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Abstract

Advancements in sequencing technologies and assembly methods enable the regular
production of high-quality genome assemblies characterizing complex regions. However,
challenges remain in efficiently interpreting variation at various scales, from smaller
tandem-repeats to megabase re-arrangements, across many human genomes. We present a
pangenome research toolkit (PGR-TK) enabling analyses of complex pangenome structural- and
haplotype-variation at multiple scales. To demonstrate PGR-TK , we apply the graph
decomposition methods to the class II major histocompatibility complex demonstrating the
importance of the human pangenome for analyzing complicated regions. Moreover, we
investigate the Y-chromosome gene, DAZ1/DAZ2/DAZ3/DAZ4, of which structural variants have
been linked to male infertility, and X-chromosome genes OPN1LW and OPN1MW linked to eye
disorders. We further showcase PGR-TK across 395 complex repetitive medically important
genes. This highlights the power of PGR-TK to resolve complex variation in regions of the
genome that were previously too complex to analyze.



Introduction

Studying genomes, the fundamental information contained in all living beings, is the foundation
for understanding the biology and evolution of all organisms, as well as the genetic diseases of
humans. Despite the millions of human genomes that have been sequenced since the onset of
the Human Genome Project1,2, and the dramatic reduction in the cost of short-read (~150bp)
DNA sequencing, there is still fundamental information yet to be revealed in genomics3. While
it is important to recognize successes to date, including small variant surveys, genome-wide
association studies4–7, and the development of routine lab tests for genetic-based precision
medicine 8–11, there remain fundamental biological questions that involve structures at greater
length scales that can only be captured using long-range information accessible by long-read
technologies and diploid phased assemblies12–14.

With the possibility of resolving variants at multiple scales, small and large, researchers now can
fully characterize previously inaccessible regions by focusing on SNPs and small indels alone15,16.
Examples of such previously inaccessible regions include centromere, telomeres, and complex
repeat regions. Recent results with a pangenome-scale de novo human assemblies and the
CHM13 telomere to telomere assembly have already shown the potential for revealing
biological insights 3,17–20, which are the foundation for understanding complex genetic diseases.

A concept that becomes powerful in such analyses is that of the pangenome -- that is, a
characterization of both the genetic structure and the genetic variation across diverse
individuals of a species. However, such complexity and diversity generate interpretive
challenges that require more advanced tools. A graph representing many genome assemblies at
once provides a way to visualize and analyze complicated structural variations among different
haplotypes21–28. Previously, distinct approaches to generate graphs representing pangenome
structures have been proposed for various applications For example, variant graph27,29 and
PanGenie26 focus on improving variant calling and genotyping with pangenome references.
Cactus graphs25, Progressive Cactus graphs30, PGGB19, and cactus-mingraph19,24build
pangenome graphs aiming for large-scale structural rearrangement comparisons. Stringomics
graph with "stringlet"21, Seqwish22 and de Bruijn graph based approaches26,31 provide algorithms
and data structures for improving storage and query efficiency and reduce bias caused by the
alignment processes. These tools provide more accessible pictures for researchers to
understand repeats and rearrangements than using computational intensive and visually
complicated multiple sequence alignments (MSA)30,32,33. The traditional MSA view is typically
represented as a big matrix where each row represents a different genome and the columns
represent the bases. With MSA, the relationships between sequences are not obvious when
there are complicated repeats or structural variations. Instead of per base alignment, a
pangenome graph effectively condenses the homologous regions and can express the
relationship between those different regions through graph edge connections that are easier to
trace. Meanwhile, although a graph is an elegant data structure for gathering information from
pan-genomic assemblies, there remains a gap in projecting the underlying linear sequences
onto a graph at various scales to reveal and compare features of many different haplotypes23.

To address this gap, we present a generalized graph framework as a software package,
PanGenome Research Tool Kit (PGR-TK, https://github.com/GeneDx/pgr-tk), that is scalable to
rapidly represent multiple samples at varying resolution levels by adopting different parameters
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to facilitate exploratory analysis. PGR-TK is able to resolve and visualize the most complex
regions of the human genome that often impact multiple medical important phenotypes (e.g.
LPA, HLA, etc).

We demonstrate the ability of PGR-TK to visualize and enable deeper insights into complex
variants in repetitive genes, including a gene within nested palindromic and tandem repeats
(AMY1A), the MHC region including the complex HLA Class II locus34, the GIAB challenging
medically relevant gene list35, and chrX and chrY ampliconic genes36. Many genome wide studies
including GIAB have excluded many of these genes from their analyses because they are
challenging to represent in VCF and it is challenging to compare differing representations37. To
understand how PGR-TK can help with the challenge of variant calling, variant representation
and comparison across these genes and genomic loci we utilize the Human Pangenome
Reference Consortium19,38 year one 47 human genome assemblies (94 diverse haplotypes).
With the ability to survey a large set of genes swiftly with PGR-TK, we hope to understand how
to better provide a broader benchmark set for challenging genes utilizing HPRC assemblies in
the future. We examine OPN1LW and OPN1MW on chromosome X and DAZ1/2/3/4 on
chromosome Y in detail to understand how the limit due to complicated large scale genome
rearrangement impacts the current methodology of generating variant call benchmarks. Our
initial analysis of the GIAB Clinical And Medically Important Genes(CMRG) with a pangenome
graph approach will help the research community to adapt the pangenome resource for clinical
and medical genetic applications. Tools for visualizing and analyzing complicated
re-arrangement loci such as PGR-TK will be essential for better variant calling and understanding
the related mechanism for the community.

Results

Pangenome Research Toolkit

The PGR-TK has several different components to facilitate rapid pangenome analysis. The
general scope and design of the PGR-TK is illustrated in Figure 1a. PGR-TK applies the
computation techniques and data structures initially developed for fast genome assemblers39–41

to pangenomics analysis tasks. Instead of building a whole genome graph at once, which can be
computationally expensive. PGR-TK provides tools for building an indexed sequence database,
fetching and querying sequences of interest (e.g. genes or regions with large scale structural
variations) from the database to create pan-genomics graphs accordingly. It uses minimizer
anchors to generate pangenome graphs at different scales without more computational
intensive sequence-to-sequence alignment or explicitly calling variants with respect to a
reference. The generation step of the pangenome graph considers all input sequences
equivalently without a preferential reference. Note that the sequence fetching step using a
query sequence may introduce bias due to missing or incorrect alignments. We also developed
an algorithm to decompose tangled pangenome graphs to more manageable units (principal
bundles). With such decomposition, we can easily project the linear genomics sequence onto
the principal bundles. It can provide more straightforward visualization to generate insight by
revealing the contrast of the repeat and rearrangement variations among the haplotypes. Such
pangenome-level graph decomposition provides utilities similar to the A-de Bruijn graph
approach for identifying repeats and conserved segmental duplications42–45 , but for the whole
human pangenome collection at once.
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PGR-TK employs the Assembly Genome Compressor 46 for storing pangenome assembly contigs
and includes binary for creating the sparse hierarchical minimizer (SHIMMER) index. For the
HPRC year-one data release (94 fully assembled haplotypes from 47 samples), it takes 18
minutes to create the index file on an AWS c5.12xlarge instance, with the default parameters.
This is significantly faster than building an alignment index for query with tools such as
mimimap2 ( Supplementary Table 1). Although PGR-TK was designed to retrieve homologous
sequences from the database, rather than finding the best alignments, our evaluations indicate
that the query results are generally consistent with other alignment tools (Supplementary Table
2 & 3).

Once the index is built, it can be loaded into memory within minutes. As shown in Figure 1a,
there are three main functional modules utilizing the index: (1) fetching homologous regions
and sequences of the pangenome database given a query sequence, (2) creating Minimizer
Anchored Pangenome Graph (MAP-graph), and (3) command line tools and a software library
for interactive analysis and visualization on the generated graph and the underlying sequences.
One of the major applications of PGR-TK is for deconvolving large regions of the human
genome to reveal complex variations. It offers a set of efficient command line tools for various
tasks, but also allows for more interactive and in-depth analysis through its integration with
Jupyter Lab and other data science tools. This makes it a valuable resource for researchers
seeking to uncover insights from their genomic data."

The source code and library can be downloaded from https://github.com/GeneDX/pgr-tk. The
documentation of the Python APIs is at https://genedx.github.io/pgr-tk/.

Sparse Hierarchical Minimizer Index

Sparse Hierarchical Minimizer (SHIMMER) is a data structure extending the minimizer for more
efficient indexing over larger regions. Additional minimizer reduction steps to generate sparse
minimizers are applied to the minimizer sequences instead of the original base-pair sequences
in a hierarchical way39. Such sparse minimizers can serve as natural “anchors” or "markers" on
genomics sequences without an explicit reference coordinate system. We utilize the SHIMMERs
for quick sequence queries as initially proposed by Roberts, M. et al.47. PGR-TK identifies all
neighboring pairs of SHIMMERs and indexes all the sequence segments between the pairs.
Figure 1b shows a cartoon of the SHIMMERs identified on each sequence. Then, the pairs of
the neighboring SHIMMERs are used for indexing the corresponding sequence segments within
the paired SHIMMERs. After that, we build a look-up table of all pairs of SHIMMERs to all
segments with the same pair at both ends (Figure 1c). For the query, we compute the
neighboring SHIMMER pairs from a query sequence and search the database for all segments
indexed by the same pairs. Finally, we can fetch all target segments stored in the database to get
all related sequence information for further analysis. PGR-TK provides functions to refine the
raw query results and filter out spurious alignments likely caused by repeats outside the region
of interest. With the set of sequences homologous to the query sequence, we can quickly
perform downstream analysis work, e.g., variant discovery by aligning the sequences to each
other. Furthermore, we can generate a local pan-genomics (MAP-graph) for comparing the
sequences in the pangenome dataset at various scales by adjusting parameters to fit different
analysis tasks.
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Minimizer Anchored Pangenome Graph (MAP-graph)

PGR-TK provides tools to generate the “Minimizer Anchored Pangenome(MAP) graph” from a
set of homologous sequences. The vertices in a MAP-graph are labeled with the neighboring
SHIMMER pairs representing a set of sequence segments in the database (Figure 1c, 1d, and
Methods). The edges in the MAP-graph are induced when at least one sequence connects the
two fragments. Thus, each sequence naturally corresponds to a path in the graph, and the
vertices in the path also contain the segments of other sequences in the database that share
the same SHIMMER pair label. Please see the Methods for a precise mathematical definition of
a MAP-graph. The deployment of minimizer- or minhash- based approaches successfully in
sequence comparison39,40,48 indicates that sequence segments with the same minimizer labels
are also likely to be highly homologous. The homology between sequences can be further
confirmed by explicit sequence alignment of the segment inside a MAP-graph vertex. However,
the computation intensive base-to-base alignment is not required for building the MAP-graph.

The MAP-graph construction in pgr-tk is highly efficient, as it does not rely on traditional
sequence-to-sequence alignment. This is demonstrated by the fast graph construction for a set
of 147 major histocompatibility complex class II region sequences from the pangenome
reference, which was completed in under 5 seconds of wall-clock time using PGR-TK, compared
to the 3.5 minutes using seqwish22 and 13 minutes using minigraph24 (Supplementary Table 4).

The size of vertices in the MAP-graph, which represents sequence segments in the pangenome,
can be adjusted by adjusting the parameters that determine the distance between minimizers.
This allows us to study genomic features at different length scales and generate pangenome
graphs with varying levels of detail. This is particularly useful when analyzing features that vary
in size, such as tandem repeats in the human genome, which can range from a few hundred
base pairs to 1-2 kilobases (Supplementary Table 5). By generating pangenome graphs at
different levels of detail, we can gain a more comprehensive understanding of complex variation
patterns within populations and focus on specific features of interest.

The analysis of pan-genomic structure can be adjusted by controlling the parameters of
minimizer window size (w), minimizer size (k), and hierarchical reduction factor (r), along with
an auxiliary parameter min_span, which sets the minimum distance between minimizers in the
construction of the SHIMMER index and MAP-graph (see Methods). The length of each vertex in
the MAP-graph, representing a sequence segment, can be modified by adjusting these
parameters. This allows us to study genomics features at different length scales.

Supplementary Figure 1 illustrates the vertex length distribution for different parameter sets
using chromosome 1 of CHM13 assembly. An increase in either w or r results in longer
sequences being represented by each vertex, enabling a more sparse sampling of the
pangenome. The choice of parameters depends on the length of the region of interest and the
size of relevant biological features, such as repeat sizes and distances. For example, when
studying large-scale differences, bigger w and r values are preferable to generate a sparse index
that can efficiently capture large-scale differences. Conversely, to compare small-scale
differences, smaller w or r values should be used. Determining the optimal parameters for the
pangenome graph generation step can be challenging if the underlying interesting features are
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less understood. In light of this, we have found that the best initial parameter choice is
determined by the length of the sequences of interest to ensure comprehensible results. Based
on this, we provide a simple formula for selecting the parameters (Supplementary Table 6, and
see Figures 2 and Supplementary Figure 3 for related examples).

Deriving the Principal Bundle Decomposition from the MAP-graph for Visualizing and
Analyzing Large-scale Pangenome Variation Structures

A pangenome graph can serve as a cornerstone for analyzing repeat structure variation in
population17,19. It is usually hard to compare multiple sequences with complicated repeat
structure by examining pairwise sequence alignments directly. The traditional visualization
technique “dot-plot49” allows us to perceive the complexity of the repeats but it does not
provide insights into the repeat structures as linear representations across each individual
sequence directly. Furthermore, only two sequences can be compared with a dot-plot.

As an example, we use PGR-TK to investigate the repeat structure of the AMY1A gene
(Alpha-amylase 1, an enzyme for the first step of catalyzing starch and glycogen in saliva) locus.
We pick AMY1A as it has various numbers of copies caused by larger scale structure variation
related to the repeat surrounding the gene. The dot-plots from randomly picking 36 sequences
of a 400 kb region around AMY1A in the first year HPRC assemblies to the GRCh38 AMY1A
reference sequence are shown in Supplementary Figure 2a. Visual inspections of the dot plots
show there are various numbers of copies of forward repeats and inverted repeats forming
palindrome sequences at the scales of 100kb, and from zero up to 5 palindrome units. Still, only
pairwise comparisons are enabled with dotplots, and thus, we lack a comprehensive
assessment.

For comparison, we generate the AMY1A MAP-graphs at two different scales (Figure 2) from the
HPRC year one assemblies (47 samples). These can be generated with PRG-TK in less than three
minutes from indexed sequence data. In additional to the MAP-graph, we provide tools
analyzing a MAP-graph to “re-linearize” the graph into a set of “principal bundles.” We design
the algorithm to generate the principal bundles representing those consensus paths which are
most likely corresponding to repeat units in the pangenomes. The algorithm searches the paths
that the majority of the pangenome sequences go through without branching as the principal
bundles. This is analogous to identifying the contigs50,51 in genome assembly algorithms.

Figure 2 shows the principal bundle decomposition of the AMY1A region MAP-graph in two
different scales for comparison. The smaller choice of "r" generates a MAP-graph with more
vertices in the graph and each vertex only represents a smaller portion of the pangenome. This
leads to a finer scale of principal bundle decompositions.

The linear representation derived from the MAP-graph allows for efficient identification and
classification of repeat structures, which are otherwise challenging to characterize. Seven
genomes were selected for analysis in Figure 2, each demonstrating distinct repeat structures.
For example, HG00438#2 mostly lacks repetitive sequences. The GRCh38 one has one relatively
simple invert repeat (forming a palindrome region). HG02145#1 has 3 copies of non-inverted
repeats (labeled as repeat 1,2, and 3). HG02257#2 has 3 palindromic repeats (labeled as P1, P2,
and P3) . The two haplotypes from HG002 have similar structure to the GRCh38 except there is
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an inversion in the middle of the palindrome repeats in one of the two haplotypes. A full plot
with all 96 repeat structures, including a hierarchical clustering tree identifying the similarities,
is shown in the Supplementary Figure 2b. This decomposition approach can be utilized by
researchers to effectively classify the repeat structures of regions of interest.

Visualizing and Analyzing the Highly Polymorphism HLA Class 2 Locus

The major histocompatibility complex (MHC) region in human genomes is highly polymorphic.
The genomic sequences of the MHC are fundamental for understanding a human’s adaptive
immune system and autoimmune diseases52,53. Due to its complexity and polymorphic nature, it
has been challenging to get a complete picture of the MHC genomics in the human population
and to benchmark variant calling in the most variable regions34,54. The HPRC assemblies provide
a new opportunity to analyze the MHC sequences with nearly fully assembled sequences of the
region.

To showcase the effectiveness of PGR-TK in analyzing complicated human haplotype structures
and sequences, we applied it on the HLA class II locus (GRCh38, chr6:32,313,513-32,992,088).
We fetched the HPRC HLA class II haplotype sequences by anchoring them with more conserved
flanking regions. Our dataset consists of a total of 105 full-length sequences, ranging from
650kbp to 800kbp. Figure 3a illustrates the MAP-graph of the 105 sequences. The tangled
region in the MAP-graph represents highly polymorphic haplotypes in the human population. By
generating the MAP-graph and the principal bundle decomposition of the MHC Class II, we can
uncover the combinatorial nature of haplotype variation in relation to the newly released
human pangenome references.

We constructed a hierarchical dendrogram on top of the principal bundle decomposition to
study the relation of highly polymorphic haplotypes in the MHC region of the human
population. The PGR-TK provides a command line tool to compute a distance metric derived
from pair-wise sparse alignment of the bundles between two sequences, and generate a
dendrogram from all pairwise distances. Known HLA Class II gene sequences were also mapped
to 105 pangenome sequences. The full annotated principal bundle decomposition, which was
annotated with HLA Class II genes and the hierarchical clustering dendrogram, is shown in
Figure 3b. The highly polymorphic region in the MAP-graph was found to correspond to the
DRB-1/3/4/5, DOB, and DOA1/2 region. By clustering the full set of haplotype sequences, we
can identify the combination of bundles in the entire region that correspond to the gene
combinations of each cluster. Our approach employs the principal bundles to classify the
complete sequence, rather than relying solely on gene fragments. This classification has the
potential to facilitate new applications for improved genotyping or haplotyping of larger
population data in this complex region. The results could offer valuable insights into the
relationship between haplotype sequences and gene combinations in the context of genetic
variation and disease susceptibility.

We can also use the vertices in the MAP-graph to conduct a principal component analysis (PCA)
of the MHC class II regions. We collected all vertices in the MAP-graph to form the basis of
vectors. Then, we constructed a binary vector for each haplotype path by indicating whether or
not the path of the haplotype passes through the vertex. Figure 3c displays the principal
component plot of the haplotype path vectors, along with the ethnic groups. The dotted line
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connects the two haplotypes of an individual in the sample. We have highlighted four different
groups based on the HLA class II gene combinations (excluding the subtype). Each group
contains 10-49 haplotypes. With the current dataset of a limited number of haplotypes, we
have not found any statistically significant patterns yet. However, as additional data will be
released from HPRC in the coming years, we anticipate that the MAP-graph can be utilized to
systematically analyze this region and better understand its impact on human disease within
ethnic group structure.

Visualizing and Analyzing the Large Scales Nested Inversion of Medically Relevant Amplicon
Genes

GIAB is using the fully assembled HG002 chrX and chrY from T2T to form new small variant and
structural variant benchmarks. The assembly fully resolves the medically relevant ampliconic
genes36,55,56 OPN1LW/OPN1MW/OPN1MW2/OPN1MW3 and DAZ1/DAZ2/DAZ3/DAZ4, but the
variation in these genes is too complex for current approaches to make reliable variant calls
compatible with current benchmarking tools.

For example, the genes OPN1MW and OPN1MW2 are inside a 74 kb deletion in HG002 relative
to GRCh38, so HG002 contains only 2 of the 4 copies of the array in GRCh38 - OPN1LW and one
copy of OPN1MW/OPN1MW2/OPN1MW3. Dipcall57 can call the 74 kb deletion and variants in
the other gene copies, but it may be possible to align the assembly to GRCh38 in alternative
ways. The visualization from PGR-TK makes clear the varying number of genes in this array in
each haplotype in Figure 4a, which is important for some phenotypes like color blindness, since
seeing full color requires OPN1LW and at least one copy of OPN1MW/OPN1MW2/OPN1MW3
55,58.

Another important gene family DAZ1/DAZ2/DAZ3/DAZ4 are in a set of nested palindromic
repeats. It has been reported that partial deletions in this region may cause male infertility56. It
would be useful to understand the natural distribution of non-pathogenic structural variants
across this ampliconic gene cluster. DAZ1 and DAZ2 are ~1.5 Mbp from DAZ3 and DAZ4, and
HG002 has a 1 to 2 Mbp inversion relative to GRCh38 with breakpoints in the segmental
duplications that contain the DAZ genes (Figure 4b). In addition to the large inversion, the DAZ
genes contain structural variants, including a ~10 kb deletion in DAZ2, 2 deletions in DAZ4, and
2 insertions in DAZ3 of sequences that are only in DAZ1 and DAZ4 in GRCh38. PGR-TK’s ability to
color and visualize variation with the principal bundle decomposition algorithm at multiple
scales enables intuitive understanding of this type of very complex variation, which would be
very difficult to represent and understand as simple structural variant calls in VCF format.

The efficiency of PGR-TK makes it suitable for analyzing complex variants at isolated loci, as well
as a set of regions of interest. For example, GIAB has identified a set of 395 challenging but
medically relevant genes. Analyzing this set in the pangenome references will provide insight
into the related complicated variation at the population level.

Using PGR-TK, we extracted all sequences of the 395 genes from the HPRC year one release (94
haplotype assemblies), CHM13 v1.1, GRCh38, and hg19 of all 385 CMRG. We generated a
MAP-graph for each gene and output it in GFA format (as seen in the Supplementary Material).
For each graph, we derived two metrics to estimate (1) the degree of polymorphism among the
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pangenomes, and (2) the repeat content taking into account the variations of the pangenomes
(as shown in Figure 4c). These two measurements provide independent assessments of the
MAP-graph structures of these genes. We found, as expected, that highly repetitive genes (such
as LPA and KATNAL2) are more difficult to create a reliable variant benchmark call set. Many
highly repetitive genes are excluded from the current CMRG benchmark set. We did not observe
a correlation between higher entropy and the reduction of the gene in the benchmark set. We
found that the high entropy genes also span larger regions in the genome. While entropy can
indicate the complexity of variations in the population, we observed different clustering
structures of the top entropy genes. (Please see the comparison of the MAP-graph PCA plots of
SNTG2 and KMT2C in Supplementary Figure 4.)

Discussion

With the advance in DNA sequencing technologies, more comprehensive human genomes at, or
close to, telomere to telomere will be collected and made available in the coming years. It will
enable researchers to study and characterize those previously inaccessible complex, but likely
relevant, regions. The current Human Pangenome Reference Consortium assembly release has
significantly impacted our understanding of the human genome architecture. It will also be
essential for building applications for clinical and medical tests and diagnostics soon. Flexible
and scalable computational tools for analyzing pangenome level genome assemblies will be part
of the vital task of improving the practice of precision medicine with rich genomic data such as
those from HPRC.

Many of the recently developed pangenome analysis tools allow graph analysis at the whole
genome level22–24. Meanwhile, the richness of diversity of human genomes over the repetitive
regions poses unique challenges for analysis. In our work developing PGR-TK, we focus on
providing a flexible library of useful algorithms. Furthermore, it enables analyzing the genome
assemblies such that a developer or a researcher can rapidly access certain complex regions by
adjusting parameters for visualization and integrating with subsequent analysis.

Each main building unit (the vertex) of the MAP-graph represents a set of closely related
sequence fragments. This is more analogous to the stringomics method proposed by Ferragina21

than other methods building graphs on top of MSA or variant calls. Such approaches combined
with the sparse minimizers is efficient to reduce the computation complexity (fewer vertices) to
represent larger-scale scale structures. Complementary to that, PGR-TK provides an interface to
fetch the sequences within each vertex such that it is possible to combine a MAP-graph with
other graph analysis approaches, e.g. Cactus graph25 and A-de Bruijn Graph42 for base level
analysis, e.g. variant calling, genotyping, and point mutation analysis, with recursive hybrid
graph data structures.

We demonstrate how to use the PGR-TK for studying and characterizing the repetitive region
AMY1A and the highly polymorphic HLA Class Il region. We present a tool in PGR-TK backed by a
novel pangenome graph traversal algorithm, re-linearizing tangled graphs caused by repetitive
sequences to principal bundles for visualization. With the principal bundle decomposition, we
can automatically visualize the repetitive and non-repetitive components of haplotype assembly
contig. The PGR-TK can provide intuitive qualitative information about different genome
arrangement architectures with decomposition and associated visualizations. For example, it
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enables visualization of both the very large inversion in the DAZ locus and much smaller
complex structural variation within the genes. The OPN1LW/OPN1MW gene array enables
visualization of copy number of the subtly different OPN1LW and OPN1MW genes, which can
affect vision, as well as nearby structural variants. We also utilize PGR-TK to survey a set of
regions of interest across the whole genome. We derive two metrics for measuring the
polymorphism and repetitiveness in human pangenome to more systematically survey
complexity of a large set of medically and clinically relevant genes. In the future, we aim to
extend the PGR-TK library to provide more quantitative and base-level analysis for both
fundamental and translational research utilizing pangenome resources.



Methods

Sequence Database and SHIMMER Index construction

To generate the SHIMMER index, each sequence is scanned and the symmetrical minimizers
were generated with the specific minimizer window size "w" and kmer size "k". We call this first
level of minimizer. Given a reduction factor "r" > 1, additional levels of minimizer sets39 are
generated to increase the span between the minimizers by a reduction step to facilitate
pan-genomics analysis. Even with the reduction step, in some simple sequence context, e.g.
long or short tandem repeats, two minimizers can remain too close to each other. A parameter
"min_span" can be applied to eliminate a pair of minimizers that are too close. We use a
heuristic algorithm to eliminate those minimizers that are within the distance of "min_span" to
each other. This helps to reduce the minimizer density when detailed analysis for those simple
context regions is not desired. Setting "min_span" to zero and "r" to one will generate the
standard minimizers for each sequence.

Each pair of the reduced minimizers (SHIMMERs) are used as the key to build a hashmap to the
sequence id, and coordinates and matching orientation of the minimizer pairs on the
sequences.

We also present examples of API calling and command line usage in the Supplementary
Material.

Generate Minimizer Anchored Pan-genomics Graph (MAP-graph)

The MAP-graph is constructed by scanning through each sequence in the database. The vertices
are simply the set of the tuples of neighboring minimizers (minimizer anchored segments). The
edges are constructed by connecting minimizer anchored segments as a bi-directed graph. One
can consider this as an extension of the string graph51, where the overlaps are the minimizers at
both ends. However, in the pangenome graph, each vertex includes a set of sequence segments
from multiple genomes rather than one sequence.

As the MAP-graph can be constructed by scanning the SHIMMER pairs through the sequences.
For a given set of n sequences S = {si | i = 0..n-1}, the vertices of the MAP-graph are

V = { (m(i)
p ,m(i)

p+1) | m(i)
p , and m(i)

p+1are the p-th and (p+1)-th minimizers of a sequence si, in all
si in S}.

We can assign a weight wi of a vertex vi=(ma, mb) as the total number of observed (ma, mb)-pairs
in S.

The edges of the MAP-graph are

E = { (vi, vj) | vi = (m(i)
p ,m(i)

p+1) and vi = (m(i)
p+1 ,m(i)

p+2) for all (m(i)
p, m

(i)
p+1,m

(i)
p+2) in all si in S}

https://paperpile.com/c/sanPa9/VGWQ6
https://paperpile.com/c/sanPa9/7cZyS


Identify The Principal Bundles in a MAP-graph

To decompose a MAP-graph into principal bundles for downstream analysis, we apply a
variation of depth first search59 (DFS) to build the traversal trees from the graph. Our DFS
prioritized vertices with high "weight" (defined as the number of sequence segments contained
in a vertex) and taking account the bi-directed nature of the MAP-graph.

The DFS traversal through the graph is then converted to a tree structure internally. The leaf
nodes in the tree are typically when the depth first searches are terminated by no out edge
from a node or a bubble or a loop is found. As we prioritize the weights of the vertices during
DFS, long paths are usually corresponding to the "common" paths that most sequences in the
data would go through. Rarer haplotypes typically correspond to short bubble paths in the
MAP-graph. Thus, they can be identified as short branches in the DFS traversal tree. We use the
tree to remove those vertices in the MAP-graph if those are shorter than pre-specified length in
the DFS tree. In general, the vertices in the principal bundle represent more sequences in the
set of input sequences (Supplementary Figure 6) and are likely more conservative in the
pangenome.

After removing the vertices corresponding to the short branches, we further remove vertices in
the MAP-graph that have more than three out edges after converting the MAP-graph as an
undirected graph. After such removal, the graph will only consist of simple paths and we output
those paths as the principal bundles.

In summary, here is the sketch of the algorithm:

(1) Build a DFS traversal tree with a deep first search for a given MAP-graph. To capture paths
that are more conserved among the pangenome sequences of interest as the principal bundles,
our DFS search prioritizes high-weight vertices when constructing the DFS traversal tree.
(2) In MAP-graph, remove vertices which corresponds to nodes in short branches of the DFS
traversal tree
(3) Remove branching vertices in MAP-graph (by considering it as an undirected graph)
(4) Output the simple paths from the resulting graph as the principal bundles.

Principal component plot for the HLA Class II locus

To generate the principal component of the pangenome HLA Class II sequences, we convert
each of the haplotype sequences to a binary vector. The binary vector has the same length of
the total number of vertices of all principal bundles. Let's call these vertices V = {vi | vi in
principle bundles, i = 0..n-1}, where n is the total number of vertices in the principal bundles.
For each sequence s, we construct a binary vector ws = {b0, b1, ..., bn-1} where bi = 1 if the
sequence s contains the vertex vi, and bi = 0 if not. Then, we perform the standard principal
component transformation with the binary vectors of all sequences from the HLA Class II region.

General Workflow for Analyzing a Region of Interest

Here we outline the general workflow on how to use PGR-TK to generate MAP-graph and the
principal bundle decomposition

https://paperpile.com/c/sanPa9/6Hxyh


(1) For a region or sequences of interest, put the sequences as a fasta file for quering the
PGR-TK pangnome sequence database. (PGR-TK provides a command line tool "pgr-fetch"
and python APIs to fetch such sequence from the PGR-TK sequence database.)

(2) Query the whole pangenome database to get initial hits which match the query sequence
with the command line tool "pgr-query" or using the Python APIs.

(3) Filter the hits to remove unwanted matches that do match a user's analysis objectives. With
the command line tool "pgr-query", it generats a summary table of the hits for filtering.

(4) With the filtered sequences, using "pgr-pbundle-decomp" command line tool to generate
the MAP-graph in GFA format and principal bundle decompostion in the BED format. Beside
analyzing the generated data, the generated bed file of the decomposition can be rendered by
the pgr-pbundle-bed2svg to generate visualization. Python APIs are also provided for more
scripting to resolve complicated analysis cases.

(5) Optionally, we can take the fetched sequences from "pgr-query" to use with other third
party tools, for example, calling variant with dipcall, create multiple sequence alignment, or
building other local pangenomic graphs with minigraph, or pggb.

(6) Re-adjust the parameters (w, k, r, min_span) and repeat (3), (4) and additional analysis on
the results if necessary
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Figure 1 (a) Overall architecture and design scope of the PGR-TK library (b) Each sequence in the
database is scanned, and the location of the minimizers are recorded to construct the SHIMMER
database and minimizer anchored pangenome graph. (c) Each vertex in the MAP-graph
represents a collection of sequence fragments sharing the two ending SHIMMERs in the
database. (d) MAP-graph is constructed by merging all paths from all sequences into a graph.



Figure 2. AMY1A MAP-graph in two different scales. (a) The left panel shows a sparse
MAP-graph representation of the AMY region with (w, k, r, min_span) = (48, 56, 12, 12). 503
vertices and 699 edges represent the 200 kb~550 kb AMY region. The graph vertices are colored
by the principal bundles that correspond to the principal bundle decomposition of selected
genomes on the right panel. (gray vertices: the vertices that are not in the principal bundles) (b)
The left panel shows a denser MAP-graph with r=4. The graph has 3471 vertices and 2684
edges, about twice as much as the MAP-graph in (a). The principal bundle decomposition
reveals a more detailed repeat structure than in (a).



Figure 3: (a) The MAP-Graph generated by PGR-TK (b) The principal bundle decomposition and
annotated HLA Class II genes in each of the haplotype sequences. The auxiliary tracks below
each sequence on the left panel show the locations of the genes. The colors of the auxiliary
tracks match the gene list of genes identified for each haplotype on the right. (c) PCA plots of
the MHC Class II sequences. Each panel highlights the different gene haplotype combinations.
The vertical color bars indicate the matched haplotype groups in (b) and (c). The circled symbols
indicate the haplotypes belong to the corresponding group. The dotted lines represent the
connection between the two haplotypes of individuals included in the analysis set who possess
both haplotypes.



Figure4:



(a) MAP-graph principal bundle decomposition shows the repeat number changes of the
OPN1LW, OPN1MW1/2/3 to FLNA loci. Auxiliary tracks: top OPN1LW, middle OPN1MW1/2/3,
bottom FLNA.

(b) The upper left image displays a dot-plot comparing the HG002 assembly to GRCh38 over a
5Mb region containing the DAZ1/2/3/4 loci, highlighting an inversion between DAZ1/2 and
DAZ3/4. The image on the right provides a detailed view of the rearrangements at the gene
scale level, with four tracks indicating the local matches to DAZ1/2/3/4 from top to bottom.
Comparison to GRCh38's DAZ2 reveals that the HG002 assembly is missing a segment (~10kb) of
the darker green. The intergenic region between DAZ3 and DAZ4 also displays a rearrangement
that can be described as an incomplete inversion or separate insertions and deletions. The
bottom image shows a rearrangement at the whole locus, including all DAZ1/2/3/4 over a 5Mb
region. The principal bundle decomposition reveals the different inverted structure of the
HG002 T2T assembly and the HG1258 assembly compared to GRCh38.

(c) MAP-graph diffusion entropy vs. repetitiveness survey for the 385 GIAB challenge CMRGs.





Supplementary Material

Building Index

For a large sequence set, e.g. 47 whole genome HPRC assemblies, PGR-TK utilizes the AGC
format46 to store the sequence efficiently. A command line tool "pgr-mdb" is developed with
the PGR-TK package to create the index file on top of the AGC file. For example, for a pre-build
HPRC year one assembly AGC file (1.33Gb), we create a file
(/data/pgr-tk-HGRP-y1-evaluation-set-v0_input) include a file system path to the AGC file,
/data/gr-tk-HGRP-y1-evaluation-set-v0.agc, and call `pgr-mdb` to create the index files with a
pre-specified prefix (/data/pgr-tk-HGRP-y1-evaluation-set-v0):

echo /data/pgr-tk-HGRP-y1-evaluation-set-v0.agc

> /data/pgr-tk-HGRP-y1-evaluation-set-v0_input

/code/pgr-mdb /data/pgr-tk-HGRP-y1-evaluation-set-v0_input \

/data/pgr-tk-HGRP-y1-evaluation-set-v0

Two files will be generated in this example:

/data/pgr-tk-HGRP-y1-evaluation-set-v0.mdb # 15 Gb for (w, k, r, min_span) = (80,56,4,64)

/data/pgr-tk-HGRP-y1-evaluation-set-v0.midx # 3.1 Mb

The index and sequence data can be loaded into a python workspace by

import pgrtk

sdb = pgrtk.SeqIndexDB()

sdb.load_from_agc_index("pgr-tk-HGRP-y1-evaluation-set-v0")

As the indexes are loaded into memory, we suggest using a computing instance which has a
random access memory larger than about 4x of the index file to avoid swapping thrashing.

For smaller sequence files, the sequence database object (e.g. the "sdb" in the example above)
created by pgrtk.SeqIndexDB()can create and load sequences using load_from_fastx()
method. See the library documentation at https://genedx.github.io/pgr-tk/ for more detailed
descriptions of all python objects, methods, and functions in the PGR-TK package.

Query Sequence in the PGR-TK Sequence Database

Command Line example:

A command line tool named pgr-query is provided to query a PGR-TK database with a set of
sequences, each of which represents a region of interest. It is recommended to select regions

https://paperpile.com/c/sanPa9/rXvCk
https://genedx.github.io/pgr-tk/


larger than 20kb, as they contain enough SHIMMER anchors. If smaller regions are of interest,
padding with flanking sequences can improve the results.

The follow command shows an example querying the database:

pgr-query /data/pgr-tk-HGRP-y1-evaluation-set-v0 ROI_seq.fa pg_seqs --merge-range-tol 100000

In this example, the ROI_seq.fa file contains sequences from the regions of interest. The
pgr-query tool generates a set of fasta files with the prefix "pg_seqs" for each query sequence in
the "ROI_seq.fa" file. Additionally, a "pg_seqs.hit" file is produced, which contains
information about the alignment range between the query and the results, as well as the
number of anchors identified between each pair of query results. This information can be used
to filter out unwanted alignments.

Python API example:

For finding homologous sequences in a PGR-TK database, we need to start with a query
sequence. We can fetch a sequence in the database giving a known "data source", "contig
name" tuple and the beginning and ending coordinates. As the SHIMMERs are sparsely
distributed in a sequence, the query sequence should be long enough to cover enough
minimizer anchors. The python statement shows a typical code fragment to generate query
results of a region of interest:

ref_file_name, roi_chr, roi_b, roi_e = 'hg19_tagged.fa', "chr6_hg19", 32130918, 32959917

padding = 10000

#get a segment of a reference

roi_seq = ref_db.get_sub_seq(ref_file_name, roi_chr, roi_b-padding, roi_e+padding)

# using the roi_seq to find hits in "sdb"

aln_range = pgrtk.query_sdb(sdb, roi_seq, merge_range_tol=200000)

The output aln_range from the query_sdb() call contains data of the hits in the PGR-TK
database. Internally, the query_sdb() method performs:

(1) create SHIMMER pairs of the query sequence
(2) use the SHIMMER pairs and the hashmap index to find all hits in the database
(3) perform sparse dynamic programming to find sparse alignments between the query
sequence and all hits in the database
(4) merge the alignment segments if any of them are within the merge_range_tol parameter.

The parameter merge_range_tol is introduced to avoid alignment fragmentation when the
query sequence contains a region of high polymorphism but we still want to fetch those diverse
sequences for constructing the pan-genomics graph.

Typically, a user needs to process the data in aln_range for different analysis. Our example
Jupyter Notebooks provides various examples for processing the output to generate dot-plot or
MAP-graphs, etc.



Build Minimizer Anchor Pangenome Graph and Principal Bundle Decomposition

Command Line example:

Given a set of sequence in a fasta file, e.g., the query results from pgr-query command, we can
build the pangenome graph and the principal bundle decomposition (outputted as a bed file) by

pgr-pbundle-decomp -w 48 -k 56 -r 8 \
--min-span 12 --bundle-length-cutoff 100 \
--bundle-merge-distance 1000 --min-branch-size 8 \
--min-cov 0 --include file_contain_contig_names \
pgr-query pgr_out

In the pangenome graph construction process, the following options can be used to control the
graph construction: -w, -k, -r, and --min-span. The --min-cov option sets the minimum
coverage requirement for a vertex to be included in the principal bundle graph. The
--min-branch-size option allows the user to filter out short branches that contain less
than a specified number of vertices in the MAP-Graph. The --bundle-length-cutoff
option allows the user to exclude bundles shorter than the specified length. When two bundles
have the same identifier and are within the distance specified by
--bundle-merge-distance, they will be merged. If the --include option is specified,
only those contigs specified in the file_contain_contig_names file will be analyzed.

The command generates a set of files with the prefix pgr_out:

pgr_out.bed # the bed file contains the principal bundle decomposition
pgr_out.ctg.summary.tsv # summary for bundle statistics for each contig
pgr_out.mapg.gfa # MAP-graph in GFA format
pgr_out.mapg.idx # index for the sequence in the GFA file
pgr_out.pmapg.gfa #principal bundle graph in the GFA format

The pgr_out.bed has the following format. Each line is a bundle contain in a contig:

contig_name begin_coordinate end_coordinate bundle_speficiation

where the bundle_speficiation is six fields delimited by ":". The fields are bundle identifier,
bundle vertex count, orientation, begin vertex number , end vertex number, "R" or "U" for
repetitive or unique in the contig. Note such a region in a contig may not only project to the full
bundle. In such cases, end_vertex-bgn_vertex is less than bundle_vertex_count.

The *.mapg.idx file contain the information of each vertex in the gfa files. It contains three
kinds of tagged lines start with "K", "C", and "F". The "K" line specifies the parameters used to
generate the graph. The "C" lines specify the contigs contained in the graph. The "F" lines
specify the fragment of sequences contained in each vertex. Here are the fields for echo of
them:

K line: w, k, r, min_span
S line: contig_identifer, contg_name, contig_source, contig_length
F line: frag_unique_identifier, frag_numeric_identifer, contig_identifer, start_coordinate,
end_coordinate, orientation



Python API:

To build the MAP-Graph and principal bundle decomposition within a python program, one can
use the instance methods generate_mapg_gfa() and
get_principal_bundle_decomposition() of an pgrtk.SeqIndexDB() object. Please
read the documentation at https://genedx.github.io/pgr-tk/ for the API details

Clustering Principal Bundle Decomposition Structure

The follow command perform clustering of the principal bundles store in a bed file:

pgr-pbundle-bed2dist pgr_out.bed pgr_out.

It will generate these output files:

pgr_out.dist # all pairwise distance
pgr_out.nwk # a hierarchical tree in Newick format
pgr_out.ddg # a file contain the dendrogram for the pgr-pbundle-bed2svg to draw the
dendrogram panel

Generate Principal Bundle Decomposition Plot in Scalable Vector Graph Format

The following is an example to generate a SVG file pgr_out.svg from pgr_out.bed that layout
500,000 bp with annotation specified in a file called pgr_annotation with a dendrogram panel
on the left from the pgr_out.ddg dendrogram data

/code/pgr-pbundle-bed2svg pgr_out.bed pgr_out \
--track-range 500000 --track-tick-interval 100000 \
--track-panel-width 1200 --stroke-width 0.5 \
--annotations pgr_annotation \
--ddg-file pgr_out.ddg \
--highlight-repeats 3

Performance Evaluation

Sequence Query

While PGR-TK is not designed for creating sequence alignments, the query sequence to
database query provided function to identify homologuos sequences in the database to the
query sequences. We compare the computing resource for such utility in PGR-TK to minimap2,
currently the state of are for fast sequence alignment. For a set of ten selected regions for
querying 11 haplotype pangenome references, PGR-TK can index all genome in parallel and
provide comparable query time.

Supplementary Table 1

Tool

https://genedx.github.io/pgr-tk/


Computation Resources pgr-tk minimap2

index time (elapsed time)
6 min 43 sec

(agc=2:59 + index =2:44) 13 min 07 sec

query time
8.45 sec (including fetching

the sequences) 17.93 sec

sequnece storage 807 Mb 9.0 Gb

index storage 2.0 Gb 75.9 Gb

Our testing pangenome dataset contain the assemblies from the HGRP samples:

HG00438.maternal, HG00438.paternal, HG00621.maternal, HG00621.paternal,
HG00673.maternal, HG00673.paternal, HG00735.maternal, HG00735.paternal,
HG00741.maternal, HG00741.paternal

minimap2:
source: https://github.com/lh3/minimap2
revision: 01b98e8e52a8acfed5a9d57853f028267eaf045f

commands:

Minimap2 index:

\time -v ./minimap2/minimap2 HG00438.maternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00438.maternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00438.paternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00438.paternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00621.maternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00621.maternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00621.paternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00621.paternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00673.maternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00673.maternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00673.paternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00673.paternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00735.maternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00735.maternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00735.paternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00735.paternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00741.maternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00741.maternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 HG00741.paternal.f1_assembly_v2_genbank.fa.gz -t 16 -d
HG00741.paternal.f1_assembly_v2_genbank.fa.gz.idx &>> minimap_timing1.log
\time -v ./minimap2/minimap2 chm13.draft_v1.1.fasta.gz -t 16 -d chm13.draft_v1.1.fasta.gz.idx
&>> minimap_timing1.log

Minimap2 query:

cat << EOF | \time -v parallel -j 16 2> minimap_timing.log 1> minimap.hits
./minimap2/minimap2 -x asm5 HG00438.maternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa
./minimap2/minimap2 -x asm5 HG00438.paternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa
./minimap2/minimap2 -x asm5 HG00621.maternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa
./minimap2/minimap2 -x asm5 HG00621.paternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa
./minimap2/minimap2 -x asm5 HG00673.maternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa
./minimap2/minimap2 -x asm5 HG00673.paternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa
./minimap2/minimap2 -x asm5 HG00735.maternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa



./minimap2/minimap2 -x asm5 HG00735.paternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa

./minimap2/minimap2 -x asm5 HG00741.maternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa

./minimap2/minimap2 -x asm5 HG00741.paternal.f1_assembly_v2_genbank.fa.gz.idx ROI_seq.fa

./minimap2/minimap2 -x asm5 chm13.draft_v1.1.fasta.gz.idx ROI_seq.fa
EOF

prg-tk:
revision: 75fa20b41592941c9e6eef3f914d97788ee06b86
commands:

ls *.fa.gz > agc_inputs
\time -v ~/benchmark/pgr-tk/agc/agc create chm13.draft_v1.1.fasta.gz -i agc_inputs >
test.agc 2>> timing.log
echo test.agc > pgr_input
\time -v pgr-mdb pgr_input test 2>> timing.log
\time -v pgr-query test ROI_seq.fa pgr-query-out 2> pgr-query-out.log

Here is the list of the testing query sequences:

Regions of interest for testing querying

Name Reference Chromosom begin end Strand

MHC-C2 GRCh38 chr6 32313513 32992088

RCCE GRCh38 chr6 31976719 32117146 0

AMY GRRh38 chr1 103542345 103798299 0

LPA GRRh38 chr6 160529904 160666180 0

IGH GRRh38 chr14 106205008 106874830 0

HLA-CB GRRh38 chr6 31143427 31484914 0

ABO GRRh38 chr9 133163441 133361030 0

TSPY1 GRRh38 chrY 9294496 9591276 0

15q15 GRRh38 chr15 43531685 43769928 0

16p21 GRRh38 chr16 28139916 28830868 0

Supplementary Table 2: We compared the query results for two selected regions and found
them to be consistent. In these two cases, due to differences in their design, the "pgr-query"
command only produced a single aligned region for each reference assembly, rather than
multiple supplementary alignments. Similar to minimap2, "pgr-query" provides additional
information about the hits, allowing the user to apply filters and define criteria to eliminate
false positive alignments caused by repeats in more complex scenarios.

pgr-query results minimap2 results consistent

MHC Class 2 begin end begin end

HG00438#1#JAHBCB010000040.1 23357242 24010477 23356506 24011428 Yes



HG00438#2#JAHBCA010000042.1 23362233 24141470 23361497 24142421 Yes

HG00621#1#JAHBCD010000020.1 23356282 24115439 23352369 24116390 Yes

HG00621#2#JAHBCC010000005.1 32265868 32906962 32264542 32910924 Yes

HG00673#1#JAHBBZ010000030.1 32179011 32823596 32177436 32824276 Yes

HG00673#2#JAHBBY010000031.1 886239 1474176 884899 1475258 Yes

HG00735#1#JAHBCH010000013.1 32366232 33038084 32364489 33042050 Yes

HG00735#2#JAHBCG010000038.1 3651996 4413560 3650989 4414240 Yes

HG00741#1#JAHALY010000025.1 23365046 24008887 23363908 24010574 Yes

HG00741#2#JAHALX010000077.1 25645945 26293199 25644213 26294150 Yes

chm13 chr6 32168394 32812380 32166819 32813462 Yes

AMY

HG00438#1#JAHBCB010000015.1 33562835 33889251 33561142 33889429 Yes

33657228 33801412

33761202 33865960

HG00438#2#JAHBCA010000012.1 51600987 51760853 51599294 51761031 Yes

51611167 51668018

51663126 51695258

51695374 51737568

HG00621#1#JAHBCD010000034.1 2187959 2536123 2187725 2537760 Yes

2211188 2315970

2253384 2410116

2469036 2509286

HG00621#2#JAHBCC010000031.1 16758012 17011992 16756319 17012170 Yes

HG00673#1#JAHBBZ010000075.1 16748192 16908034 16746499 16908212 Yes

16758372 16815202

16810310 16842663

16842559 16884745

HG00673#1#JAHBBZ010000329.1 312 93447 22834 50859

22920 48155

22930 48307

24483 94099

8 87032

HG00673#2#JAHBBY010000109.1 16763372 17111516 16761679 17111694 Yes

HG00735#1#JAHBCH010000004.1 101636258 101890244 101634565 101890422 Yes

HG00735#2#JAHBCG010000068.1 4817143 4977006 4815450 4977184 Yes



4827323 4884173

4879281 4911562

4911529 4953720

HG00741#1#JAHALY010000007.1 18847041 19219687 18846807 19221324 Yes

18931609 19009465

19037277 19125244

HG00741#2#JAHALX010000013.1 51662338 51916331 51660645 51916509 Yes

51672517 51729368

51756716 51850848

51802317 51893042

chm13:chr1 103392985 103835251 103391292 103835429

103680709 103699433

In Supplementary Table 3, we compared the results of the pgr-query and minimap2 for a test
set of pangenomic sequences. While pgr-query is designed to fetch homologous sequences
from the database using long query sequences, rather than as a general sequence aligner, it is
important to demonstrate its performance in fetching sequences accurately. We compared all
hits larger than 10 kb from the pgr-query output for a set of 395 query sequences from the
CMRG to the minimap2 output and found that the results are highly consistent in most cases.
Some discrepancies are due to (1) short hits and (2) low minimap2 mapQV output. The
pgr-query output might be more sensitive, such that some repetitive sequences are in the query
output without proper filtering.

Supplementary Table 3a, We compare the unfiltered pgq-query output and the filtered output
with hits that has more than 5 minimizer anchors found with the minimap2 output unfiltered or
filtered by MapQV. Base on the hits from minimap2, pgr-query captures 97% to 99% hits,
depending on the filtering criteria.

Minimap2 (All)
Minimap2

(MapQV > 30)

minimap2 hits 3668 3190

overlapped
pgr-query hits

(filtered) 3601 3164

80% overlapped
percentage 98.17% 99.18%

overlapped
pgr-query hits

(filtered) 3573 3164

80% overlapped
percentage 97.41% 99.18%



Supplementary Table 3b, Base on the hit output from pgr-query, minimap2 capture 85% to 94%
hits, depending on filtering certeria.

unfiltered filtered

pgr-query hits 3637 3589

overlapped
minimap2 hits 3397 3396

80% overlapped
percentage 93.40% 94.62%

overlapped
minimap2 hits
(MapQV>30) 3104 3103

80% overlapped
percentage 85.35% 86.46%

Pangenome Graph Construction

The measure resource usage for making index with different parameter

Data: 97 haplotype human genome assembly

w k r
Index file
size (Gb)

elapse time
(min:sec)

User Space
CPU time

(s)

System
CPU time

(s)

Memeory
Usage

(kbytes)

80 56 12 3 13:11.09 10749 455 35605852

80 56 8 6.1 14:21.31 10865 462 41329332

80 56 6 9.5 15:50.63 10966 472 48986112

80 56 4 15 18:26.03 11171 488 61270196

80 48 4 15 18:10.64 11159 485 59441552

80 32 4 15 17:58.06 11129 484 59576876

80 24 4 15 17:47.83 11139 482 59178764

64 56 4 17 19:13.54 11393 517 65174852

48 56 4 18 20:14.21 11685 543 70309960

command:

echo /wd/data/pgr-tk-HGRP-y1-evaluation-set-v0.agc > input

\time -v pgr-mdb -r 4 input pgr-tk-HGRP-y1-evaluation-set-v0-r4 >& log_r4
\time -v pgr-mdb -r 6 input pgr-tk-HGRP-y1-evaluation-set-v0-r6 >& log_r6
\time -v pgr-mdb -r 8 input pgr-tk-HGRP-y1-evaluation-set-v0-r8 >& log_r8
\time -v pgr-mdb -r 12 input pgr-tk-HGRP-y1-evaluation-set-v0-r12 >& log_r12

\time -v pgr-mdb -k 48 input pgr-tk-HGRP-y1-evaluation-set-v0-k48 >& log_k48
\time -v pgr-mdb -k 32 input pgr-tk-HGRP-y1-evaluation-set-v0-k32 >& log_k32
\time -v pgr-mdb -k 24 input pgr-tk-HGRP-y1-evaluation-set-v0-k24 >& log_k24



\time -v pgr-mdb -w 64 input pgr-tk-HGRP-y1-evaluation-set-v0-w64 >& log_w64
\time -v pgr-mdb -w 48 input pgr-tk-HGRP-y1-evaluation-set-v0-w48 >& log_w48

Supplementary Table 4: Comparison of graph build time to seqwish and minigraph (input
sequence data HLA Class II sequence from the 97 pangnome references)

Tool Command Line
User time
(seconds)

System time
(seconds)

Elapsed
(wall clock)
time (m:ss)

memory
usage (kb)

seqwish

command

wfmash HLA-ClassII_seq.fa

HLA-ClassII_seq.fa -t 32

-X 5270.32 4.39 3:09.82 878516

command

seqwish -s

HLA-ClassII_seq.fa -p

HLA-ClassII_seq.paf -g

HLA-ClassII_seq.gfa 74.26 4.37 0:29.22 1619660

minigraph

command

minigraph -t 32 -cxggs

chm13_HLA_C2.fa MHC*.fa >

out.gfa 799.91 41.2 13:19.61 2273760

pgr-tk

command

pgr-pbundle-decomp

HLA-ClassII_seq.fa

HLA-ClassII 10.63 1.2 0:04.32 466448

command

pgr-pbundle-decomp -r 3

HLA-ClassII_seq.fa

HLA-ClassII_r3 12.51 1.32 0:05.46 661628

command

pgr-pbundle-decomp -r 1

HLA-ClassII_seq.fa

HLA-ClassII_r1 19.71 3.94 0:11.39 1294248

Tool Command Line
number of
vertices

number of
edges

average
vertex size
(bp)

(Graph base
length) /
(total
sequence
length)

seqwish

command

wfmash

HLA-ClassII_seq.fa

HLA-ClassII_seq.fa -t 32

-X



command

seqwish -s

HLA-ClassII_seq.fa -p

HLA-ClassII_seq.paf -g

HLA-ClassII_seq.gfa 121061 196640 122.4 0.1785

minigraph

command

minigraph -t 32 -cxggs

chm13_HLA_C2.fa MHC*.fa

> out.gfa 293 409 3140.6 0.0111

pgr-tk

command

pgr-pbundle-decomp

HLA-ClassII_seq.fa

HLA-ClassII 18258 29830 310.458 0.0683

command

pgr-pbundle-decomp -r 3

HLA-ClassII_seq.fa

HLA-ClassII_r3 25274 40969 233.776 0.0712

command

pgr-pbundle-decomp -r 1

HLA-ClassII_seq.fa

HLA-ClassII_r1 50773 80572 129.932 0.0795

Software versions used

seqwish:
source: https://github.com/ekg/seqwish.gi
revison:f362f6f5ea89dbb6a0072a8b8ba215e663301d33

minigraph
source: https://github.com/lh3/minigraph
revision: 3398263be225ba923140a1081b505b71f2cdf8fb

pgr-pbundle-decomp (part of PGR-TK)
revision: 75fa20b41592941c9e6eef3f914d97788ee06b86

The test sequence file "HLA-ClassII_seq.fa" comprises 147 sequences with an average length of
564,570 base pairs. It is important to note that not all sequences were incorporated in the
Minigraph output as certain MHC Class II sequences displayed significant divergence from the
CHM13 MHC Class II reference. The ratio of the total number of bases in the Minigraph output
to the total number of bases in the input sequence file was observed to be significantly lower
compared to the results produced by Seqwish and PGR-TK. The Seqwish graph was denser than
the MAP-graph generated by pgr-pbundle-decomp and provided more detailed information that
could be utilized for the direct identification of base-level differences.

On the other hand, PGR-TK demonstrated a significant advantage in terms of computational
efficiency, with a construction time of the pangenome graphs that was 500x faster in terms of
user CPU time and 60x faster in terms of wall clock time compared to Seqwish, and 75x faster
and 160x faster, respectively, compared to Minigraph using default pgr-pbundle-decomp
parameters.



Effect of the Parameter Choice to The MAP Vertex Sizes

Vertex Sizes of the Chromosome 1 of Chm13 with different w and r, (min_span = 64).

Supplementary Figure 1a, The vertex size influences the resolution of the sequence being
analyzed. Observing the vertex size distributions using various parameter sets, a flat region is
observed followed by an exponential tail. To effectively query the database, it's best to ensure
that the query sequence length is a multiple of the average vertex size.

Supplementary Figure 1b, This vertex size distribution plot with the same parameter sets as
those in 1a, but with a small min_span. To reduce excessing minimizer in long simple repeat
regions, we remove all pairs of minimizer anchors that are smaller than min_span to reduce
unnecessary additional computation resources for processing simple repeat regions.



Supplementary Table 5: the descriptive statistics from the different set of parameter choice.

parameter

set (w:k:r:m) total vertex media size mean size

standard

deviation 99.9% 99.0%

80:56:12:64 146967 1574 1690.1 1551.1 148956 24605

80:56:8:64 309494 754 802.6 519.4 7821 3388

80:56:6:64 484243 462 512.9 338.5 3551 2202

80:56:4:64 759890 269 326.9 235.0 2283 1600

80:48:4:64 756118 272 328.5 234.9 2248 1583

80:32:4:64 748297 275 331.9 237.4 2404 1620

80:24:4:64 742768 277 334.4 240.8 2349 1623

64:56:4:64 831991 236 298.5 221.4 2146 1515

48:56:4:64 903455 202 274.9 216.7 2124 1483

80:56:12:12 153192 1518 1621.4 1505.4 148956 23945



80:56:8:12 341088 695 728.2 484.5 7655 2841

80:56:6:12 583065 398 426.0 287.9 3003 1588

80:56:4:12 1159085 195 214.3 148.7 1204 822

80:48:4:12 1165335 196 213.1 148.5 1125 809

80:32:4:12 1132410 201 219.3 154.9 1620 930

80:24:4:12 1138924 200 218.1 154.2 1370 895

64:56:4:12 1402189 162 177.1 122.0 1000 688

48:56:4:12 1779213 128 139.6 95.4 777 558

Suggested Parameter Choice For Region of Size Up to 5Mb

Based on our observations in Supplementary Table 4, it is clear that the parameter r has the
greatest impact on the size of the vertices. To simplify the process, we recommend using the
default values of w=48, k=56, and min_span=12 for general cases and adjusting the value of r
based on the length of the sequence of interest. This approach can serve as a starting point and
can be fine-tuned if specific detailed features are of interest.

Supplementary Table 6

w=48, k=56, min_span=12
r = floor(min(12, max(2, floor(2 * (mean(sequence lengths)/50000)^0.5))))

According to the formula, here is a table for the choice of r of different lengths of the sequences
of interest:

sequence length(bp) r

20,000 2

40,000 2

80,000 4

160,000 5

320,000 8

640,000 11

1,280,000 12

2,560,000 12

5,120,000 12



Generate MAP-Graph and Principal Bundle Decomposition for AMY and MHC region

We use GRCh38 chr6:32,313,513-32,992,088 (for MHC Class II) and GRCh38
chr1:103,54,2345-103,798,299 as the query sequences to find the homologous sequences
in the pangenome reference database (pgr-tk-HGRP-y1-evaluation-set-v0):

cat << EOF | tr " " "\t" > regions_interest
MHC-C2 hg38_tagged.fa chr6_hg38 32313513 32992088
AMY hg38_tagged.fa chr1_hg38 103542345 103798299 0
EOF

We use the pgr-fetch-seqs command in PGR-TK to get the two references:

pgr-fetch-seqs pgr-tk-HGRP-y1-evaluation-set-v0 \
-r regions_interest > ROI_seq.fa

Then, we use the pgr-query command to get the sequences in the pangenome reference. We
merge the hits that are less than 100kb apart from each other:

pgr-query /wd/data/pgr-tk-HGRP-y1-evaluation-set-v0 \
/wd/results/pgr-out/ROI_seq.fa /wd/results/pgr-out/pg_seqs --merge-range-tol 100000

After fetching the sequence in the database, we filter out partial aligned contigs. With in the
aligned contig, we generate the MAP-graph and the principal bundle decomposition by

pgr-pbundle-decomp -w ${w} -k ${k} -r ${r} \
--min-span ${m} --bundle-length-cutoff 100 --min-branch-size 8 \
${fasta_file} /wd/results/pgr-out/${prefix}

For MHC class II, we choose w=48, k=56, r=7, m=12, and for AMY1A, we choose w=48, k=56,
r=4, m=12 determined by the formula above.

The command pgr-pbundle-decomp generated the MAP-graph as gfa file and the principal
bundle decomposition in bed format. For example, the first five bundles of Chm13 of the
AMY1A region are represented as

chm13_tagged::chr1_chm13_103392985_103835251_0 174 27484 1:203:0:10:202:U
chm13_tagged::chr1_chm13_103392985_103835251_0 27428 27631 16:2:0:0:1:U
chm13_tagged::chr1_chm13_103392985_103835251_0 27575 50412 2:161:0:0:160:R
chm13_tagged::chr1_chm13_103392985_103835251_0 50356 51227 10:6:0:0:5:R
chm13_tagged::chr1_chm13_103392985_103835251_0 51171 55089 8:26:0:0:25:R

PGR-TK provides a command line tool for quick all pair-wise sparse alignment and compute
distances between all pairwise sequences. With the distance we can perform hierarchical
clustering to group bundles with similar structures for analysis or visualization. For example, the
following command computes the distance based on the principal bundle decomposition

pgr-pbundle-bed2dist ${bed_file} ${prefix}

It generates three files:

${prefix}.dist # this file contains the distances between sequences



${prefix}.nwk # the clustering tree in Newick format

${prefix}.ddg # the file contains the dendrogram information for plotting a clustering
# tree alone with the principal bundle decomposition with the command
# pgr-pbundle-bed2svg

We can generate the principal decomposition plot with the command
pgr-pbundle-bed2svg. For example, with the follow, we can generate a principal
decomposition plot (${prefix}.svg) with the clustering dendrogram with annotation specified
by a file ${prefix}.ord:

pgr-pbundle-bed2svg ${bed_file} ${prefix} \
--track-range 250000 --track-tick-interval 10000
--track-panel-width 1200 --stroke-width 1.2 \
--annotations ${prefix}.ord \
--ddg-file ${prefix}.ddg"

Please see more concrete examples in the git repo: https://github.com/GeneDx/pgr-tk

Supplementary Figure 2a

AMY1A repeat dot plots and principal bundle decomposition plots

https://github.com/GeneDx/pgr-tk


Supplementary Figure 2b: The principal bundle plots of the AMY1A repeat regions. The black
short bars indicate the regions homologous to AMY1A sequence.





Comparing Principal Bundle Decomposition with Different Set of Parameters

We provide two illustrations of principal bundle decompositions, each with varying scales by
changing the parameter sets. The first illustration, shown in Supplementary Figures 3a and 3b,
pertains to a 130 kb region of interest containing the LPA KIV-II repeats. The second illustration,
also shown in Supplementary Figures 3c and 3d, is of a 2.85 Mbp region located on
chromosome 7 from positions 72752602 to 75600937 on GRCh38. This region is known to
contain a microdeletion caused by nested repeats, which results in Williams-Beuren syndrome.

In Supplementary Figure 3a, there are 231 bundle segments spanning the 103,538 bp CHM13
LPA sequence, while only 93 bundle segments are present in Supplementary Figure 3b. The
sparser decomposition with r=12 in Supplementary Figure 3b for this region may not provide
sufficient detail for analyzing repeat elements in the sequences

In contrast, for the large 2.85 Mbp region, the choice r=12 provides a better representation of
the overall structure (Supplementary Figure 3c), as it contains only 251 bundle segments out of
the 2,916,749 bp chromosome 13 sequence, compared to the r=6 choice (Supplementary
Figure 3d), which has 685 bundle segments. The higher number of bundle segments in the r=6
choice results in over-fragmentation of the sequences, making it more difficult to identify
interesting repeats.

The pgr-pbundle-decomp command-line tool generates a summary of all contigs, providing
valuable information for analysis by reporting the total number and average lengths of
repetitive and non-repetitive fragments. This information can help the user make informed
decisions if the default parameters suggested in Supplementary Table 6 do not capture the
desired features when comparing pangenome sequences.



Supplementary Figure 3

Survey on the Genome in Bottle Challenging Clinical and Medically Relevant Genes with
the MAP-graphs



The Genome in the Bottle Consortium provides variant call benchmarks on seven benchmark
genomes35,60,61. These benchmarks were initially formed by integrating multiple short-read
technologies, but the latest version integrated linked-read and long-read technologies to form
benchmarks in regions difficult to map with short reads. However, a set of 395 challenging but
medically relevant genes were identified as substantially (>10%) excluded from the
mapping-based benchmark due to long repeats, large structural variations, segmental
duplications, and/or high polymorphism between the benchmark genome HG002 and the
reference genome hg19 or GRCh38. A long-read genome assembly approach provided a reliable
benchmark call set of 273 out of the 395 genes 35. The remaining 122 were still excluded mainly
because they were not accurately assembled or no benchmarking tools exist to compare
different representations of complex variants in the genes. Overall 395 genes have recently
shown to include high levels of polymorphism across different ethnicities making it highly
challenging to represent their variations62.

The current GIAB variant benchmarks focus on a small set of seven well-characterized genomes
with extensive short-, linked-and long-read data to ensure robust benchmarks and more
tractable method development and benchmark evaluations. Meanwhile, limited representation
of genomes in a population may miss significant structural variants, additional copies of genes,
and context for important variants for diseases not observed in a smaller dataset. Given that
increasingly accurate long-read and assembly level data are being produced at pangenome
scales now, we are surveying how we can utilize such resources to benchmark variant accuracy
at a broader population level for the challenging clinical and medically important genes. Such
pangenome analysis will help to generate guidelines for future practice.

With PGR-TK, we extract all sequences from the HPRC year one release (94 haplotype
assemblies), and CHM13 v1.1, GRCh38 and hg19 of all 385 CMRG. We generate a MAP-graph of
each gene and output in GFA format. For each graph, we derived two metrics to estimate (1) the
degree of polymorphism among the pangenomes, and (2) the repeat content taking account of
the variations of the pangenomes.

To estimate the degree of polymorphism, we consider a diffusion process in the graph (see
below ) and derive an entropy-like quantity from a normalized equilibrium distribution.. The
higher entropy values indicate more complicated graphs likely from the polymorphism from
different genomes. The diffusion weight on each vertex is also associated with multiplicity and
repetitiveness of the corresponding segments in the pangenomes. We pick the average of the
top 32 diffusion weights from the MAP-graph of each gene as a simple metric to measure the
most challenging repeat content within a gene.

To gain insight about the challenge for calling variants of the CMRG set at a pangenome scale,
we plot the diffusion entropy versus the maximum local repeat weights for each gene (Figure
4c). As there are no obvious correlations, these two quantities provide independent
measurements of two aspects of the MAP-graph structures of these genes. We find,
unsurprisingly, high repetitive genes are harder to create a reliable variant benchmark call set.
Many highly repetitive genes are excluded from the current CMRG benchmark set. We do not
observe that higher entropy is correlated with the reduction of the gene in the benchmark set.
We find the high entropy genes also span larger regions in the genome. While the entropy can
indicate the complexity of variations in the population, we observe different clustering

https://paperpile.com/c/sanPa9/q2eWe+FICv5+XpXrx
https://paperpile.com/c/sanPa9/FICv5
https://paperpile.com/c/sanPa9/vlo07


structures of the top entropy genes. (Please see the comparison of the MAP-graph PCA plots of
SNTG2 and KMT2C in Supplementary Figure 4.)

Supplementary Figure 4a

Supplementary Figure 4b: PCA plot for SNTG2 (Highest Entropy in the CMRG gene set)

Supplementary Figure 4c: PCA plot for KMT2C (Highest Entropy in the CMRG gene set)





We highlight several genes with high entropy or high repetitiveness. The MAP-graphs and the
IGV view of the pangenome assemblies of a selected set genes (LMF1, ANKRD11, SRGAP2,
KMT2C, LPA, MUC4, MUC3A, KATNAL2, FLG) aligned to GRCh38 are shown in Supplementary
Figure 5. In the IGV view of LMF1 (Supplementary Figure 5a), a number of variation hotspots
are visible and may correspond to localized structural variants. This serves as a simple example
to examine the concordance of structural variation in the population and the principal bundle
decomposition. We use PAV63 to call structural variants for comparison. In Supplementary
Figure 5b, the structural variant calls resulting from PAV are provided as an auxiliary track
(black) below the principal bundle decomposition tracks for a selected set of HPRC year one
genomes, where both haplotypes are resolved in the region. It is evident that the SV calls
correspond to the regions where principal bundles have complex structure and are distinct from
the reference genome GRCh38 (the top track).

As shown in LPA (associated with Coronary Disease64, Supplementary Figure 7), KATNAL2 ( loss
of function variant discovered in autistic proband65,66) also has long tandem repeat variations in
the HPRC pangenome cohort. We find the number of the 5.8kbp repeats inside KATNAL2 ranges
from 3 to 25 (Supplementary Figure 8). Applying MAP-graph decomposition on genes such as
KATNAL2 with a big pangenome reference panel will provide additional insights to the natural of
the variability of the repetitiveness and its impacts to the underlying biology like other more
well studied gene, e.g. LPA, in the coming years.

Supplementary Figure 5

GIAB CMRG cases:
(a) LMF1

https://paperpile.com/c/sanPa9/IF36q
https://paperpile.com/c/sanPa9/plPQF
https://paperpile.com/c/sanPa9/vgiLE+0J3Dv


(b) Comparing the PAV structural variant calls indicated by the black auxliary tracks to the
principal bundle decomposition illustrates how the SV calls correspond to the changes in the
principal bundles between each individual genome and the reference used for the SV call



(GRCh38, the top track).



(b) ANKRD11



(c) SRGAP2



(d) KMT2C

(e) LPA





(f) MUC4



(g) MUC3A



(h) KATNAL2



(i) FLG



Supplementary Figure 6: The distribution of the vertex weight on the principal bundle vertices
and non-principal bundle vertices for the three cases MHC class II, AMY1A and LPA regions.



Supplementary Figure 7

LPA, KIV-II repeats principal bundle decomposition plot



Supplementary Figure 8



Principal bundle plot for KATNAL2: GRCh38 chr18:46905550-47116795 showing different
numbers of the repeat.

Compute Graph Diffusion Entropy and Max Repetitive Weight

It would be desirable to derive quantitative measurements so we can characterize a set of large
numbers of MAP-graphs fast. One thing we are interested in quantifying is "how complex a
graph is". The intuition is that if a region of the genome is more polymorphic in the population,
the graph will have more alternative paths, or bubbles. We like to generate a quantity as a proxy
for that. For this, we borrow the idea from network science study and spectral graph theory to
consider a diffusion/random walk process on a graph67. For a graph, we consider a set of
random walkers starting at each vertex. The random walkers can drift on the graph though the
edge-connection. We can consider the distribution of the random walkers in the final
equilibrium state. If a graph is relatively simple, then the final distribution will be uniform
(subject to minor boundary condition corrections.) On the other hand, if the weights of the
vertices or topology of the graph are more complex, we would expect the final distribution of
the walkers would be less uniform and reflect the complicated nature of the graph.

The final distribution of the such diffusion process can be obtained by simple matrix
multiplication iteration from the adjacent matrix of a MAP-graph. Given an adjacency matrix A,

https://paperpile.com/c/sanPa9/urGjn


where the matrix element Aij = number of sequence supports edge from vi to vj. The final
distribution P can be written as

P = (1/N) limn->\inf M
n1, where M = AD-1, D is the degree matrix defined as Dii = degree of vertex

vi and Dij =0 if i ≠ j , N is the total number of vertices, and 1 is a column vector in which every
element is one. (When we compute P, we only repeat the number of multiplications N times to
approximate the final distribution.)

P is a normalized column vector [p0, p1,...,pn-1]
T such that ∑i=0..n-1pi = 1. (See Supplementary

figure 4a for an example.) The diffusion entropy used in this work is defined as S = - ∑i=0..n-1pi

log2(pi).

To find the highly repetitive elements inside a region of interest, we look into largest elements
in the unnormalized vector NP as a proxy of average number of repeats considering the graph
structure. We pick the top 32 elements in NP and use the average of those as a proxy number to
estimate the repetitiveness of potential repeat units inside a region of interest.

Data files:

The HPRC year one release sequence and pre-built index:
https://giab-data.s3.amazonaws.com/PGR-TK-Files/pgr-tk-HGRP-y1-evaluation-set-v0.tar

Scripts and source data URLs for constructing the HPRC AGC file:
https://github.com/GeneDX/pgr-tk-notebooks/tree/main/pgr-tk-sequence-source

All GFA files, fetched sequences from HPRC year one release of the 385 CMRG:
https://giab-data.s3.amazonaws.com/PGR-TK-Files/CMRG_output_dir_v0.3.3.tar

Example Notebooks using PGR-TK including code making most of (the source of) the plots in this
manuscript: https://github.com/GeneDX/pgr-tk-notebooks

Information about a docker image with pre-built PGR-TK library and Jupyter Lab Server and
Usage: https://github.com/GeneDX/pgr-tk/blob/main/pgr-tk-workstation/Readme.md

Code:
source: https://github.com/GeneDX/pgr-tk

● API document: https://genedx.github.io/pgr-tk/
pre-built binaries: https://github.com/GeneDX/pgr-tk/releases/tag/v0.4.0

https://giab-data.s3.amazonaws.com/PGR-TK-Files/pgr-tk-HGRP-y1-evaluation-set-v0.tar
https://github.com/GeneDX/pgr-tk-notebooks/tree/main/pgr-tk-sequence-source
https://giab-data.s3.amazonaws.com/PGR-TK-Files/CMRG_output_dir_v0.3.3.tar
https://github.com/GeneDX/pgr-tk-notebooks
https://github.com/GeneDX/pgr-tk/blob/main/pgr-tk-workstation/Readme.md
https://github.com/Sema4-Research/pgr-tk
https://genedx.github.io/pgr-tk/
https://github.com/GeneDX/pgr-tk/releases/tag/v0.4.0

