a framework, loading of an arbitrary size QD array is41

reduced to the tuning of only two types of 2D volt-42

age spaces: plunger-plunger space (addressed here), and43

plunger-barrier space. Extending our methods to virtual44

plunger-barrier space may be a relatively simple appli-45

cation of ray-based charge-tuning methods if reasonable46

estimates for barrier voltages can be made. If more pre-47

cise tunnel coupling calibration is required, additional48

functionality may be needed to extract transition line49

widths or visibility. Such a tool may be desirable in gen-50

eral to incorporate a method for checking and adjusting51

tunnel coupling to avoid potential failure modes of our52

autotuning algorithm. Future work could include using53

maximum entropy methods to model the probabilistic54

electron occupancy state from the plunger-plunger space55

for fine-tuning the double-QD state [44]. Using the tools56

of information geometry to measure the curvature of cur-57

rent transition lines in the plunger-plunger space might58

allow for further tunnel coupling calibration [45]. The59

modular nature of PIT lends itself well to both additions60

of modules targeting tuning steps currently not incorpo-61

rated in PIT (i.e., bootstrapping and fine-tuning) and62

further improvement to existing subroutines.63

PIT combines modern computer vision, machine learn-64

ing, and data processing techniques with human heuris-65

tics to provide an intuitive, efficient, and reliable tool66

for QD device calibration. Moreover, the significantly67

reduced one-dimensional data acquisition requirements68

combined with simplified data analysis techniques make69

PIT well suited for implementation with dedicated hard-70

ware closely integrated with the QD chip. It is thus a71

major step toward fully automated and scalable tuning72

of QD devices, a prerequisite to using QD-based quantum73

computers.74
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Appendix A: Additional performance analysis87

To determine the effect of telegraph noise on the tuning88

process, we vary the lifetime of the synthetic telegraph89

noise with respect to the reference noise level used in90

Fig. 3 and run PIT in the same manner as described in91

Sec. II. The lifetimes of the telegraph noise used in the92

initial tests, summarized in Fig. 3, were set to 2 s (as-93

suming a 10 ms integration time) for both the upper and94

lower states. For the additional tests, we consider both95

shorter and longer lifetimes (resulting in higher and lower96

amounts of telegraph noise, respectively). The summary97

of the performance statistics for this data is shown in98

Table II and depicted graphically in Fig. 6. Figure 6(a)99

uses a lifetime of 1 s for the upper state and 1 s for the100

lower, Fig. 6(b) uses 2 s for the upper and 1 s for the101

lower state, and Fig. 6(c) uses a lifetime of 4 s for the102

upper state and 2 s for the lower.103

Regardless of the telegraph noise lifetime, the per-104

formance of action-based tuning is remarkably high, at105

about 94 % when using rays and about 99 % when us-106

ing 2D scans; see top two rows in Table II. The empty-107

ing success rate is also consistently over 99 %, though108

the soft out-of-bounds rate increases from an average109

of 8.3(9.4) % for short lifetimes of telegraph noise to110
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FIG. 6. Additional performance tests on simulated data. In each panel the magnitudes for the telegraph, 1/f (pink), and
white noise are varied between 0.2 and 2.5 of the reference noise level while the lifetimes for the telegraph noise are kept fixed
in each panel at (a) 1 s for upper and lower states (b) 2 s for upper and 1 s for lower, and (c) 4 s lifetime for upper and 2 s for
the lower state (assuming an integration time of 10 ms per pixel). The telegraph noise magnitude is set to 4 times the relative
magnitude used in Ref. [23].

18.6(12.0) % for long lifetimes of telegraph noise. The1

hard out-of-bounds remains consistently below 1 %. This2

is an important feature since the hard out-of-bounds ter-3

mination indicates a complete failure to recognize an4

empty state.5

For charge tuning, there is a somewhat unexpected6

trend of rapidly decreasing performance at high noise7

levels for the short lifetimes, Fig. 6(a), that can be ex-8

plained by the algorithm’s inability to ignore a telegraph9

jump in a ray when a chance of such jumps is unusu-10

ally low. This issue is likely addressable by using the11

repeat-and-vote strategy described in Sec. III D, or by12

making the peak-finding algorithm more restrictive by13

increasing the expected prominence of peaks. For moder-14

ate but higher than the reference frequency of telegraph15

noise, Fig. 6(b), the performance of PIT is nearly in-16

distinguishable from that shown in Fig. 3. Finally, the17

performance degrades substantially when the lifetime of18

telegraph noise becomes significantly longer than the ref-19

erence.20

Appendix B: Location adjustment21

Figure 7 shows more detailed paths for the controlla-22

bility and loading steps of PIT for setting charge (1, 1)23

and (2, 1) as those shown in Fig. 1(c) and (d), depicted on24

separate plots for better clarity. The dark, desaturated25

arrows shown in Fig. 7(b) and (d) indicate the auxiliary26

rays used to make the location adjustment. The positions27
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FIG. 7. Detailed paths of the controllability and loading process depicted in Figs. 1(c) and 1(d) showing the auxiliary rays.
(a),(c) Two paths for navigating to the point where virtual gates may be established, with an “x” indicating the beginning of
the path and the termination point marked with a black dot. (b),(d) Two paths navigating to the target charge state. The
desaturated arrows indicate the ray measurements used for the location adjustment, with the white-bordered “+” indicating
the location before adjustment and the black-bordered “+” showing the position after.

before and after this adjustment are indicated by the1

light and dark “+”, respectively. This adjustment helps2

to ensure that the consecutive measurement is made in3

the center of a hexagon edge and that the termination4

point is well centered in a charge region. The orientation5

of the arrows here corresponds to the virtual gate space.6

TABLE II. Summary of tuning success statistics. The
columns represent noise combinations depicted in Fig. 6. All
results are reported as mean(st.dev.).

Tuning phase (a) (b) (c)
DD (rays) 95.3(2.6) 94.3(3.2) 93.3(3.9)
DD (scans) 99.0(1.7) 98.7(2.5) 98.4(3.4)
Emptying 99.8(4) 99.7(3) 99.3(6)
Soft out-of-bounds 8.3(9.4) 11.7(9.3) 18.6(12.0)
Hard out-of-bounds 0.2(4) 0.2(3) 0.5(5)
Tuning to (1, 1) 89.0(19.4) 88.3(13.4) 81.7(13.0)
Tuning to (1, 2) 88.2(20.1) 86.8(14.1) 78.8(14.6)
Tuning to (2, 1) 88.4(19.9) 87.1(14.1) 79.4(14.3)
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