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Beating thermal noise in a dynamic signal
measurement by a nanofabricated cavity
optomechanical sensor
Mingkang Wang1,2, Diego J. Perez-Morelo1,2, Georg Ramer2,3,4, Georges Pavlidis3,
Jeffrey J. Schwartz2,3, Liya Yu5, Robert Ilic5, Andrea Centrone3, Vladimir A. Aksyuk1*

Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance
sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise
outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measure-
ment method that reduces the effective transducer temperature and improves the measurement precision of
a dynamic impulse response signal. Thermal noise–limited, integrated cavity optomechanical atomic force mi-
croscopy probes are used in a photothermal-induced resonancemeasurement to demonstrate an effective tem-
perature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The
method improves the experimental measurement precision and throughput by >2×, approaching the theoret-
ical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to
dynamic measurements leveraging thermal noise–limited harmonic transducers will have a broad impact
across a variety of measurement platforms and scientific fields.
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INTRODUCTION
The rapid development of nanomechanics in synergy with techno-
logical advances in acoustics, optics, and electronics has spurred
several successful sensing architectures, including nanoelectrome-
chanical systems, atomic force microscopy (AFM), and cavity opto-
mechanical sensors. The unprecedented sensing ability and ultra-
low instrumental detection noise levels of these systems have led
to numerous achievements, such as measurement of Brownian vi-
brations at cryogenic temperatures (1), detection of single spins (2),
single-molecule mass spectrometry (3), and ultrasensitive measure-
ments of other physical quantities (4–9). Specifically, the recent de-
velopment of cavity optomechanical sensors based on low-noise
laser sources and high-quality photonic cavities has enabled mea-
surement of quantum zero-point fluctuations in mechanical reso-
nators, reaching the standard quantum limit (10) at ultracold
(millikelvin) temperatures. However, at room temperature, the pre-
cision of force measurements is typically limited by the Langevin
force, while the positionmeasurements are limited by the associated
Brownian motion, i.e., the mechanical thermal noise (11). Thermal
noise also remains the limiting factor, even in cryogenic tempera-
tures, for ultrasensitive carbon nanotube resonators (1).

Analogous to the charge carriers’ thermal agitation for Johnson-
Nyquist noise in the electrical domain, the mechanical thermal
noise is induced by the excitation of the sensor’s mechanical parts
by the Langevin force. The mechanical thermal noise spectral
density typically has a Lorentzian shape, given by the mechanical

responsivity, and obeys the equipartition theorem, i.e., the integrat-
ed noise power equals kbT/2, for each degree of freedom, where kb is
the Boltzmann constant and T is the temperature. At room temper-
ature, the thermal noise power in nanomechanical resonators with
lowmass and stiffness is often well above the instrumental detection
noise floor over a broad range of frequencies near the resonator ei-
genfrequencies. Since high-precision sensors typically operate on or
near resonance for increased gain, thermal noise limits their sensi-
tivities. Because of its ubiquity, thermal noise is widely used for cal-
ibration (12–14) and measurement (15–17) of nanomechanical
sensors. For example, in conventional AFM setups, thermal noise
is typically well above detection noise at frequencies near the
AFM cantilever resonances and it is used to obtain the probe’s me-
chanical properties. However, thermal noise also poses a detection
limit, which hinders the sensitivity potential of advanced sensors
[e.g., AFM (18, 19) and microelectromechanical systems (20–22)]
at room temperature.

Many strategies have been used to overcome the thermal noise
limit and to reduce thermal fluctuations in nanomechanical resona-
tors (23), including sideband cooling of optomechanical systems
(24), feedback-controlled stochastic cooling (25), and elastic
strain. In practice, however, none of these methods can be easily
or broadly implemented across sensing platforms because they
require complicated setups and have suffered from poor long-
term stability. Averaging the signal from repeatable events, such
as continuous measurements of stable states or repeated measure-
ment of the same transient events, is a simple and commonly used
strategy to reduce thermal noise and uncorrelated detection noise.
However, long-time averaging is not possible for nonrepeatable sto-
chastic processes or for systems with a fast drift. Furthermore, long
averaging times and associated low-measurement throughputs are
also major obstacles for scanning probe imaging, such as AFM and
scanning tunneling microscopy. Therefore, new methods for
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overcoming the thermal noise limit are strongly desirable in many
widespread sensing applications.

The present work aims to beat the thermal noise limit and, more
broadly, to advance nanomechanical sensing by increasing its
throughput and precision. First, we derive a thermal fluctuation es-
timator that determines, with the lowest possible uncertainty, the
thermal fluctuations (noise) for mechanical resonators at steady
states in the presence of large detection noise. This optimally esti-
mated thermal motion is extrapolated forward in time taking ad-
vantage of the intrinsic time-correlated nature of thermal position
fluctuations within the dissipation time scale. Thereby, we can dis-
tinguish and remove the extrapolated thermal noise from a dynamic
measurement signal of interest, effectively reducing the temperature
of the sensor and, therefore, suppressing the signal uncertainty con-
tributed by thermal noise. We experimentally validate this thermal
noise subtraction method by leveraging thermal noise–limited
cavity optomechanical AFM probes as a testing platform. To dem-
onstrate its reliability in a practical dynamic signal measurement, we
apply the above strategy for nanoscale infrared (IR) spectroscopy
experiments based on the photothermal-induced resonance
(PTIR) technique (26–28), in which an impulsive excitation and
subsequent ringdown are measured. Application of this thermal
noise subtraction method decreases the uncertainty of the PTIR
signal by ≈2×, leading to a twofold increase in either measurement
precision or throughput. For the experimental conditions used here,
we identify a ≈3.5× theoretical improvement limit of the thermal
fluctuation uncertainty, with the smaller experimental improve-
ment attributed to nonthermal factors such as the laser jitter. In
contrast to previous attempts that overcome the thermal noise
limit (23–25), our method is broadly applicable to commonly
used micro- and nanomechanical sensors and improves the mea-
surement precision for both single-shot and repeatable dynamic
signals with deterministic temporal profiles. Beyond nanomechan-
ical sensors, the general applicability of the thermal noise estimation
and subtraction strategy can affect a broad class of measurements
that use harmonic resonator transducers (e.g., optical, acoustic,
and radiofrequency) limited by thermal noise.

RESULTS
Thermal noise–limited high-precision measurements
Precision measurements often use resonators with high-quality
factors to provide high gain near their eigenfrequencies. At room
temperature, these resonance-based measurements are limited by
the stochastic Langevin force–induced thermal motion that is also
amplified around the resonance. One typical indicator of this con-
dition is given by the noise power spectral density (Fig. 1A) where
the thermal noise spectrum (purple) is well above the white detec-
tion noise floor (blue) for a range of frequencies several times wider
than its dissipation rate Γ. In our previous work (17), we demon-
strated how the thermal noise can be used for rapid, dynamic fre-
quency estimation in the presence of strong detection noise. The
analysis therein provides the firm theoretical ground for consider-
ing the effects of thermal noise and detection noise for measure-
ments at the steady states. These two types of stochastic noise are
intrinsically different, since the thermal noise has an autocorrela-
tion time scale ≈ 1/Γ, while the detection noise is uncorrelated, al-
lowing for discrimination between them at steady states (Fig. 1A).
The thermal fluctuations, accurately estimated in the steady-state,

can be extrapolated with low uncertainty to the subsequent tran-
sient state. By removing the estimated thermal noise in the transient
state, the signal-to-noise ratio is improved, especially in the subse-
quent ≈1/Γ time scale where the estimation has high precision. If
the desired transient signal is within the 1/Γ time scale, this
thermal noise subtraction procedure will largely improve the mea-
surement precision, e.g., the signal of PTIR used for chemical
imaging occurs shortly after the impulsive excitation (27, 28).

Following from the fluctuation dissipation theorem, the thermal
force noise decreases with lower values of damping Γ; therefore,
high-precision measurements typically use resonators with long au-
tocorrelation time scale 1/Γ, exceeding the duration of many tran-
sient signals of interest. This presents a general opportunity to
improve measurement precision of transient signals by removing
the thermal mechanical noise.

Transient measurements not only are common in fundamental
research but also have wide practical applications. One example is
the PTIR technique (26–28), an AFM-based IR nanospectroscopy
method. In these measurements, an AFM probe is used to transduce
the transient thermal expansion of a sample due to absorption of
short mid-IR laser pulses. In place of conventional AFM probe, in
this work, we use ultrasensitive optomechanical probes (29).
Figure 1C depicts the equivalent mechanical model of this measure-
ment. At steady state, the AFM probe with fundamental eigenfre-
quency ω0 and effective mass m is at thermal equilibrium at
ambient temperature T and subject to the Langevin force and dis-
sipation Γ according to the fluctuation-dissipation theorem. At t =
t0, a short laser pulse (≈10 ns) rapidly offsets the “contact point” by
B due to the fast photothermal expansion of the sample. During the
transient state after the pulse, the pulse puts the probe into oscilla-
tion while the contact point returns to the original position accord-
ing to the thermal relaxation process of the sample surface with a
thermal constant τ (29, 30). As result, the signal of this measure-
ment can be separated in time by t = t0 into two stages, as shown
in the lower panel of Fig. 1C. At t < t0 (yellow area), the readout is
just a linear combination of thermal noise and detection noise. At t
> t0, the dynamics of the probe, in addition to the noise, can be
modeled as (29, 30)

S ¼ Sosc þ Sexp ð1Þ

where Sosc =A cos (ω0t + ϕ)e−Γt/2 and Sexp = Be−t/τ are the ringdown
term of the probe and the thermal relaxation term of the sample.
These two terms from the AFM probe operating as a linear mechan-
ical resonator are independent of each other. We note that while the
PTIR signal obtained with the optomechanical resonator AFM
probes (30) used here contains both Sosc and Sexp, the signal ob-
tained with conventional AFM probes (31) contains only the Sosc
term, due to the much smaller measurement bandwidth. Here, we
define the time of the laser pulse t0 = 0. A and B are the initial mode
amplitude and the initial deformation of the sample after the pulse.
The transient quantities of interest in this measurement areA and B.

By leveraging narrow-line, wavelength tunable lasers, PTIR pro-
vides rich information on the sample nanoscale composition and
thermal properties. For example, measuring Sosc as a function of
the mid-IR excitation wavelength yields nanoscale IR spectra that
enable the identification of chemical groups (32), materials (33,
34), secondary structure, (35) bandgap (36), and the characteriza-
tion of optical modes such as plasmons (37) and polaritons (38).
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In addition, the high bandwidth and fast time resolution afforded by
the nanophotonic AFM probes used here enable measuring the
time-domain sample relaxation, Sexp, which can provide the
thermal conductivity (29, 30) of the sample and its interfacial
thermal conductance with the substrate with nanoscale resolution
(30). However, as with other high-precision sensors based on reso-
nance, the AFM sensitivity is ultimately limited by thermal noise.
Furthermore, long-time averaging to reduce thermal noise is unde-
sirable in AFM due to the low measurement throughput and the
associated lateral drift of the AFM scanner. Amethod to distinguish
and remove the thermal noise from the AFM transient signal is gen-
erally needed to improve the measurement precision and increase
the throughput.

Here, we consider a fast transient offset of the contact point by B
at t = t0. However, we emphasize that this method applies to any
transition under transient perturbations (duration ≪1/Γ) such as
delta functions or step functions (whose time derivative is a delta
function) for the energy, position, velocity, force, etc.

Thermal fluctuation estimation in the presence of
detection noise
To beat the thermal noise limit, it is critical to distinguish the
thermal noise from the detection noise background and other
dynamic signals as shown in Fig. 1B. This is not trivial for highly
dynamic signal measurements whose detection bandwidth BW ≫
Γ, as we discuss below.

We consider a simple but general case—a harmonic oscillator
with coordinate x at thermal equilibrium. Without loss of general-
ity, we convert the fast motion into a rotating frame of frequency ω
and define a slow variable u via x ¼ 1

2 ðue
iωt þ u�e� iωtÞ. The oscilla-

tor of eigenfrequency ω0 and dissipation rate Γ is subject to zero-
mean Gaussian Langevin force, inducing mechanical fluctuations
with variance 〈∣u∣2〉 = 2σ2, detected with zero-mean Gaussian detec-
tion noise with variance hjum � uj2i ¼ 2σ2n, where u is the actual
displacement due to the Langevin force and um is the measured dis-
placement including detection noise in the rotating frame.
xm ¼

1
2 ðumeiωt þ um

�e� iωtÞ is the measured signal in the time
domain, corresponding to S in Eq. 1. Defined by the equipartition
theorem, the area of thermal noise spectrum (purple area in Fig. 1A)
is equal to σ2 ¼ kbT

mω02
where kb is the Boltzmann constant. Distinct

Fig. 1. Distinguishing thermal fluctuations from instrumental detection noise. (A) Power spectral density of a harmonic oscillator at thermal equilibrium. The purple
and blue areas correspond to the thermal fluctuations and the detection noise spectra, respectively. The purple and blue dashed lines delimit the damping and detection
bandwidths. (B) Numerically modeled displacement measurements um (black) consisting of correlated thermal fluctuations u (purple) and uncorrelated detection noise
(blue). (C) Schematic of a harmonic oscillator at steady-state thermal equilibrium and after a transient perturbation, which offsets the contact point by B. Bottom: Sche-
matic of the measured position of the oscillator relative to the contact point. The yellow and white area corresponds to the steady-state and the transient impulse
response before and after the perturbation at t0, respectively. The majority of the transient signal occurs within the thermal noise autocorrelation time period, t < 2/
Γ. (D) Estimations of ûkðtÞ and σk(t) in the steady-state range (yellow background) and in the transient response range (white background) are obtained by Eqs. 2 and 3 and
Eqs. 4 and 5, respectively. The uncertainty is low within the thermal noise correlation time frame, t < 2/Γ.
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from σ2 (which is a constant at constant T ), σ2n linearly increases
with bandwidth ∝BW × Sn, where Sn is the detection noise spectral
density (blue area in Fig. 1A). For large bandwidth measurements,
which are necessary for measuring dynamics signals, the spectrally
integrated detection uncertainty σ2n can be comparable or even
larger than the thermal uncertainty σ2.

At this steady equilibrium state, we estimate (distinguish) the
thermal fluctuations Uk = {u1, …uk} from measured data Um,k =
{um,1, …um,k} containing strong instrumental detection noise
using a Bayesian estimation method, i.e., the estimated result
(prior knowledge) is updated once a new measurement point is ob-
tained. We define ûk as the estimated position immediately after the
first k-measured data points and σ2k as its uncertainty (17)

1
σ2k
¼

1
σ2k� 1e� Γdt þ σ2dt

þ
1
σ2n

ð2Þ

ûk ¼
1

σ2k� 1e� Γdt þ σ2dt
e iΔω� Γ

2ð Þdtûk� 1 þ
1
σ2n

um;k

� �

�
1

σ2k� 1e� Γdt þ σ2dt
þ

1
σ2n

� �� 1
ð3Þ

where dt is the time interval between data points, Δω = ω − ω0 is the
frequency detuning in the rotating frame, and σ2dt ¼ Γdtσ2 is the
variance of thermal diffusion within dt. The detailed derivation
can be found in (17), but the simple conclusion is that, by inputting
the continuously measured position Um,k = {um,1, …um,k} to Eq. 3,
we obtain the optimally estimated thermal noise trajectory
Ûk ¼ fû1; . . .ûkg with the theoretically lowest possible uncertainty
σk (Eq. 2). When the detection noise is low, after a large number of

measurements k, σk converge to σe ¼

ffiffiffiffiffiffiffiffi
η2þ4
p

� η
2 ησ2 � σ, where the

detection noise ratio η ¼
ffiffiffiffiffiffiffiffi
σ2nΓdt
σ2

q

� 1 for high-precision sensors
(17). In such a case, if we subtract the estimated thermal noise
from the measurement record, the resulting signal Um;k � Ûk
would be as if the measurement was done on an equivalent
sensor physically cooled down to an effective tempera-
ture Teff ¼

σ2e
σ2 T � T.

Next, we extend the estimation from steady states to transient re-
sponses. The thermal mechanical motion is strongly correlated
within the ringdown time interval 1/Γ. This means that, based
only on positionmeasurements at t < 0, one can predict the position
at 0≤ t < 1/Γ with high confidence. By removing the term associated
with new data points in Eqs. 2 and 3, we get (see Materials and
Methods)

σ2kðtÞ ¼ σ2 þ ½σ2kð0Þ � σ2�e� Γt ð4Þ

ûkðtÞ ¼ ûkð0Þe iΔω� Γ
2ð Þt ð5Þ

where uncertainty σ2kðtÞ increases from σ2kð0Þ ¼ σ2e at t = 0 and
approaches σ2 asymptotically at t ≫ 1/Γ due to thermal diffusion,
while the most likely position ûkðtÞ decays exponentially from the
initial thermal state ûkð0Þ ¼ ûk� 1 to 0. As the elapsed time from the
last measurement increases, the uncertainty of the extrapolation
grows, equivalent to the temperature increasing from the “cooled

steady state,” thermalizing with the thermal bath. However, the ther-
malization time scale and the transient impulse response time scale
are both ≈2/Γ (Fig. 1, C and D). Thus, the useful part of the signal,
during the transition, is mostly encompassing the time period over
which the sensor effectively cooled to a lower temperature (i.e., with
low thermal noise uncertainty) and high precision.

The estimation of thermal noise from steady states to transient
states is shown in Fig. 1D. Before t0, σkðtÞ/

ffiffiffiffiffiffiffi
Teff
p

is at its steady-
state value of σ2e ≪σ2 based on Eq. 2. The system is “cold,” and the
thermal noise is low. After t0, during the transient response, no new
information (i.e., no new data points) is provided and σk(t), given by
Eq. 4, increases converging to the original thermal uncertainty σ
after thermalization time ≈2/Γ as the correlation decreases with
time. In summary, we estimate the thermal fluctuations at steady
states before the onset of dynamic signals using Eqs. 2 and 3 and
extend the estimation to the time range over which most of the
dynamic signal occurs using Eqs. 4 and 5. This method not only
gives good estimates but also provides well-defined uncertainties,
a crucial aspect for analyzing dynamic signals in practical applica-
tions, e.g., for PTIR.

Fig. 2. PTIRmeasurement. (A) Schematic of PTIRmeasurement setup. The sample
(blue area) on top of a ZnSe prism absorbs energy from the pulsed laser, thermally
expands, and excites the nanophotonic AFM probe. The mechanical motion of the
probe is measured optomechanically by an on-chip optical microdisk. (B) False-
colored scanning electron micrograph of a nanophotonic AFM probe. Scale bar,
5 μm. (C) Time domain tip displacement (xm, red dots) before and after a laser
pulse excitation around t = 0 μs. The yellow area marks times in which the resona-
tor is in thermal equilibrium. The second dashed line labels t ¼ 2

Γ ¼ 1:09 μs. The
black trace is the fit S based on Eq. 1. Inset: Fundamental in-plane mode shape. (D)
Magnitude of the Fourier transform of the signal at equilibrium [purple dots, cor-
responding to the yellow area in (C)] and during the ringdown [red dots, corre-
sponding to the no-color area in (C)]. The gray line is the Lorentzian fit to the
purple dots summed with the detection noise floor (blue dots). The detection
noise floor is taken when the transduction gain of the AFM probe is set to
nearly zero. The black line is the magnitude of the Fourier transform of fit to Eq.
5 in (C).
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PTIR setup
In this work, we use a custom PTIR setup (31), equipped with a
cavity optomechanical AFM probe detection platform (29), as a
test bed for the effective cooling method, i.e., thermal noise estima-
tion and subtraction process. The PTIR technique is a typical tran-
sient impulse response measurement whose signals are mostly
within the correlated period (< 2/Γ). Besides the low detection
noise, the optomechanical transduction scheme (29) guarantees
that its thermal noise power spectrum is well above the detection
noise floor in a broad range of frequencies at room temperature.
These two factors make this platform a good test bed for overcom-
ing the thermal noise limit in dynamic signals. The effective cooling
method can be applied to the PTIR data offline, including to box-
car averaged data, and therefore, it does not require any fast in situ
data processing.

The nanophotonic PTIR setup (Fig. 2A) uses a nanophotonic
AFM probe shown in Fig. 2B. A silicon microdisk of 10 μm diam-
eter, supporting optical whispering gallerymodes (WGMs), is evan-
escently coupled to a mechanical cantilever across a ≈200-nm gap.
The mechanical resonator was engineered to include a sharp tip and
a supporting frame to increase the stiffness of the fundamental in-
planemode (hereafter mechanical mode), with the goal of suppress-
ing its thermal fluctuations and increasing its bandwidth (30). The

tip (≈30-nm radius) is operated in contact with the sample (contact
mode; Fig. 1A) and is characterized by a mechanical in-contact
lowest eigenfrequency of ≈10 MHz, which is advantageous for
imaging with high spatial resolution (39). The rapid thermal expan-
sion of the sample excites efficiently only the fundamental in-plane
mode (Fig. 2C, inset) of the cantilever since the mode shape and
symmetry couple to the excitation well. The probe’s mechanical ex-
citation modulates the frequency ofWGMs in the microdisk via op-
tomechanical coupling. Excitation and detection of the WGMs are
implemented by an on-chip waveguide. When the 1550-nm contin-
uous wave detection laser is tuned on the shoulder of theWGM res-
onance, the detected light intensity measured by a photodetector is
proportional to the mechanical response of the probe.

As shown in Fig. 2A, in PTIR, a series of laser pulses (10 ns long,
repetition rate of 100 kHz) are incident on a sample from the
bottom in a total internal reflection configuration. With the absorp-
tion of a light pulse, the sample heats up and expands on the same
short time scale, as illustrated in Fig. 1C, where the contact point is
at the sample surface. The nanophotonic AFM probe in contact
with the sample is excited into oscillation by the rapid thermal ex-
pansion, with amplitude proportional to the wavelength-dependent
absorption coefficient of the sample (29, 40).

Figure 2C shows the probe excitation obtained when illuminat-
ing a 200-nm-thick SU-8 (please see the “Commercial products dis-
claimer” section inMaterials andMethods) polymer sample at 2920
cm−1. The 5-μs-long signal recorded with a sampling time interval
dt = 4 ns can be separated into two stages. Like the schematic in
Fig. 1C, in the first stage (t < 0), the probe in contact with the
sample is in thermal equilibrium. It shows thermal fluctuations
with thermal noise spectral density presented as the purple dots
in Fig. 2D. Its Lorentzian fit and a separately measured detection
noise floor (blue dots) are shown as a gray line with eigenfrequency
ω0/2π≈10.26 MHz and damping coefficient Γ/2π≈0.29 MHz. The
deviation at low frequencies is from the slow distance drift
between the probe and the sample holders. The thermal noise is
well above the detection noise floor in a broad range of frequencies
(≈10MHz around its eigenfrequency). At the end of the first stage, a
10-ns-long laser pulse heats the sample, kicking the probe instantly
(10 ns ≪1/Γ) to the position of maximum displacement (black dot
in Fig. 2C). In the second stage (t > 0), the mechanical mode exci-
tation exponential decays (ringdown) as described by Eq. 1. During
ringdown, the timeframe of the thermal noise estimation with low
uncertainty (Fig. 1D, bottom) and the signal with large magnitude
(Fig. 2C) inherently overlap at 0 < t ≲ 2/Γ. Therefore, thermal sub-
traction is effective in increasing the precision of the dynamic
signal. The black line in Fig. 2C shows the fitting result for S
using Eq. 1, where Γh2π ≈ 0.29 MHz, ω0

2 � 10:21 MHz, A ≈ 1.25
V, B ≈ 1.30 V, and τ ≈ 0.27 μs, which are consistent with (30)
and fitting parameters in Fig. 2D. Note that the time gap between
repeat laser pulses is 10 μs, which allows the resonator and sample to
return to equilibrium before the arrival of the next pulse. The red
dots and the black line in Fig. 2D show the Fourier transform of the
time domain signal during the second stage and its fit in Fig. 2C.

Beating the thermal noise limit by thermal noise estimation
As shown in schematic Fig. 1 (A and B), thermal noise can be dis-
tinguished from instrumental detection noise at steady states using
Eqs. 2 and 3 and extended to dynamic signal range by Eqs. 4 and 5.
For the PTIR measurements, the steady state and dynamic signal

Fig. 3. Thermal noise estimation for the nanophotonic AFM probe. (A) Mea-
sured (estimated) thermal fluctuations are shown as blue (red) dots. At t < 4 μs, the
estimation is iterated using Eqs. 2 and 3. At t > 4 μs, the estimation continues based
on the prior measured data at t < 4 μs using Eq. 5. (B) The residual of the signal after
removing the estimated thermal fluctuations is shown as black dots. The red
dashed lines show its one SD uncertainty. (C) SD of the residual before (after) re-
moving the estimated thermal fluctuations is shown as blue (black) dots, estimated
from 1000 independent measurements. The red dashed line shows the theoretical
prediction given by Eqs. 2 and 4 before and after t = 4 μs, respectively. (D) Magni-
tude of the Fourier transform of the signal at t < 4 μs before (after) removing es-
timated thermal fluctuations is shown as blue (black) dots. The gray line shows the
detection noise floor measured separately.
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time ranges correspond to the time intervals before and after the
laser pulse, respectively. To validate this method, we first apply it
to the purely steady-state case where the laser pulse is off. The
blue dots in Fig. 3A shows the measured thermal fluctuations
with detection uncertainty of the probe in contact with the
sample. The detection noise is measured to be σ2n � 1:64� 10� 3
V2 under detection bandwidth BW ≈ 125 MHz, and thermal
noise is σ2 ≈ 7.58 × 10−3 V2. By definition, we obtain
σ2e � 0:30� 10� 3 V2 and σ2dt � 5:52� 10� 5 V2

(σ2n þ σ2e � 1:94� 10� 3 V2, σ2n þ σ2 � 9:22� 10� 3 V2), corre-
sponding to a cooling factor of T=Teff ¼ σ2=σ2e � 25:3, where T
and Teff are the effective equilibrium temperatures before and
after the thermal subtraction, respectively. Although the measure-
ment was conducted entirely at room temperature (T = 293 K),
the maximum possible benefit of this noise subtraction strategy is
equivalent to cooling the probe to ≈11.6 K immediately before the

pulse.With these parameters, we estimate thermal fluctuations ûk in
the rotating frame (ωiω0) and then convert it back to the experimen-
tal frame as x̂k ¼

1
2 ðûkeiωt þ ûk

�e� iωtÞ. The sequential estimation is
updated by each measured data point using Eqs. 2 and 3 up to t = 4
μs (Fig. 3A, yellow area), mimicking the starting of the pulse (tran-
sient state). The estimation at t > 4 μs (white area) is only based on
the correlation of prior measurement at t < 4 μs without using any
new data points as Eq. 5. The estimated thermal fluctuations
X̂k ¼ fx̂1; . . .x̂kg shown as red dots are in good agreement with
measured blue data points Xm,k = {xm,1, …xm,k}. Figure 3B displays
the residuals Δx̂k ¼ x̂k � xm and their SD (red dashed lines).

To illustrate the improvement of measurement precision
(cooling effect) after subtracting the thermal noise, we repeatedly
apply this process on N = 1000 groups of separate data measured
under the same conditions at the steady state and calculate the re-
sidual of the ith group of data as ΔX̂i;k ¼ fΔx̂m;1; . . .Δx̂m;kg. Their

SD at each data point is calculated as Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
ΔX̂i;k

2
s

shown as

the black line in Fig. 3C. The red dashed line shows the theoretical
precision given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2n þ σ2kðtÞ
q

based on Eqs. 2 and 4 at before and
after t = 4 μs, respectively. Like the schematic in Fig. 1D, however,
here, we include the measurement noise component. After t = 4 μs,
the precision decreases from the converged steady-state value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n þ σ2e

p
to its original value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n þ σ2

p
asymptotically within 2/

Γ. Analogously, the effective temperature of the sensor increases as-
ymptotically within 2/Γ. The blue line in Fig. 3C shows the SD of the
data Xm,k before subtracting the thermal noise. The good agreement
between theory and measurement validates the method. It also ex-
perimentally demonstrates that this method largely improves the
detection precision within the time frame where the transient re-
sponse signal is strong (Fig. 2C within 2/Γ). These estimates have
well-defined uncertainty, which is critical for fitting dynamic
signals as shown later. Figure 3D shows the noise power spectral
density of the original data Xm,k and residual ΔX̂k before t = 4 μs
as blue and black dots, respectively. It shows that the method
removes the thermal noise well. The deviation from the detection
noise background (gray dots) at low frequencies derives from the
slow distance drift between the probe and the sample.

Next, we apply this method to the dynamic signal in PTIR mea-
surements. The test sample is a SU-8 dome with topography shown
in Fig. 4A. The signal measured at the center of the sample is shown
in Fig. 4B. Following the routine described above, we estimate the
thermal fluctuation state before the pulse (steady state) using Eq. 2
and 3 and after the pulse (dynamic signal) using Eq. 5. The estimat-
ed results are shown as the blue dots in Fig. 4B. Next, we subtracted
the estimated thermal noise from the data and obtain the blue dots
in Fig. 4D, hereafter processed data. The thermal noise is largely
reduced before t < 2/Γ ≈ 1.1 μs and easily seen for t < 0 μs compared
to Fig. 4B. The processed data contain dynamic signal S (Eq. 1) on
top of a combination of detection noise and residual thermal noise
whose uncertainty is well defined by Eq. 4 as shown in Fig. 4C.
Notably, the effective cooling of the sensor is close to maximum
(Teff = 12 K) at the time (≈100 ns) when the maximum peak to
peak of the ringdown signal used for chemical imaging occurs
(27, 28).

Fig. 4. Improving the precision of a PTIR measurement by removing thermal
noise. (A) Topography of an SU-8 dome measured with a nanophotonic AFM
probe. The star labels the detection point. Scale bar, 1 μm. (B) Measured excita-
tion-ringdown signal triggered by laser pulse at t = 0 (red dots). The estimated
thermal fluctuations are shown as blue dots. (C) Theoretical uncertainty of the
data points at t > 0 given by Eq. 4. (D) PTIR signal after removal of the estimated
thermal fluctuations is shown as blue dots. Its variance-weighted fit based on (C)
and Eq. 1 is plotted as the black line. (E) SD of the fitting parameter A in Eq. 1 as a
function of the after-pulse data-fitting length. The SD from fitting data before
thermal noise subtraction (orange) and after thermal noise subtraction with
equal (yellow) and inverse-variance (blue) weights is shown. The theoretical
lower limit of the uncertainty of A due to detection noise and thermal fluctuations
only is shown as the upper bound of the purple area. The experimentally obtained
≈2× precision improvement compared to the theoretical limit of ≈3.5× with the
difference attributed to the effects of laser pulse timing jitter is shown.
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To extract useful information from the PTIRmeasurement, such
as oscillation amplitudeA for spectroscopy (35) or sample’s thermal
constant τ for thermal conductivity analysis (30), a fitting process is
necessary. The easiest option is to directly apply a least-square fit
(LSF) to the processed data using Eq. 1. The reduced thermal
noise (effective temperature) lowers the uncertainty of the fit. In ad-
dition, the processed data at each point have a known and different
uncertainty or variance, i.e., heteroscedasticity, as shown in Fig. 4C.
The standard procedure for fitting data with heteroscedasticity is
weighted LSF (WLSF) (41) where the weight is defined as the
inverse of the variance of each point, Wkk ¼

1
D2

k
. In WLSF, the

strong signals at the beginning also have less uncertainty and
more weight. It makes the WLSF further improve the precision of
fitting results. The time complexity of WLSF is the same as the LSF,
meaning that it does not reduce the throughputs of the measure-
ment. It is critical since one of the important impacts of the
thermal noise subtraction method is improving the throughput.
The WLSF result of the data using Eq. 1 is shown as the black
line in Fig. 4D.

One fitting parameter that we aim to measure in PTIR is the am-
plitude A, which is proportional to the absorption coefficient (40,
42), thus enabling IR spectroscopy at the nanoscale. To demonstrate
the improvement in the fitting precision, we apply this method on
N = 1000 groups of repeating excitation-ringdown data similar to
Fig. 4B, with nominally the same pulse power and location on the
sample. Ai,k denotes the fitted A from the first k points after t > 0 of
the ith data group. Figure 4E shows the SD of Ai,k,

δAk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
Ai;k �

1
N

XN

i¼1
Ai;k

 !2
v
u
u
t , for data without thermal

noise subtraction (orange), with thermal noise subtraction using
LSF (yellow), and with thermal noise subtraction using
WLSF (blue).

We make the following observations. First, the fit converges
quickly at t ≈ 0.2 μs, i.e., fitting to the signal within 0 μs < t < 0.2
μs provides comparable precision to fitting to a longer 0 μs < t < 2 μs
trace. Second, the improvement from thermal noise subtraction is
around 2×, doubling the measurement sensitivity for the same av-
eraging time or, equivalently, doubling its throughput. Meanwhile,
the improvement from using WLSF versus LSF is limited. Different
choice of weights for the remaining data point makes a small differ-
ence in our measurement. However, we point out that if the detec-
tion noise is strong such that the converging time is longer, their
difference will be larger. Last, we provide a theoretical precision
limit for the estimate of A in our setup (upper bound of the
purple area) based on an optimal Bayesian estimator (17) for a step-
wise excitation (see Materials and Methods). Theoretically, the im-
provement can reach around 3.5× for the specific level of the
detection noise in our experiment and continues to improve with
decreasing detection noise. This thermal noise avoidance technique
is practically limited only by the instrumentation factors. The dif-
ference between experimentally demonstrated precision and the
theory can be attributed to the nonoptimal WLSF and other noise

Fig. 5. Measured maps of the SU-8 dome. (A) Distribution of A on the SU-8 dome after removing thermal noise. The three dashed lines delimit the SU-8 heights of 20,
100, and 180 nm, respectively. (B) Difference between fitted A before and after removing the thermal noise, averaged from N = 43 datasets. (C and D) Distribution of
uncertainty δAk before and after removing thermal fluctuations. One SD uncertainty δAk is calculated form N = 43 independent datasets. The pixel size is 140 nm by
140 nm.
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sources, such as the timing jitter of the pulsed laser, which affects
the start t = 0.

Using this method, we scan the probe on the SU-8 sample and fit
the cantilever oscillation amplitude A (i.e., the PTIR signal used in
practice) at each location (see Fig. 5A). The distribution of A agrees
well with the height distribution (Fig. 4A) since the absorbed light
intensity and the resulting thermal expansion are proportional to
the thickness of the thin sample (40, 42). The dashed lines show
the thickness contours of 20, 100, and 180 nm from the periphery
toward the inside. The measurements on the bare substrate sur-
rounding the sample (without PTIR signal) are excluded and
shown as white. We also compare the fitted A before and after re-
moving thermal fluctuations; their difference is shown in Fig. 5B.
The subtle differences evenly distributed on the map have a
nearly zero-mean value (mean value of Fig. 5B ≈0.0012 is signifi-
cantly smaller than its SD≈0.0087), meaning the method is not
strongly biased, consistent with numerical simulation on a similar
model (damped harmonic oscillator) (43). In contrast, the precision
of A obtained using thermal noise removal shown in Fig. 5D is
strongly improved relative to that in Fig. 5C. The precision is
doubled by applying this method, i.e., the averaged uncertainty
δAk ≈ 0.095 shown in Fig. 5C is nearly twice the δAk ≈ 0.049
in Fig. 5D.

DISCUSSION
We developed a method for thermal noise avoidance in measure-
ments of dynamic signals obtained with resonant transducers by
optimally estimating and subtracting thermal fluctuations in the
presence of instrumental detection noise. Using an experimental
setup that uses a cavity optomechanical AFM probe as its displace-
ment transducer, we obtain a 25× reduction of the transducer’s ef-
fective temperature consistent with the theory. The accurate steady-
state estimation of the probe state is extrapolated forward in time
and subtracted from the subsequently induced dynamically
varying transient signal of interest, reducing its measurement un-
certainty by 2× approaching the theoretical limit of ≈3.5× under
our experimental conditions.

By removing thermal noise from transient dynamic signals, we
experimentally improve the sensing precision and throughput of
our measurements. Beyond the field of nanomechanical sensing,
the method presented here is broadly applicable to other optical,
acoustic, and radiofrequency resonant transducers for which the
measurements are limited by thermal noise. This work advances
the general understanding and management of thermal noise. It
provides an easy-to-apply and general method that improves preci-
sion, sensitivity, and throughput for thermal noise–limited
dynamic signals.

MATERIALS AND METHODS
Extend the estimation of steady-state signal to
dynamic signal
To extrapolate the estimation from steady-state signal into the time
range of the dynamic response, we need to update Eqs. 2 and 3

without using new data points. Equations 2 and 3 change to

σ2k ¼ σ2k� 1e
� Γdt þ σ2dt ðMM1Þ

ûk ¼ ûk� 1e iΔω� Γ
2ð Þdt ðMM2Þ

We rewrite Eq. MM1 in continuous form. By setting σ2k� 1 ¼ y,
we have

yþ dy ¼ ye� Γdt þ Γdtσ2 ðMM3Þ

After doing integration with the initial condition of

yð0Þ ¼ σ2e ¼
ffiffiffiffiffiffiffiffi
η2þ4
p

� η
2 ησ2, where σ2e is the converged uncertainty

at the steady states (17) and η ¼
ffiffiffiffiffiffiffiffi
σ2nΓdt
σ2

q

, we get

σ2kðtÞ ¼ σ2 þ ½σ2kð0Þ � σ2�e� Γt ðMM4Þ

σ2kðtÞ increase from σ2e ¼
ffiffiffiffiffiffiffiffi
η2þ4
p

� η
2 ησ2 at t = 0 to σ2 at t >> 1/Γ, equiv-

alent to the effective temperature increases from Teff ¼ T σ2e
σ2 (where

σ2e � σ2 for thermal noise–limited sensors) back to the environ-
mental temperature T.

Similarly, Eq. 3 can also be written in the continuous form

ûkðtÞ ¼ ûkð0Þe iΔω� Γ
2ð Þt ðMM5Þ

where ûkð0Þ is the last estimated position at the steady states.

Optimal Bayesian estimator for a stepwise excitation
In the PTIR measurement, the parameters of interest are B and A in
Eq. 1, i.e., the stepwise function amplitude (sample’s instantaneous
expansion) and the resulting response of the sensor (probe’s oscil-
lating amplitude), respectively. If the probe can be regarded as a
mass point, A = B. In our case, A = cB, where the proportionality
constant c depends on the geometry of the probe and the contact
point on the probe. On the basis of the finite-element simulation,
c ≈ 1.0 for our probe (44).

To estimate the stepwise function’s amplitude B, we first assume
that the step occurs at t = 0. We perform the “forward” Bayesian
estimation at the steady states from t = −∞ to 0− using Eqs. 2
and 3, and get the estimated position ûð0� Þ at t = 0− before the

pulse with the converged uncertainty of σ2e ¼
ffiffiffiffiffiffiffiffi
η2þ4
p

� η
2 ησ2 (17).

Similarly, we perform a “backward estimation” of the position im-
mediately after the pulse ûð0þÞ based on data from t = +∞ to 0+
using the time-reversal function of Eqs. 2 and 3 as

1
σ2k
¼

1
σ2k� 1eþΓdt þ σ2dt

þ
1
σ2n

ðMM6Þ

ûk ¼
1

σ2k� 1eþΓdt þ σ2dt
e� iΔω� Γ

2ð Þdtûk� 1 þ
1
σ2n

um;k

� �

�
1

σ2k� 1eþΓdt þ σ2dt
þ

1
σ2n

� �� 1 ðMM7Þ

We get the estimated position ûð0þÞ at t = 0+ after the pulse with

the converged uncertainty of σ2eþ ¼
ffiffiffiffiffiffiffiffi
η2þ4
p

þ4
2 ησ2.
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By definition, B ¼ ûð0þÞ � ûð0� Þ. If its uncertainty is solely
from the thermal noise and detection noise, after subtraction, the
one SD uncertainty can be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2eþ þ σ2e

p
. The purple

line in Fig. 4 is calculated from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2eþ þ σ2e

p
as if only thermal

noise and detection noise are present in our measurement.

Commercial products disclaimer
The full description of the procedures used in this paper requires the
identification of certain commercial products. The inclusion of this
information should in no way be construed as indicating that these
products are endorsed by the National Institute of Standards and
Technology (NIST) or are recommended by NIST or that they are
necessarily the best materials for the purposes described.
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