Ventilation Management to Reduce Airborne Transmission Risks and Improve Indoor Air Quality

Andrew Persily
National Institute of Standards and Technology
Gaithersburg, Maryland USA
andyp@nist.gov

NASEM Environmental Health Matters Initiative Indoor Air Management of Airborne Pathogens: Lessons, Practices, and Innovations 18 August 2022

Ventilation Management: What's been recommended

Inspect systems; verify operation per design & standards Change standards for more air, more filtration, ...

MORE: outdoor air, filtration, open windows, humidity

Monitor indoor CO₂

Concentrations below X ppm_v indicate good ventilation/low risk

Improve air distribution for air delivery & aerosol removal

MISC: Longer ventilation operation (e.g., 24/7), Flushing before/after occupancy; Disable demand control ventilation

Buildings and systems vary

USA: >140 million dwellings; 6 million commercial

Building systems

Layout, design, control, capacity, occupant activities, operation, maintenance, ...

System type & operation impact ventilation management options

Mechanical ventilation

Outdoor air (OA) intake control?

Capacity for more OA?

Simple system have limited options

Natural ventilation:

Operable windows or engineered system

Ventilated by leakage only, i.e., infiltration

Ventilation assessment: To understand system & options before making changes

Persily. 2021. Evaluating Ventilation Performance, Handbook of Indoor Air Quality.

System Design

- Documentation exist? Is it current? What standard used?
- Outdoor air intake rate; Recirculation; Local mixing boxes; Filter efficiency; Heat/enthalpy recovery; Operating schedule; Controls

Actual performance

- System status: on/off, mode of operation, ...
- System airflows: Supply, outdoor air, exhaust
- Whole building outdoor air change rates
- Pressure differences, air distribution/ventilation effectiveness

Other important factors

- Condition of system components
- Operations & Maintenance programs

One measurement doesn't tell you much!

Air change rates vary!

Persily. 2016. Field measurement of ventilation rates. Indoor Air. 26(1): 97-111.

CO₂ monitoring can be useful

- 1. Understand technical basis
- 2. Measure and interpret with care

History of confusion and misinterpretation More measurement & less expensive sensors Guidance not always clear

2 reasons to monitor CO₂ Verify protective ventilation rate Indicator of transmission risk

Critical to include with concentration data: building & system design, timing relative to occupancy, sensor location, measurement accuracy, outdoor concentration,

ASHRAE Position Document on Indoor CO₂

Courtesy of David Meyer, Shenandoah University

CO₂ as a metric of adequate ventilation

A single value for all spaces doesn't make sense Must consider timing of occupancy & measurement, occupants, target ventilation rate, ...

Recently proposed space-specific CO₂ metric

QICO2: On-Line Calculator (Search on: NIST CO2 tool)

Innovation

Do the right things

Make sure systems operating per design Understand before making changes We know how to do this!

Localized or personal ventilation

Sensors

Ventilation control approaches

Revise ventilation/IAQ standards to address operation, existing buildings and airborne infection more directly

Wrap-up

Managing ventilation is nontrivial, but it's not rocket science

Each building/system is unique and dynamic We have the knowledge and the tools

You want innovation?

Operate and maintain systems as intended Then get fancy with sensors, air distribution, ...

Don't neglect the neglected buildings

Existing, Multi-family, Public housing Older, lower-end without budgets and plaques

Persily and Siegel. 2022. Improving Ventilation Performance in Response to the Pandemic. *The Bridge* 52(3).

Persily. 2021. Evaluating Ventilation Performance. In Handbook of Indoor Air Quality. Springer Singapore.

10.1007/978-981-10-5155-5_20-1; https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932281

ASHRAE. 2022. Position Document on Indoor CO₂

https://www.ashrae.org/file%20library/about/position%20documents/pd_indoorcarbondioxide_2022.pdf

Persily. 2022. Development and Application of an Indoor Carbon Dioxide Metric. *Indoor Air*. DOI: 10.1111/INA.13059

Persily and Polidoro. 2022. *Indoor Carbon Dioxide Metric Analysis Tool*. NIST Technical Note 2213.

https://pages.nist.gov/CONTAM-apps/webapps/CO2Tool/#/

Persily. 2021. Using CO₂ Monitoring to Manage Ventilation in Buildings. EPA Indoor Air Quality Science Webinar.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933724; https://www.youtube.com/watch?v=88XCmW8yIhs

Persily and Ng. 2020. Ventilation Impacts on Indoor Aerosol Transport and Current HVAC Recommendations for Re-Opening Buildings. Federal Interagency Committee on IAQ.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930680