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Abstract

Resonant ultrasound spectroscopy (RUS) is capable of determining the single crystal elastic
constants from polycrystalline specimens with known crystallographic texture. However, the
calculated single crystal elastic constants vary with the measured texture, resulting in inconsis-
tent estimates for additively manufactured (AM) specimens with heterogenous texture regions.
In this work, the accuracy of the determined single crystal elastic constants is improved by
incorporating the uncertainty of the texture in the determination of single crystal elasticity,
and requiring only small quantities of electron backscatter diffraction data (EBSD) to do so.
The single crystal elastic constants are determined by Bayesian inference with parallelized se-
quential Monte Carlo (SMC), enabling an order of magnitude reduction in computational cost.
AM specimens of a cobalt-nickel-base superalloy (SB-CoNi-10C) demonstrate that the incor-
poration of texture variability enables the single crystal elastic constants to converge to the
reported literature values within one standard deviation, avoiding any dependence on the ini-
tial texture values. The single crystal elastic constants of nickel-base-superalloy Inconel 625
(IN625) and Ti-6Al-4V (Ti64) are determined from AM specimens, using only RUS and EBSD
data. The determined single crystal elastic constants of IN625 agree between two different tex-
ture conditions (induced by AM raster strategy), as well as with the literature values, within
one standard deviation. The single crystal elastic constants determined from three AM Ti64
specimens, printed with different beam powers, agree with the range of literature values within
two standard deviations but demonstrate variability between AM specimens, indicating that
the frequencies may be susceptible to the effects of secondary phases.

1 Introduction

Single crystal elastic constants describe the fundamental mechanical response of crys-
talline materials. Knowledge of the single crystal elastic constants is critical for property
prediction of materials with variable microstructures, such as additively manufactured
(AM) components. Recent work [1] has shown that even with a constant set of pro-
cessing parameters, part groupings of various sizes can inadvertently lead to significant
variations in crystallographic texture and mechanical properties. Despite the importance
of accurate knowledge of the single crystal elastic constants, historical measurements re-
quired the growth of a single crystal specimen and mechanical [2, 3] or ultrasonic [4, 5, 6]
testing. Though calculations based on Density Functional Theory (DFT) have risen to
quantify the single crystal elastic constants [7], experimental measurements are capable
of higher precision and serve as critical validation. Because single crystal growth requires
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high cost equipment and expertise, there is a driving force for the determination of the
single crystal elastic properties from polycrystalline specimens [8, 9, 10]. Unfortunately,
the majority of the polycrystal-based approaches still require access to synchrotron facil-
ities.

Consequently, techniques to quantify the single crystalline elastic properties from poly-
crystals on the laboratory scale are of interest. Recently, ultrasound has been used to
determine the single crystal elastic constants from bulk elastic properties of polycrys-
talline materials [11, 12]. These efforts involve the use of localized surface acoustic wave
measurements [11] or bulk ultrasound measurements [12] to infer the single crystal prop-
erties. Given the low expense of these ultrasonic approaches, the authors of this work
have previously developed a method [13] to inversely determine the single crystal elas-
tic constants from resonant ultrasound spectroscopy (RUS) measurements of (textured)
additively manufactured specimens. Critically, this work incorporates Bayesian inference
into the inverse determination of the single crystal elastic constants, generating probabil-
ity distributions and uncertainties on each independently determined parameter, directly
from the measured resonant frequencies. However, the previous work by the authors
[13] required the specimen’s crystallographic texture (preferential crystallographic orien-
tation of grains) as a fixed input to the calculation, resulting in the single crystal elastic
constants depending on both the method and quantity of texture data collected.

This research serves to increase the accuracy and consequent reliability of the single
crystal elastic constants as determined from RUS measurements on AM specimens, by
incorporating uncertainty in the supplied texture as determined by electron backscat-
ter diffraction (EBSD) measurements. The research presented here further develops the
Bayesian inference framework created by the authors in [13], and is demonstrated to
increase the accuracy of the single crystal elastic constants when determined from AM
specimens. Cobalt-nickel-based superalloy (SB-CoNi-10C) specimens and texture data,
originally studied in [13], are re-examined to demonstrate the improvements in the de-
termined single crystal elastic constants. The novel framework is then used to quantify
the single crystal elastic constants of AM Inconel 625 (IN625) and AM Ti-6Al-4V (Ti64)
using only the resonant frequencies and EBSD data.

The novelty of this work is: 1. The development of a framework to determine the single
crystal elastic constants from RUS measurements, incorporating texture uncertainty for
both cubic and hexagonal materials. 2. To calculate textural uncertainty from EBSD
data, in order to increase the accuracy of the determined single crystal elastic constants
from RUS data without extensive texture measurements. 3. The demonstration of more
accurately determined single crystal elastic constants, independent of the initial texture
data, by studying a SB-CoNi-10C AM specimen characterized with both neutron diffrac-
tion [13] and EBSD. 4. To report the single-crystal elastic constants of IN625 and Ti64
from AM specimens, and compare with reported literature values.

The paper is organized in the following sequence: The printing parameters of each AM
build are detailed in Section 2. The computations to determine the single crystal elastic
constants from the resonant frequencies are described in Section 3. The determination of
texture variability within each EBSD dataset for input to the inverse model is described
in Section 3.1. The independent parameters involved in the inverse calculation of the
single crystal elastic constants of each printed AM material, along with the construction
of the forward model to calculate resonant frequencies from the single crystal elastic
constants, are described in Section 3.2. The inverse solving of the single crystal elastic

2



constants with sequential Monte Carlo (SMC) is described in Section 3.3. The estimated
single crystal elastic constants of SB-CoNi-10C, IN625, and Ti64 are provided in Section
4 and compared to the single crystal elastic constants reported in the literature. The
dependencies of the resultant single crystal elastic constants on AM processing conditions
are discussed.

2 Materials and methods

2.1 SB-CoNi-10C: Laser powder bed fusion

An Aconity3D AconityMINI 1 system at the University of California Santa Barbara was
used to print rectangular SB-CoNi-10C2 specimens with nominal dimensions of 10 mm
x 10 mm x 13 mm, with the build direction (BD) parallel to the 13 mm dimension.
Virgin powder was used, with printing details reproduced from [13, 14]. The powder was
provided by Carpenter Technologies3, with composition given in Table 1.

SB-CoNi-10C Chemical analysis (% mass fraction)
Co Ni Al W Ta Cr C B Y Hf

Powder Bal. 35.93 5.98 3.06 10.40 5.24 0.069 0.013 0.006 0.057

Table 1: Chemical analysis of SB-CoNi-10C powder prior to build as measured by Car-
penter Technologies. Major constituents were measured by X-ray. B was measured by mass
spectrometry and Y was measured by wet-chem analysis. Quantities in % mass fraction.

A bi-directional scan strategy with a 90° rotation between build layers was utilized with
the build plate preheated to 200°C. The beam power was 130 W, the scan speed was
0.833 m/s, the beam diameter was 80 µm, and the layer thickness was 30 µm. As
described in [14], wire electrical discharge machining (EDM) was used to remove ∼0.75
mm of material from each of the six surfaces of the as-printed SB-CoNi-10C rectangular
parallelepiped. An additional ∼1 mm of material was removed from the side of the as-
printed specimen that was connected to the build plate. The specimen was polished with
600-grit sandpaper to a final geometry of 10.355 mm x 8.883 mm x 8.370 mm, with a
measured density of 8594 kg

m3 . A ±1% dimensional tolerance was considered the maximum
allowable uncertainty during specimen preparation, correlating to ≤ ±25 µm following
measurement with a set of vernier calipers. A stress relief heat treatment at 1100°C
for 2h was performed after sectioning and polishing, with measurements of the specimen
dimensions showing no difference after heat treatment, considering the ±25 µm precision.

Texture data of the specimen was gathered and reported in [13] by both EBSD and
neutron diffraction. EBSD data was gathered across a ∼3.5 mm x 9.0 mm area of the
sectioned specimen face. To reduce distortion, individual 2.0 mm x 3.0 mm scans were
performed and then aggregated using the MATLAB toolbox, MTEX1 [16, 17]. An FEI
Versa 3D Dualbeammicroscope with an EDAXOIM-Hikary XM4 detector was used for all
EBSD scans. All EBSD data was gathered using a scanning electron microscope (SEM)
accelerating voltage of 30 kV and current of 6.4 nA. Raw EBSD pattern images were
collected for indexing with the EMSphInxEBSD package [15]. Points below a confidence

1Commercial equipment, instruments, or materials are identified only in order to adequately specify
certain procedures. In no case does such identification imply recommendation or endorsement by the
US Government, National Institute of Standards and Technology, or NASA, nor does it imply that the
products identified are necessarily the best available for the purpose.

2Commercially available at Carpenter Technologies3 as Gamma Print 700
3Carpenter Technology, 1735 Market Street, 15th Floor, Philadelphia, PA 19103 USA
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Figure 1: Sectioning strategy (black dashes) of the as-built block, approximate EBSD
measurement area (blue dashes), and EBSD data for the SB-CoNi-10C specimen. EBSD
data was gathered as individual overlapping scans. Inverse pole figure coloration is refer-
enced relative to the build direction (BD). EBSD pattern indexing was completed using the
EMSphInxEBSD package [15].

index of 0.18 (<10% of the datapoints) were removed prior to orientation distribution
function (ODF) generation in MTEX. The EMSphInxEBSD-indexed scans are shown in
Figure 1.

Neutron diffraction measurements, carried out at Los Alamos National Laboratory with
the high-pressure preferred orientation (HIPPO) diffractometer [18, 19], are reproduced
from [13]. The Rietveld refinement software, Material Analysis using Diffraction (MAUD)
[20], was used to analyze the neutron diffraction data following the procedure of [21].
In brief, the software fits a diffraction spectra to the measured spectra via iterative
minimization of least squared error. Consistent with [21, 22], the “R”-values intrinsic
to the refinement process were examined after each successive refinement to determine
the data fit. The weighted (Rwp) R-values are given in this work [21, 22], where lower
R-values generally indicate better peak fits. After four refinements, the specimen had an
R-value of 6.8%. An alternate refinement (referred to as non-convergent) with artificially
sharpened texture, resulting in R = 13.2%, was used to examine the influence of the
texture analysis on the single crystal elastic constants.

2.2 Inconel 625: Laser powder bed fusion

IN625 Chemical analysis (% mass fraction)
Ni Cr Fe Mo Nb Co Ti Al Si Mn P Ta C S O N

Powder Bal. 20.86 0.62 9.03 3.95 0.17 0.35 0.31 0.07 0.04 <0.010 <0.01 0.01 <0.005 0.022 0.008
Solid Bal. 20.00 0.80 8.80 3.80 - 0.37 0.32 0.10 0.05 0.006 - 0.01 <0.001 - 0.0001

Table 2: IN625 composition of powder and solid measured by inductively-coupled plasma
atomic emission spectroscopy for all elements (ASTM E1479) except C/S measured by com-
bustion (ASTM E1019) and O/N measured by fusion (ASTM 1019) [23]. All measurements
are in % mass fraction.

Inconel 625 (IN625) specimens were provided by the National Institute of Standards
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and Technology (NIST) corresponding to the AM Bench 2022-04 modeling challenge4

[23]. Specimens were printed by laser powder bed fusion (LPBF) with an EOS M2701 in
two different raster conditions, ‘X’ corresponding to a 180° scanning direction rotation
between build layers and ‘XY’ corresponding to a 90° rotation between build layers. The
laser power was 195 W, scan speed 800 mm/s, hatch spacing 100 µm, and layer thickness
20 µm. Virgin powder was used for the build. Rectangular specimens were printed
with nominal dimensions of ∼15 mm (x, raster direction) x 10 mm (y) x 20 mm (z,
build direction). One printed specimen of each raster condition (X, XY) was chosen for
further study, with two rectangular parallelepiped specimens sectioned with EDM from
each selected specimen to nominal dimensions 6.5 mm (x, raster direction) x 8.5 mm
(y) x 11.0 mm (z, build direction). A ±1% dimensional tolerance was considered the
maximum allowable uncertainty during specimen preparation, correlating to ≤ ±25 µm
following measurement with a set of vernier calipers. The sectioning strategy is shown in
Figure 2. Each specimen was sectioned ∼3 mm from the build plate to avoid epitaxially
affected grain growth, with a minimum of 0.5 mm ‘skimming’ cuts along each specimen
surface to remove near-surface grain regions. The four total specimens are denoted X S1,
X S2, XY S1, XY S2 with measured densities 8415 kg

m3 , 8410.
kg
m3 , 8429

kg
m3 , and 8412 kg

m3 ,
respectively.

The EBSD scans were gathered by NIST on duplicate specimens in the build, with the
same geometry as those studied by RUS here. EBSD was provided for each raster condi-
tion in ∼2 mm x 2 mm total nominal areas of two different faces, with surface normals
perpendicular and parallel to the BD. The EBSD measurements were performed on two
orthogonal planes using a field emission scanning electron microscope operated with the
following parameters: 20 kV accelerating voltage, 120 µm aperture, 19 mm working
distance, 500x magnification and dynamic focus. The multi-tile EBSD acquisition pa-
rameters were: 4x4 binning, 200 frames per second, tiles of approximately 440 µm x 430
µm with 5% overlap, 0.5 µm step size and the nickel phase indexed.

2.3 Ti-6Al-4V: Electron beam powder bed fusion

Ti-6Al-4V specimens were provided by NASA Jet Propulsion Laboratory (JPL). The
cylindrical specimens were printed by CalRAM5 on an ARCAM A2X1 with nominal
dimensions ∼90 mm (height) x 16 mm (diameter) by electron beam melting (EBM).
Standard EBM Ti64 powder was used for the build, as supplied by CALRAM. A stan-
dard powder bed preheat and raster strategy for Ti64 were used, with the raster strategy
consisting of a hatch, outer, and inner contour regions. Three sets of AM process pa-
rameters were used to print the cylinders with identical raster strategy, denoted standard
energy (SE), low energy (LE), and high energy (HE) corresponding to decreased and
increased beam power. The three power settings were selected within a range of beam
currents (12-18 mA) to replicate a range of common AM process parameters.

The SE printing parameters were used for both the initial ∼15 mm and final ∼15 mm of
the build height across all the printing conditions, with the LE and HE sets of printing pa-
rameters applied for the central ∼60 mm of the build height. Rectangular parallelepiped
specimens were each extracted with EDM from each cylinder, as shown in Figure 3. The
specimens selected for further study were sectioned with at least 5 mm between the spec-
imen edge and the transition region (between processing parameters), ensuring that each

4Additive Manufacturing Benchmark Test Series: https://www.nist.gov/ambench
5California Manufacturing Technology Consulting (CMTC), a Carpenter Company
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Figure 2: EBSD and sectioning strategy for the rectangular IN625 blocks printed with
each raster condition. Specimens and EBSD data was provided by NIST AM Bench Test
Series4. Inverse pole figure coloration is referenced relative to the BD. Pole figures given
with scale in multiples of random distribution (MRD).

sectioned specimen contained identical processing parameters throughout. Each paral-
lelepiped specimen was sectioned with the normal of one face parallel to the BD. The
SE and HE rectangular parallelepipeds were extracted with the midpoint of their BD-
aligned dimension (∼10.97 mm) ∼50 mm from the build plate of the cylinders, while the
LE specimen was extracted with the midpoint ∼62 mm from the build plate. The nomi-
nal dimensions of each rectangular parallelepiped after EDM were ∼7.97 mm x 10.07 mm
x 10.97 mm (BD). A ±1% dimensional tolerance was considered the maximum allowable
uncertainty during specimen preparation, correlating to ≤ ±25 µm following measure-
ment with a set of vernier calipers. Specimen densities were measured as 4409 kg

m3 , 4422
kg
m3 , and 4401 kg

m3 for the standard, low, and high energy rectangular parallelepipeds,
respectively.

As shown in Figure 3, EBSD tiles were gathered to cover a nominal total area of ∼4 mm
x 7 mm of a selected specimen face of each rectangular parallelepiped, though the total
area captured varied by ± 10% between specimens. The EBSD tiles were gathered with
∼0.5 mm spacing between the borders of each scan, to capture potential heterogeneity
across the bulk of the specimen. All EBSD data was gathered using an accelerating
voltage of 20 kV and current of 1.6 nA. Indexing was completed on raw pattern images
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Figure 3: AM Ti64 specimens were sectioned from as-printed cylinders. Specimens were
extracted 50-70 mm from the bottom of the 90 mm cylinder. EBSD scans were gathered as
smaller subscans across the surface of each extracted rectangular parallelepiped specimen
and aggregated to generate texture coefficients distributions. Inverse pole figure coloration
is referenced relative to the BD.

with the EMSphInxEBSD package [15] prior to analysis in MTEX.

X-ray computed tomography (CT) was carried out on the as-built cylinders at NASA
JPL using a voxel edge length of 17.6 µm and geometric magnification of 7.0x. The CT
data revealed a greater quantity of small-scale defects for the LE cylinder than in the SE
cylinder, and the lowest quantity of small-scale defects for the HE cylinder. The defects
that did exist in the HE cylinder existed at the boundary of the contour scan, and were
larger than the average defects observed in the SE condition. The total calculated volume
of the porosity in each cylinder was 0.008% for SE, 0.02% for LE, and 0.01% for HE.

2.4 Resonant ultrasound spectroscopy measurements

Consistent with prior studies [13, 14], RUS was performed with each AM rectangular
parallelepiped specimen freely resting on piezoelectric transducers to limit external forces
to those required for excitation. The setup is demonstrated in Figure 4, with two receiving
transducers and one driving transducer. Increased amplitude peaks are measured across
a range of frequencies to determine the first 50-75 modes. Sampling step sizes of 5 Hz
were used with a dwell of 1 ms. The piezoelectric transducers, transceiver, and computer
control were provided by Vibrant Corporation1,6.

Broadband scans were repeated three to five times for each specimen, altering the position
of the specimen/transducer between each scan. Measured frequencies were averaged
across all the measured scans.

6Vibrant Corporation, 8916 Adams St NE, Albuquerque, NM 87113
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Figure 4: Resonant ultrasound spectroscopy testing setup with AM specimen. Each
specimen freely rested under its own weight. Figure reproduced from [14].

3 Theory/Computation

3.1 Developing texture prior probability distributions with EBSD

As demonstrated in [13], variability in the input texture values directly affects the values
of the single crystal elastic constants when determined from polycrystalline specimens. To
increase the reliability of the determined single crystal elastic constants, texture coefficient
uncertainty needs to be quantitatively incorporated into the calculation by setting the
texture coefficients as random variables.

Figure 5: Distributions of each ODF coefficient (such as C4
40 here) are fitted by dividing

the EBSD measurement into smaller datasets and generating the ODF coefficients (Cl
mn)

of each. This method is demonstrated for an IN625 EBSD dataset provided by the NIST
AM Bench Test series4. The distributions of each texture parameter are used to inform the
Bayesian prior of each simulation, enabling increased accuracy for the determined single
crystal elastic constants.

However, the determination of arbitrary texture coefficients from the resonant frequencies
results in an invariant solution (multiple numerically differentiable bulk elastic tensor
representations that result in an identical set of resonant frequencies) [14, 24]. To account
for the invariant representations of the texture coefficients (corresponding to the three
unique sets of 180° reflections relative to each plane of symmetry in the rectangular
parallelepiped) without resonant mode shape imaging, the authors previously showed
that each invariant solution could be rotated to a single solution with post-processing
[14]. However, concurrent solving for the texture coefficients and single crystal elastic
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constants results in complex parameter interdependencies and inconsistent estimates of
the single crystal elastic constants, as multiple invariant solution modes are in close
proximity. Therefore, the texture coefficients must be incorporated as random variables
without falling victim to the multiple modes of the invariant solutions during sampling.

In order to treat the texture coefficients as random variables alongside the single crystal
elastic constants, information about these texture coefficients for a given specimen is used
to restrict the variables and avoid the identifiability issues when searching parameter
space. This information is encoded as prior distributions during Bayesian inference. As
shown in Figure 5, EBSD data was sub-divided into smaller ‘tiles’, with the ODF and
corresponding texture coefficients generated at each tile with the MATLAB toolbox,
MTEX [16, 17]. The texture coefficients across all the tiles were aggregated and used
to generate distributions of each texture coefficient, which were observed to be normally
distributed (as in Figure 5). The normal distribution of each coefficient from EBSD
represents the possible range of each coefficient on the bulk scale, and therefore each
distribution was used as the prior. Generating a distribution of each coefficient and
enabling the inference to fit each value enables the use of significantly smaller EBSD
datasets for the determination of the single crystal elastic constants. MATLAB scripts
are included in the data supplement to generate the texture initialization conditions from
EBSD data.

3.2 Calculation of resonant frequencies

The calculation of resonant frequencies is referred to as the forward model. The forward
model combines the calculation of resonant frequencies from the bulk elastic constants
[13, 14, 25] with a self-consistent calculation of those bulk elastic constants from the
texture and single crystal elastic constants [26]. The forward model is shown in Figure 6.

Figure 6: Forward model depicting the single crystal elastic constants to be determined
(left), the texture coefficients initialized from EBSD to complete the self-consistent calcu-
lation of the aggregate elastic constants (middle), and the final calculation of the resonant
frequencies (right). The EBSD data overlaid on the block is not to scale.

The calculation of resonant frequencies for a rectangular parallelepiped specimen involves
solving a generalized eigenvalue equation as given in Equation 1. Following [25, 27], the
resonant frequencies, ω, are determined given a mass matrix, M (constructed from the
specimen dimensions and density), stiffness matrix, K (constructed from the specimen
self-consistent stiffness, Cself ), and the 3-dimensional displacement vector, u. ϕ(x, y, z)
represents the basis, with N representing the polynomial order.
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Ku = ω2Mu

ϕ(x, y, z) = xnymzl

n+m+ l ≤ N

(1)

The computation of the stiffness matrix, K, requires the bulk elastic constants, which are
calculated as the self-consistent solution, Cself,iso, given in Equation 2, as developed for
tensorial texture coefficients in [26]. The self-consistent solution assumes that the poly-
crystalline aggregate contains a single phase of spherically shaped grains. The reference
tensor, L, is defined in place of the traditional single crystal elastic constants, CSC , in
the orientation average, as the self-consistent solution here is defined consistent with the
Hashin-Shtrikman-type bounds and assumed isotropic grain-shapes (Cself,iso) in [26]. L
inherits the symmetry of CSC , as it is calculated as the linear combination of the single
crystal elastic constants, CSC , the zeroth-order reference stiffness, Cself,iso

0 , and the polar-
ization tensor, P0. The polarization tensor calculation contains grain shape information,
which are set as isotropic to allow the analytical determination of the calculated reference
stiffness, Cself,iso

0 [13]. Without assuming isotropic grain statistics, the calculation of P0

would require prior knowledge of the reference stiffness (Cself,iso
0 ), meaning an additional

assumption of the stiffness of the medium would be necessary to determine the resonant
frequencies during inverse solving. Cself,iso

0 is therefore calculated by solving for the con-
dition that the self-consistent solution is equal to its reference stiffness, Cself,iso

0 = C0, for
a given CSC , with isotropic texture. f represents the ODF defined over SO(3), and ⟨⟩
denotes an orientation average.

Cself,iso = Cself,iso
0 + [P0(C

self,iso
0 )]−1 + [⟨f, L⟩]−1

L = [CSC − Cself,iso
0 + [P0(C

self,iso
0 )]−1]−1

hd(L) → hI1, hI2, H2,1, H2,2, H4

⟨f, L⟩ = hI1P1 + hI2P2 +H2,1 ∗ V⟨2⟩ij +H2,2 ∗ V⟨2⟩ij +H4,1 ∗ V⟨4⟩pqrs

(2)

The constants hI1, hI2, H2,1, H2,2, H4,1 are determined by the harmonic decomposition
(hd) of L, as dependent on the single crystal elastic constants, CSC . V⟨g⟩ represents the
tensorial form of the texture coefficients, with g as the tensor order. The tensorial texture
coefficients can be determined from the traditionally used texture coefficients, Cl

mn (where
l indicates order) [28], using spherical harmonic functions [26]. The number of texture
tensors that affect the specimen elasticity is dependent on the number of harmonic basis
tensors for the given single crystal elastic constant symmetry, as given in [26]. The
number of independent texture coefficients within each texture tensor is then dependent
on the specimen symmetry, taken to be arbitrarily anisotropic (triclinic) in this work. For
microscopically cubic materials, H2,1 = 0 and H2,2 = 0, meaning only the fourth order
texture tensor, V⟨4⟩pqrs, with nine independent terms is needed (Equation 3) to define an
arbitrary macroscopic symmetry.

V⟨4⟩pqrs =



V1111 V1122 V
′
1133 V1123 V1113 V1112

− V2222 V
′
2233 V2223 V

′
2213 V2212

− − V
′
3333 V

′
3323 V

′
3313 V

′
3312

− − − V
′
2323 V

′
2313 V1223

− sym. − − V
′
1313 V

′
1312

− − − − − V
′
1212

 (3)
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Note that the parameters denoted with ′ in Equation 3 are determined through linear
combinations of the other parameters [14, 26]. For hexagonal materials, the second order
texture tensor with five independent terms is also considered (Equation 4), given a single
second order basis tensor exists.

V⟨2⟩ij =

 V11 V12 V13

− V22 V23

sym. − V11 − V22

 (4)

Again, an arbitrarily anisotropic polycrystal of hexagonal single crystalline grains is fully
defined by the triclinic macrosymmetry here, with the second and fourth order texture
tensors containing five and nine independent terms, respectively.

3.3 Single crystal elastic constants determined with Bayesian inference

Bayesian inference provides the capability to solve the RUS inverse problem without
additional resonant mode-shape measurements [25]. Bayesian techniques provide the sig-
nificant advantage of providing both parameter uncertainty and measurement uncertainty
alongside the determined value of each parameter. Bayes’ Theorem involves the addition
of new resonant frequency observations to update prior knowledge of the independent
model parameters. The posterior probability density function represents this updated
knowledge as the solution to the inverse problem,

π(Θ|ωn) =
π(ωn|Θ)π(Θ)∫

Ω
π(ωn|Θ)π(Θ)dΘ

(5)

where Θ is the vector of the independent parameters. These independent parameters
differ for each material under study here, depending on the single crystal symmetry and
residual stress presence.

For SB-CoNi-10C: ΘCoNi = [CSC
11 , CSC

44 , A, V⟨4⟩1111, V⟨4⟩1122, V⟨4⟩2222, V⟨4⟩1112, V⟨4⟩1113,
V⟨4⟩1123, V⟨4⟩2212, V⟨4⟩2223, V⟨4⟩1223]: two single crystal elastic constants (CSC

11 , CSC
44 ) and

the Zener anisotropy ratio (A = 2CSC
44 /(CSC

11 − CSC
12 )) [29] constituting the single crystal

elastic behavior, and nine 4th-order texture coefficients constituting the effect of grain
orientations on elasticity for cubic materials [13, 14, 26]. Note that sampling the Zener
anisotropy ratio, A, is equivalent to sampling the single crystal elastic constant, CSC

12 ,
such that all three independent elastic constants for cubic materials are sampled.

For IN625: ΘIN625 = [ΘCoNi, RS], representing the same independent parameters as SB-
CoNi-10C with an additional residual stress term (RS) [14] to account for residual stress
induced frequency shifts [30, 31] given the IN625 specimens were measured in the as-
built state. The resonant frequencies of SB-CoNi-10C were measured on specimens in
the stress-relieved state, and did not require the residual stress term.

For Ti64: ΘTi64 is constituted by five single crystal elastic constants: [CSC
11 , CSC

33 , CSC
13 ,

CSC
44 , CSC

66 ], five 2nd order texture coefficients: [V⟨2⟩11, V⟨2⟩12, V⟨2⟩13, V⟨2⟩22, V⟨2⟩23], and nine
4th order texture coefficients: [V⟨4⟩1111, V⟨4⟩1122, V⟨4⟩2222, V⟨4⟩1112, V⟨4⟩1113, V⟨4⟩1123, V⟨4⟩2212,
V⟨4⟩2223, V⟨4⟩1223] [26, 32]. The Ti64 powder bed preheat negated the role of residual
stresses on the frequencies.

The numerator of the right hand side of Equation 5 comprises the likelihood function
π(ωn|Θ) (which represents the likelihood of observing the measured resonant frequencies
given Θ) and the prior π(Θ) (which represents prior knowledge of the independent pa-
rameters Θ). The denominator is the marginal likelihood and involves integration over
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the entire parameter support, Ω = {Θ ∈ R3}. By assuming that the measurement errors
are independently and identically distributed as zero-mean Gaussian distributions with
variance, σ2, a closed form expression is obtained for the likelihood as given in [13].

An open-source, parallelized Python implementation of Sequential Monte Carlo, SMCPy7,
was used to estimate the posterior distribution of single crystal constants. Hyperpa-
rameters were selected to ensure samples were generated from the full posterior (i.e. all
modes represented) while balancing sample size with computation time. Following Sec-
tion 3.1, the selection of texture coefficient priors was carried out by calculation from
experimental EBSD data. For the single crystal elastic constants, improper uniform pri-
ors were chosen; i.e., ΘCoNi

j ∼ Uniform(0, 500 GPa) for j = 1, . . . , 3. For the texture
coefficients j = 4, . . . , 12, normal distributions ΘCoNi

j ∼ norm(mean, std) were generated
for each coefficient from representative EBSD data as described in Section 3.1. Though
the specimen dimensions are not included as independent parameters in the inversion,
the estimated single crystal elastic constants have been proven to scale in % with the ge-
ometric deviation [33]. Therefore, the maximum dimensional uncertainty (25 µm) results
in a deviation of at most 0.38% (6.5 mm x-dimension, IN625) in the single crystal elastic
constants, and is neglected.

The initial particle population for all parameters was sampled from independent normal
distributions, and referred to as the proposal. The proposal of each texture coefficient
was set to the same mean value as their prior, with the standard deviation as 50% of
the standard deviation of the prior. For the single crystal elastic constants, the proposal
mean values were informed from the literature, ± one standard deviation to cover the
reported range of values in the literature.

Proposal normal distributions - Single crystal elastic constants (GPa)
C11 C12 C44 C13 C33

SB-CoNi-10C 236.4 ± 30.0 150.8 ± 20.0 134.1 ± 15.0 - -
IN625 243.0 ± 25.0 152.0 ± 20.0 117.8 ± 8.0 - -
Ti64 169.0 ± 35.0 79.0 ± 35.0 40.0 ± 10.0 62.0 ± 35.0 200.0 ± 35.0

Table 3: Proposal distributions (normally distributed) of single crystal elastic constants
for each material. ± indicates one standard deviation on the mean. Ranges were chosen to
cover the reported literature values [34, 35, 36, 37, 38, 39, 40].

The proposal normal distributions for the single crystal elastic constants of each material
are given in Table 3. For SB-CoNi-10C, the means correspond to the means determined
in [34] for a grown (bulk) single crystal. For IN625, the mean and standard deviation are
set to cover the range of values reported in [35, 36]. For Ti64, the mean single crystal
elastic constants were set as those determined in [37], with the standard deviation set to
capture all the reported literature values. Note that when the Zener anisotropy ratio (for
cubic materials) or C66 is sampled in place of another single crystal elastic constant, its
proposal is calculated using the multivariate normal distibutions listed in Table 3.

In all SMC simulations, 1, 800 particles were migrated through a series of target distri-
butions that started at the prior and ended at the posterior distribution. An adaptive
algorithm was used [41] that controlled the step size between target distributions using
an effective sample size (ESS) threshold of 85%. Each step size was chosen such that the
ESS of the updated particle population was equal to this value until the final target dis-
tribution (i.e. the posterior) was reached. To avoid particle degeneracy, a Markov Chain

7SMCPy Python package available open-source at https://github.com/nasa/SMCPy.
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Monte Carlo (MCMC) kernel was used at each step to move particles toward the new tar-
get distribution. Each pass through the kernel involved the construction of Markov chains
of length 14, retaining the 14th for the next iteration. These choices resulted in 20-35
target distributions (including prior and posterior) and corresponding computation times
of 18-36 h when utilizing 10 CPU cores. Determining the single crystal elastic constants
with texture uncertainty increased the computation time by ∼30-50% compared to using
fixed texture values [13], though the fixed texture calculations with inaccurate texture
values often displayed excessive computation times as a result of poor convergence. All
inversions used a polynomial order of 12 with 45 resonant modes.

4 Results and Discussion

4.1 SB-CoNi-10C

Figure 7: The single crystal elastic constants from the AM SB-CoNi-10C specimen are
reproduced from [13] (left), where numerical differences in the fixed texture inputs gener-
ated differences in the calculated single crystal elastic constants, despite identical resonant
frequencies being used for each calculation. In contrast, the single crystal elastic constants
are calculated within one standard deviation of one another when the texture is freely de-
termined with EBSD-informed priors in the calculation (right), regardless of initialization
values. Literature single crystal elastic constants (black) were measured on a grown single
crystal [34].

To demonstrate the advantage of allowing variability in the texture coefficients, a BD-
aligned SB-CoNi-10C specimen is studied. The single crystal elastic constants of this
specimen were studied in [13], as determined for ‘fixed’ texture coefficients informed by
EBSD and neutron diffraction. Note that no EBSD or neutron diffraction data was
gathered for this study, rather the incorporation of freely determined texture coefficients
from EBSD is studied with the EBSD and neutron diffraction data previously gathered in
[13]. Here, the single crystal elastic constants are calculated from the resonant frequencies
with ‘freely’ determined texture coefficients corresponding to calculations of the priors
from EBSD in Section 3.1. Then, the single crystal elastic constants are compared to
those calculated under the ‘fixed’ texture condition. These comparative calculations are
carried out for each set of initialized texture coefficients from [13], corresponding to tiled
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EBSD data, neutron diffraction data, and overfitted neutron diffraction data. Note that
for the ‘free’ texture conditions, the mean texture coefficients are initialized from the tiled
EBSD, neutron diffraction, or overfitted neutron diffraction data, while the distribution
of coefficients is informed by the calculation of texture uncertainty from EBSD.

As observed in Figure 7, the final values of the single crystal elastic constants show less
dependence on their initialization conditions due to the added degrees of freedom in
the texture, while showing much stronger convergence. The same resonant frequencies,
specimen dimensions, density, and polynomial order are used for each varied texture/
calculation. The incorporation of the texture variability from EBSD (Figures 1, 5) shifts
the values of both C11 and A to within one standard deviation of the reference values
(black), regardless of whether the mean values are initialized with EBSD or neutron
diffraction. For both the neutron diffraction data and overfitted neutron diffraction data,
some dependence on the initial mean is observed for C44, but the solution is significantly
closer to the reference values than the fixed texture condition. Therefore, this framework
provides a more robust method than using fixed texture coefficients to determine the
single crystal elastic constants from the resonant frequencies of AM specimens.

SB-CoNi-10C Single Crystal Elastic Constants with Fixed Texture [13]
EBSD Neutron (R=6.8%) Neutron (R=13.2%) Ref. Crystal [34]

C11 (GPa) 238.7 ± 3.1 235.7 ± 2.4 241.0 ± 35.2 236.4 ± 1.0
A 3.24 ± 0.07 3.76 ± 0.06 5.44 ± 0.44 3.13 ± 0.004

Ccalc
12 (GPa) 154.2 ± 3.4 159.0 ± 2.6 180.7 ± 37.2 150.8 ± 0.8
C44 (GPa) 137.1 ± 1.3 144.2 ± 1.0 163.3 ± 4.8 134.1 ± 0.1
σ (kHz) 1.59 ± 0.19 1.09 ± 0.13 3.58 ± 0.41 0.08 ± 0.01

SB-CoNi-10C Single Crystal Elastic Constants with Free Texture (Present)
C11 (GPa) 239.6 ± 3.2 237.1 ± 3.5 232.9 ± 3.1 236.4 ± 1.0

A 3.21 ± 0.25 3.45 ± 0.31 3.92 ± 0.32 3.13 ± 0.004
Ccalc

12 (GPa) 154.4 ± 2.2 155.6 ± 2.2 157.8 ± 2.1 150.8 ± 0.8
C44 (GPa) 136.1 ± 3.9 139.8 ± 4.6 146.4 ± 4.4 134.1 ± 0.1
σ (kHz) 0.76 ± 0.10 0.77 ± 0.11 0.76 ± 0.10 0.08 ± 0.01

Table 4: Single crystal elastic constants of SB-CoNi-10C specimen when initialized with
different fixed-texture data (upper, as reported in [13]) or freely determined texture with
priors determined by EBSD (lower). The freely determined EBSD and neutron estimates
agree within one standard deviation (±), while the overfitted neutron data agrees within two
standard deviations. All of the free texture estimates display substantially better agreement
with literature measurements on a grown single crystal (Ref. Crystal [34]), considering their
uncertainties.

Comparing the calculated single crystal constants to literature reference values [34] in
Table 4, the standard deviations reported in [34] are ≤ 1

3
of the standard deviations from

the AM specimens. The lower standard deviations given in [34] are a result of the single
crystal elastic constants being determined from the resonance frequencies of a grown
single crystalline specimen. True single crystal specimens on the bulk scale have fewer
independent parameters than the free-texture condition here, as well as significantly less
noise in the actual measurement of resonant frequencies.

The simulations with texture variability were also applied to a specimen sectioned at
20°-to-BD, which was previously studied in [13]. The 20°-to-BD specimen demonstrated
equally robust agreement between EBSD and neutron-diffraction informed simulations,
demonstrating that the single crystal elastic constants are determinable regardless of
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texture orientation. The 20°-to-BD results are available in the data supplement.

4.2 IN625

Figure 8: Single crystal elastic constants of AM IN625 comparing specimen to specimen
(S1 vs S2) and raster condition (X vs XY). All the single crystal elastic constants agree
within one standard deviation (error bars). The literature single crystal elastic constant
values are represented by the range (black), with endpoints from [35] and [36] (no uncer-
tainties provided). All of the specimens interrogated in this study showed agreement with
the literature range within one standard deviation, except for the anisotropy ratio (A) of
X S2.

Each IN625 specimen (X S1, X S2, XY S1, and XY S2) was interrogated for their single
crystal elastic constants, with texture coefficient variability informed by the EBSD scans
oriented with the BD facing upward in Figure 2. These EBSD scans were each nominally
2 mm x 2 mm, demonstrating that small quantities of EBSD data are sufficient to inform
the texture when texture variability is included in the calculation. Following the observed
effects of residual stresses on RUS [14], a freely-determined residual stress (RS) term was
included in each calculation.

As shown in Table 5, the single crystal elastic constants are within one standard deviation
of one another across all parameters, with some specimen to specimen variation observed
in the individual means. The specimen to specimen variability is isolated by studying
the specimens S1 and S2 of each raster condition, which is observed to be less than
the difference between raster conditions. The value of the RS term was zero within its
uncertainty, indicating a negligible effect of residual stresses on the frequencies. While
other IN625 parts were discovered to have significant residual stresses affecting RUS data
[31], the builds studied here were printed with the goal of minimizing residual stresses.
The parameter means ± one standard deviation are shown in Figure 8.

Comparing the two raster conditions ‘X’ and ‘XY’, agreement is again observed within
one standard deviation across all the parameters. The agreement demonstrates that the
determination of single crystal elastic constants is robust to variation in the dominant
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IN625 Single Crystal Elastic Constants
X S1 X S2 XY S1 XY S2 Ref. [35] Ref. [36]

C11 (GPa) 243.2 ± 9.0 240.0 ± 7.3 233.0 ± 9.5 231.7 ± 8.0 243.3 234.6
A 3.13 ± 0.51 3.66 ± 0.54 3.05 ± 0.51 2.95 ± 0.36 2.72 2.83

Ccalc
12 (GPa) 164.5 ± 6.7 168.7 ± 6.2 152.9 ± 7.7 150.7 ± 6.6 156.7 145.4
C44 (GPa) 121.2 ± 7.8 128.6 ± 7.7 120.0 ± 7.9 118.3 ± 6.3 117.8 126.2
RS(%) -0.5 ± 0.9 -0.6 ± 1.0 -0.1 ± 1.1 0.1 ± 1.2 -
σ (kHz) 1.09 ± 0.14 0.83 ± 0.10 0.98 ± 0.13 0.85 ± 0.11 - -

Table 5: IN625 single crystal elastic constants of AM specimens agree within one standard
deviation (±) across raster conditions (‘X’,‘XY’) and specimen-specimen variability (S1,S2).
‘X’ represents a bidirectional (180° rotation between build layers) scanning strategy while
‘XY’ represents a scan strategy with 90° rotations between build layers.

texture components (EBSD in Section 2.2). The convergence of the parameters validates
the use of this framework for a wide variety of AM printing conditions. Relative to the
range of single crystal values in the literature [35, 36], all of the specimens in this study
agree within one standard deviation except for A of X S2. Considering that the reference
values in [35, 36] do not include uncertainties on the single crystal elastic constants, the
agreement with literature is excellent.

4.3 Ti-6Al-4V

Figure 9: Ti64 single crystal elastic constants calculated from specimens produced with
different electron beam power settings. AM-specimen-determined single crystal elastic con-
stants agree with range of values from literature (black) [37, 38, 39, 40] when considering
two standard deviations (one standard deviation shown).

The single crystal elastic constants were determined for AM Ti64 specimens printed with
high, low, and standard electron beam energies. As shown in Figure 9 and Table 6, there
is agreement across all processing conditions with the range of values reported in the
literature, considering two standard deviations. Note that a single standard deviation
is shown in Figure 9 and Table 6 for consistency with the other single crystal estimates
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reported in this work.

Though all of the single crystal elastic constants fall within two standard deviations of
the reported literature range, there is variability observed between the specimens with
different AM processing conditions. In particular, the shear dependent single crystal
elastic constants (C44, C66) do not agree between the different printing conditions within
two standard deviations. Additionally, the range of reported values for the single crystal
constants of Ti64 is broad (Figure 9), with the accurate estimates of [37] (C11=169.0
GPa, C33=196.0 GPa, C12=62.0 GPa, C13=89.0 GPa, C44=43.0 GPa, Ccalc

66 =40.0 GPa)
closest in value to the reported single crystal constants here. The values in [37] are
pointwise estimates, and therefore do not have an associated standard deviation (±) or
measurement error (σ) propagated through to the single crystal elastic constants.

Ti64 Single Crystal Elastic Constants
High Energy Standard Energy Low Energy Lit. Range [37, 38, 39, 40]

C11 (GPa) 166.8 ± 4.4 178.5 ± 6.8 178.2 ± 3.5 136.0 - 170.0
C33 (GPa) 187.4 ± 9.9 167.7 ± 10.4 167.0 ± 6.2 163.0 - 196.0
Ccalc

12 (GPa) 94.6 ± 4.8 107.8 ± 8.0 86.7 ± 3.5 62.0 - 92.0
C13 (GPa) 69.0 ± 3.0 62.1 ± 3.4 73.2 ± 1.8 68.0 - 89.0
C44 (GPa) 48.1 ± 1.0 48.2 ± 1.4 41.0 ± 0.5 40.0 - 52.0
C66 (GPa) 36.1 ± 0.8 35.4 ± 1.3 45.7 ± 0.5 26.0 - 48.0
σ (kHz) 0.44 ± 0.05 0.35 ± 0.04 0.30 ± 0.03 -

Table 6: Single crystal elastic constant means and single standard deviation calculated
from AM Ti64 specimens printed with different electron beam powers. Single crystal elastic
constants across all AM specimens agree with range of literature values [37, 38, 39, 40] when
considering two standard deviations on each value.

The difference in single crystal constants between each EBM power is likely a result of
specimen to specimen variability related to porosity, phase fraction of retained β-phase,
prior β-grain size, and interstitial content. The results of [10] display changes in the α-
phase single crystal elastic constants C11 and C12 by 41.7 GPa (31%) and 19 GPa (19%),
respectively, with the inclusion of grain shape as a fitted parameter. The grain shape
could not be included in the inverse calculation here, as the assumption of isotropic grain
statistics is necessary to construct the inverse model of the resonant frequencies from the
single crystal elastic constants (Section 3) without prior knowledge of the polycrystalline
stiffness [13]. However, the substantial shifts observed in [10] support the observation
of variability in the determined single crystal elastic constants of Ti64 here, as there
are likely specimen to specimen microstructural differences besides the microstructural
texture. Specimen to specimen variability is compounded by factors such as α-phase-
variant selection during the solidification of Ti64 from its parent cubic-β phase [42].
While this phenomenon is fairly well understood relative to solidification, the effect of
variant selection on texture heterogeneity and its effect on an RUS inversion through
resonant mode sensitivity is completely unexplored.

The observed difference in the single crystal elastic constants of the low energy condition
could stem from increased scattering with the higher volume fraction of voids as noted in
Section 2.3. Despite the quantification of voids here, altering the density of the component
within the resonant frequency calculation does not rigorously account for the effects of
inelastic scattering on the resonant frequencies in an anisotropic medium. In fact, the
effect of inelastic scattering in an anisotropic medium is not well quantified via current
models and therefore could not be incorporated into the model here.
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5 Conclusions

• A framework is developed to increase the accuracy of inversely determined single
crystal elastic constants from the resonant frequencies of textured AM specimens.
The variability of texture within the AM specimen is calculated from EBSD data
and directly incorporated into the Bayesian inference of the single crystal elastic
constants.

• Using texture data sourced from EBSD and neutron diffraction measurements of
cobalt-nickel-base superalloy SB-CoNi-10C, the accuracy of the single crystal con-
stants is demonstrated to significantly increase by incorporating texture coefficient
uncertainty within the model (with priors determined from EBSD measurements).
C11 and the Zener anisotropy ratio (A) of SB-CoNi-10C agree within one stan-
dard deviation of literature values, while C12 and C44 agree within two standard
deviations, regardless of whether the calculation is initially given EBSD or neutron
diffraction data.

• The single crystal elastic constants of Inconel 625 (IN625) are determined from the
resonant frequencies of AM specimens printed under two different raster conditions,
which display agreement between both raster conditions and the reported literature
values within one standard deviation. ∼2 mm x 2 mm areas of IN625 EBSD data
are shown to be sufficient to inform the texture priors of the single crystal elastic
constant calculations.

• The determined single crystal elastic constants of three AM Ti64 specimens, printed
with different beam powers, show agreement with the range of literature values
within two standard deviations. Variability in the determined single crystal elastic
constants is observed between the AM specimens with different processing parame-
ters, indicating a susceptibility of the resonant frequencies to secondary phase and
inclusion effects.
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