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Abstract

The application of machine learning and deep learning techniques in the field of
materials science is becoming increasingly common due to their promising ability
to extract and utilize data-driven information from available materials data and
accelerate materials discovery and design for future applications. In an attempt to
assist with the process, we develop and deploy predictive models for multiple
materials properties, given the composition of the material. The deep learning
models described here are built using cross-property deep transfer learning
technique which leverages source models trained on large datasets to build target
models on small datasets with different properties. These models are deployed in
an online software tool that takes a number of material compositions as input,
performs pre-processing to generate composition-based attributes for each
material, and feeds them into the predictive models to obtain up to 41 different
materials property values. The online materials property predictor is available at
http://ai.eecs.northwestern.edu/MPpredictor
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Introduction
Background

Traditionally, the field of materials science and engineering has involved conduct-

ing simulations and hands-on experiments in the lab to understand and discover

new materials with desired properties. Over time, the data generated by such sim-

ulations and experiments has accumulated to a point that it has become possible

to apply data-driven methods to build predictive models for materials properties.

This led to the emergence of a new sub-field in materials science called materials

informatics [1, 2, 3, 4, 5] also known as the fourth paradigm of science [6] which

tries to unify first three paradigms of experiment, theory, and simulation. Recent

years have seen a surge in research works that utilize data-driven methodologies

to predict and optimize materials properties [7, 8, 9, 10, 11, 12, 13, 14]. In or-

der to realize the vision of development of advanced materials, the US government

launched the Materials Genome Initiative (MGI) [15] in 2011. The initiative aimed

to reduce the time lag between the discovery of materials and their deployment to

half at a fraction of the cost. Materials Genome Initiative Strategic Plan [16, 17],

released and expanded in 2014 and 2021 respectively, also recognizes data analytics
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and artificial intelligence as one of the main tools to integrate advanced modeling,

computational and experimental tools, and quantitative data, to realize the vision

of MGI. It is in the spirit and pursuit of the vision and approach of MGI that we

discuss and present in this software article, an online materials informatics tool to

predict 41 materials properties, including many properties for which large datasets

are not available, making it harder to generate a highly accurate model by tradi-

tional model training methods. The online materials informatics tool deployed in

this work can play a crucial role in the process of materials discovery and design.

Materials Representation

In this study, we mainly focus on two types of the most commonly used composition-

based inputs, raw elemental fractions (EF) and MAGPIE (Materials Agnostic Plat-

form for Informatics and Exploration) based physical attributes (PA) due to their

consistency in providing promising results when used with powerful deep learning

(DL) techniques [11, 18, 19]. EF is composed of 86 composition based-attributes

where each attribute represents an element in the periodic table. For example,

RbCl is represented as a 1D vector with 86 entries, with the Rb and Cl columns

containing 0.5 and other entries as 0. PA consists of elemental property statistics,

stoichiometric attributes, electronic structure attributes, and ionic compound at-

tributes which are from domain perspective more informative set of descriptors as

compared to EF.

Density functional theory

Most of the datasets used in this study are obtained using Density functional theory

(DFT), which is a quantum mechanical simulation technique based on the electron

density within the crystal structure of the material and is one of the most commonly

used computational tools for studying the electronic scale properties of a material.

As these calculations require atomistic structure of the materials we want to study

as input, it can be extremely computationally costly and time consuming in nature

where a single DFT calculation can take long amount of time (on the order of hours,

days, or even weeks) depending on the size and complexity of the material being

studied on modern computing systems.

Implementation
As this work focuses on improving the predictive model for materials properties for

which a large number of data points are not available, we create a robust work-

flow that is divided into several steps. First, we perform data acquisition where

different DFT-based and experimental datasets with various materials properties

are collected. We then generate compositional attributes that consist of elemental

fractions (EF) and physical attributes (PA) for each of the datasets to construct the

database for each of the material property. We then deploy cross-property transfer

learning framework [20] comprised of supervised learning techniques to determine

the predictive models for material properties, given the composition of the materials

without the use of structure-related attributes. The models trained using the cross-

property transfer learning framework consist of a base model, scratch (SC) models

and transfer learning (TL) models. The base model is a baseline model that uses the
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average property value of the training data as the predicted value. For SC models,

the model training is performed directly on the target dataset without providing

the model with any form of pre-trained knowledge. SC models consist of traditional

machine learning (ML) and deep learning (DL) models with EF and PA as model

inputs. For TL models, the model training is performed by providing the target

dataset with a pre-trained model trained on source dataset using only EF as the

model input. The TL techniques incorporated in this work include fine-tuning, and

feature extraction methods. We do not use traditional ML models for the TL-based

model training as it has been shown to not benefit the results much but takes a

lot of computational time and resources [20]. Source models used in the framework

are obtained by training six different source properties: formation enthalpy, band

gap, magnetic moment, stability, total energy, volume. We evaluate the models us-

ing standard validation techniques and using the most accurate models for each of

the materials properties for predictive analysis in an online user-friendly software

tool that can take a list of compositions as input. The whole workflow is shown in

Figure 1.

Result
Dataset

We used the same dataset and material properties as used in [20], which consists

of two datasets of DFT-computed materials properties (Open Quantum Materi-

als Database, OQMD [21] and Joint Automated Repository for Various Integrated

Simulations, JARVIS [22]) and two datasets of experimentally-measured materials

properties in this work. Detailed descriptions of the datasets used in this work are

shown in Table 1. For a detailed explanation of all the pre-processing performed

(which mainly includes duplicate entry removal, property value range selection and

attributes generation) on the datasets, the reader is referred to [20].

Methods

A deep learning framework, ElemNet [18], was implemented using Python and Ten-

sorFlow 2 [23] and Keras [24] and has shown to excel in producing a strong predictive

model on raw inputs similar to [19, 25]. The traditional ML models used in this

work are Elastic Net, Ada Boost, Stochastic Gradient Descent (SGD) regression,

K-Nearest Neighbors, Ridge, Support Vector Machine, Linear Regression, Lasso,

Extra Tree, Bagging, Random Forest, and Decision Tree. For all ML models, we

carry out an extensive hyperparameter grid search to find the best hyperparame-

ters. Readers interested in details of hyperparameters are referred to [20]. We use

Mean Absolute Error (MAE) as the evaluation metric for all the models. We divide

the available data for each property into training and validation sets in 9:1 ratio

without the holdout test set to maximize the data used for model training, since

these models are developed for deployment. Note that results on holdout test set

are provided in [20].

Comparison Against Scratch Models

Table 2 presents the prediction accuracy of the best scratch (SC) and best transfer

learning (TL) model selected based on validation MAE values for each of the 41

target properties.
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As we can observe from Table 2, the TL models perform better than SC models

in 31/41 cases, i.e., in ≈ 76 % of the cases. Additionally, we calculate one-tailed

p-value for comparing the validation MAEs obtained on 41 target datasets (39

DFT-computed and two experimental datasets) to see if the observed improvement

in accuracy of TL models over SC models is significant. As we are dealing with

different datasets with different properties, whose MAE differences may not be di-

rectly comparable [26], we use Signed Test [27, 28] to calculate the p-value. Here,

the null hypothesis is that “TL model is not better than SC model”, and the al-

ternate hypothesis is “TL model is better than SC model”. After performing the

sign test using sign test calculator [29], we get the p-value = 0.00052, thus rejecting

the null hypothesis at α=0.01, suggesting that the difference in validation MAE

between SC and TL models is unlikely to have arisen by chance. We can thus infer

that in general TL models perform significantly better than SC models. Given these

results, we believe that the machine learning and deep learning models trained and

deployed in this work could be very useful for quickly and accurately estimating the

different properties of materials (note that for the 39 DFT target properties, the

prediction is by definition at 0 K temperature), which can help scan a large number

of compositions in a short time for new promising materials with desired properties

without expensive DFT calculations or experiments.

Materials Property Predictor

We have created an online materials property predictor that takes a list of com-

positions (satisfying the charge balance condition and common oxidation states of

individual elements) as input, and returns predictions of materials properties. The

best model with the least error for each of the materials properties (among the SC

and TL) is used for prediction. The results are presented in the form of a table with

columns representing each of the compositions given as input and rows representing

the selected materials properties from the best model. Note that these models are

trained on the known most stable structure for a given composition, and thus only

take the composition as input. In other words, no structure information is needed

to get the property predictions from this software tool, which on the one hand is

advantageous as structure information can be unavailable or difficult to obtain in

many cases, while on the other hand, these models cannot distinguish between struc-

ture polymorphs of a given composition. We believe that given the huge chemical

space, composition-based models such as those deployed in this software tool can be

instrumental in first identifying promising composition systems of elemental com-

binations, which could subsequently be analyzed further with structure-prediction

methods and structure-aware property prediction methods. The screenshot of the

main and result page of the materials property predictor is depicted in Figures 2 and

3, and the tool is available online at: http://ai.eecs.northwestern.edu/MPpredictor.

Conclusion/Significance
From a research point of view, this work explores the applicability of predictive mod-

eling techniques to predict material properties. Unlike many other existing works

which primarily focus on predicting a few materials properties [12, 13], here we

perform materials property prediction for a wide range of materials properties, by
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comparing the best SC and TL models on DFT and experimental datasets. We

used the entire dataset to train the model unlike [20] to get more accurate models

for deployment. From a practical perspective, we have deployed the most accu-

rate predictive models in a software tool with a user-friendly and easy-to-access

design. To make the developed predictive models for various materials properties

readily accessible for use by the materials science and engineering community, we

have created an online materials property predictor that can take a list of materi-

als compositions as input and predict the materials properties of choice. The main

advantage of this software tool is its ability to accurately predict multiple materials

properties in a matter of seconds by just using the chemical composition of the ma-

terial without the need for any structure-related information, which is, in general,

hard to obtain and is also required when performing expensive DFT simulations.

The deployed software tool is expected to be a valuable resource to assist in the

process of searching for better materials with improved properties for researchers

and practitioners in the materials science and engineering community. The code

used to develop the online software tool in this work is also publicly available at

https://github.com/GuptaVishu2002/MPpredictor.
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Figure 1 Block diagram depicting the workflow used in this work.

Figures

Figure 2 Screenshot of the main page of the deployed materials property predictor.

Tables
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Figure 3 Screenshot of the result page of the deployed materials property predictor.

Table 1 Description of the datasets used in this work.

Dataset Data Size # Properties
OQMD [21] 341,443 6
JARVIS [22] 28,171 39
Experimental Formation Enthalpy [30] 1643 1
Experimental Bandgap [31] 4920 1

Table 2 Prediction performance in terms of validation MAE of the best SC and TL model selected
for each of the target materials properties.

Property Data Size Base Best SC Best TL
Kpoints Length Unit (Å) 28056 18.77 10.69 11.15
Kpoints Array Average (Å) 28171 5.232 2.692 2.779
Bandgap Optb88vdw (eV) 28163 0.987 0.253 0.228
Formation Energy (eV/atom) 28155 0.850 0.127 0.115
Encut (eV) 28108 246.2 76.02 80.04
Ehull (eV/atom) 27297 0.130 0.054 0.0471
Magmom Oszicar (µB) 25844 1.222 0.408 0.377
Magmom Outcar (µB) 25357 1.172 0.385 0.343
Eps Refractive Index (x) 25150 3.829 1.259 1.204
P Powerfact (Wm1K1) 16250 650.2 486.3 477.9
N Powerfact (Wm1K1) 16250 657.8 478.1 477.1
P Effective Masses
300K Average (kg)

16763 1.917 1.081 1.109

N Effective Masses
300K Average (kg)

16760 1.917 1.081 1.120

P Seebeck (µV/K) 14439 163.1 56.14 56.53
N Seebeck (µV/K) 14144 108.6 48.47 49.73
Meps Refractive Index (x) 11349 4.904 1.738 1.726
Max (Phonon) Mode (cm−1) 10963 284.6 55.97 62.12
Min (Phonon) Mode (cm−1) 10930 40.76 22.89 21.57
Elastic Tensor C11 (GPa) 10839 81.56 34.25 32.19
Elastic Tensor C12 (GPa) 10759 44.95 16.52 16.49
Elastic Tensor C13 (GPa) 10846 42.51 13.86 13.46
Elastic Tensor C22 (GPa) 10832 84.01 33.70 31.26
Elastic Tensor C33 (GPa) 10856 84.03 35.11 33.16
Elastic Tensor C44 (GPa) 9986 29.52 14.94 14.51
Elastic Tensor C55 (GPa) 9755 26.63 12.35 11.25
Elastic Tensor C66 (GPa) 9739 27.56 13.43 12.68
Bulk Modulus KV (GPa) 10743 49.07 11.36 10.52
Shear Modulus GV (GPa) 10209 24.21 11.05 10.28
Bandgap MBJ (eV) 7296 1.910 0.539 0.500
Spillage (Å−1) 3866 0.499 0.349 0.334
SLME (%) 3006 9.442 6.636 5.827
Max Ir Mode (cm−1) 2302 422.5 83.68 95.71
Min Ir Mode (cm−1) 2268 66.13 37.39 40.72
Dfpt Piezo Max Dielectric
Electronic (ε11)

2126 5.715 2.809 2.520

Dfpt Piezo Max Dielectric (ε11) 2126 6.953 3.437 3.206
Dfpt Piezo Max Dielectric
Ioonic (ε11)

2126 2.559 0.783 0.691

Dfpt Piezo Max Eij (cm−2) 1123 0.515 0.373 0.359
Dfpt Piezo Max Dij (cm−2) 689 44.05 21.51 19.95
Exfoliation Energy (eV/atom) 557 61.29 37.72 35.74
Experimental
Formation Energy (eV/atom)

1643 1.033 0.101 0.072

Experimental Bandgap (eV) 4920 1.205 0.423 0.348


