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ABSTRACT 

This paper proposes a conceptual architecture of digital 

twin with human-in-the-loop-based smart manufacturing (DH- 

SM). Our proposed architecture integrates cyber-physical 

systems with human spaces, where artificial intelligence and 

human cognition are employed jointly to make informed 

decisions. This will enable real-time, collaborative decision- 

making between humans, software, and machines. For example, 

when evaluating a new product design, information about the 

product’s physical features, manufacturing requirements, and 

customer demands must be processed concurrently. Moreover, 

the DH-SM architecture enables the creation of an immersive 

environment that allows customers to be effectively involved in 

the manufacturing process. The DH-SM architecture is well 

fitted to those relatively new manufacturing processes, such as 

metal additive manufacturing, since they can benefit from using 

digital twins, data analytics, and artificial intelligence for 

monitoring and controlling those processes to support non-

contact manufacturing. The proposed DH-SM will enable 

manufacturers to leverage the existing cyber-physical system 

and extended reality technologies to generate immersive 

experiences for end users, operators, managers, and 

stakeholders. A use case of wire + arc additive manufacturing is 

discussed to demonstrate the applicability of the proposed 

architecture. Relevant development and implementation 

challenges are also discussed. 

 

Keywords: Digital Twin, Smart Manufacturing, Human-in- 

the-loop, Collaborative Decision Making, Non-contact 

Manufacturing, Industrial Metaverse. 

 

1. INTRODUCTION 
Manufacturing is the backbone of economic development in 

the U.S. [1]. The COVID-19 pandemic crisis disrupted the 

manufacturing industry in many countries, resulting in (1) major 

upheavals in their production networks, (2) substantial 

reductions in new product demands, and (3) negative impacts in 

both their local and global supply chains [2,3]. Moreover, new 

lessons for manufacturing to successfully tackle these pandemic 

impacts are still being learned [4]. One of those new lessons is 

the “non-contact manufacturing” paradigm [5], which is based 

on remotely controlling a system, a process, and a part with 

minimal physical interactions. 

Before the pandemic, several strategic plans such as “Smart 

Manufacturing (SM)” in the USA and “Industry 4.0” in Germany 

[6-8] have helped advance manufacturing industries. SM brings 

smart technologies such as smart sensors, high-performance 

computing, industrial internet of things (IIoT), artificial 

intelligence (AI), and data analytics to traditional production 

processes and manufacturing systems. However, various 

manufacturing operations still remain manual, where humans 

can perform them better than machines. To enable human 

operators to better use SM technologies and also support the non- 

contact manufacturing concept, a new concept of Digital Twin 

with Human-in-the-Loop-based Smart Manufacturing (DH-SM) 

is introduced. 

Metaverse enables the integration of a “virtual world” with 

the “physical world” [9]. The resulting integration is based on an 

extended reality (XR) that combines augmented reality (AR), 

virtual reality (VR), and mixed reality (MR) technologies. 

Currently, the “virtual world” can be the “Digital Twin (DT)”, 
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which may be used for various purposes such as analyzing health 

conditions of equipment for predictive maintenance, managing 

the whole lifecycle of a physical asset, and improving decision- 

making through engineering and numerical analysis [10]. In 

addition to the functionalities provided by DTs [11-14], the 

metaverse will add auditory, visual, and haptic realism to achieve 

the embodiment. It will change the way humans interact with the 

future virtual, physical, and pandemic worlds. Also, the 

metaverse has a great potential to positively change the 

manufacturing landscape by taking advantage of (1) immersive 

experiences, (2) freedom from a physical distance called 

“telepresence,” and (3) interconnection. 

In this paper, we propose an architecture that supports DH- 

SM. This architecture is intended to enable integrability, 

interoperability, interactivity, and immersivity. The architecture 

includes three modules: Cyber-Physical System (CPS), Avatar- 

User System (AUS), and Collaborative Decision-Making Engine 

(CDME). Collectively, these modules can support future human- 

in-the-loop research, demonstrations, and case studies in SM. 

The proposed architecture can also support non-contact 

manufacturing by allowing users to remotely access a shop floor 

through immersive simulation to realize real-time monitoring 

and control. 

The remainder of this paper is organized as follows: Section 

2 provides some background information about various 

manufacturing paradigms. Section 3 introduces the conceptual 

architecture of digital twin with human-in-the-loop -based smart 

manufacturing. Section 4 discusses a use case in wire + arc 

additive manufacturing (WAAM) to demonstrate the 

applicability of the proposed architecture. Section 5 discusses the 

relevant development and implementation challenges, and 

Section 6 concludes the paper and discusses the future work. 

 

2. AUGMENTING SM WITH DH TECHNOLOGIES 
 

Manufacturing paradigms have been evolving for decades. 

Figure 1 shows the evolution, which includes traditional, 

intelligent, concurrent, and smart manufacturing. In traditional 

manufacturing, human workers use their senses to monitor, 

operate, and update the process and inspect the final workpiece. 

To reduce the roles of humans and speed up fabrication and 

inspection, intelligent manufacturing was introduced to automate 

formerly human-made decisions. Concurrent manufacturing 

involves a systematic approach to simultaneously design the 

product and develop its manufacturing process. That approach, 

based on a Japanese idea called Kansei engineering, included 

feelings, impressions, and emotions from stakeholders in 

concrete design parameters [15]. 

SM includes transformative technologies for managing the 

interconnections among physical assets, their DTs, and related 

computational capabilities. A CPS generally consists of a 

collection of DTs of physical assets, including (1) material 

inputs, (2) manufacturing processes, and (3) final products [16- 

18]. The idea is to embed data gained from advanced sensor 

technologies into DTs of all three to improve process control and 

part quality. For example, in additive manufacturing (AM), DTs 

can be used to model the variabilities that impact process 

repeatability, part reproducibility, and quality assurance [19]. 

These DTs can be comprised of “surrogate models” such as 

physics-based, data-driven, and physics-informed, data-driven 

models [12,14]. 

In this paper, we view the conceptual DH-SM architecture 

as a framework that can help enhance SM to achieve convergent, 

collaborative, and non-contact manufacturing. It consists of 

multidisciplinary domains, such as advanced manufacturing 

capabilities, digital technologies, and cognitive engineering. 

This enables highly optimized processes/supply networks, 

customized products, and resilience for unexpected and 

manufacturing-unfriendly situations. The DH-SM concept and 

its information flow are depicted in Figure 2. This paper focuses 

on AUS and CDME since the concept of CPS is well-established. 

The AUS supports better decision-making by creating an 

immersive and interactive user experience across the entire 

product life cycle. It comprises an enhanced user (EU) and 

human digital twin (HDT). EU generates data, information, and 

knowledge and provides them to the other modules for analysis, 

decision-making, and control. The HDT, the digital replica of the 

EU, can analyze, accumulate, and synthesize the data and 

knowledge acquired from the DT and EU modules to support 

collaborative decision-making. Each module is explained in 
detail in Section 3. 
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FIGURE 1: MANUFACTURING FROM TRADITIONAL TO SMART MANUFACTURING AND THE PROPOSED PARADIGM OF DH-SM 

 

example, given a customer’s product, its surface-appearance of 

a product can be evaluated virtually using a Likert scale [21]. 

Immersive environments provide real-time interactive 

immersion to the user(s). They can interact with the immersive 

contents of a product via metaverse technologies (e.g., XR: 

VR/AR/MR). The realistic interaction among those inputs can be 

achieved via multi-modal senses in Sensory Realism. Based on 

their results, users can generate their desired experiences, which 

can be inputs to HDT for further analysis. 

HDT consists of four components: Data Preparation, 

Information Model, Immersive Analysis, and CraftsAvatar. In 

the Data Preparation component, both quantifiable and 

unquantifiable data from the EU can be stored and preprocessed. 

The two prepared data types will be formalized and transferred 

to other modules in the Information Model. Immersive Analysis 

can analyze the different information models, and CraftsAvatar 

is a digital replica of the enhanced user(s) that can perform 

simulations, acquire data, perform data analysis, and semi- 

independently make decisions for better performance. 

Ultimately, CraftsAvatar can continuously evolve into a “Virtual 

Master” in a domain-specific area. CDME includes Verification, 

FIGURE 2: THE CONCEPT AND INFORMATION FLOW OF 

DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED SMART 

MANUFACTURING. 

 

3. A CONCEPTUAL ARCHITECTURE OF DIGITAL 
TWIN WITH HUMAN-IN-THE-LOOP- BASED 
SMART MANUFACTURING 
Figure 3 shows the detailed modules and the information 

flow in the proposed DH-SM architecture based on the previous 

studies [6,20]. Physical Entities comprise Process Parameters, 

Experimental Configuration, Observable Manufacturing 

Elements (OME), and Data Acquisition Devices. DTs include 

Data Preparation, Information Models, Modeling and 

Simulation, and Digital Twin Models. EU consists of User 

Experience Plans, Immersive Environments, User(s), and 

Sensory Realism. The user experience plans are based on the 

actual manufacturing requirements and case scenarios. For 

Validation, Uncertainty Quantification (VVUQ), and Multi- 

Criteria Decision Making (MCDM). In VVUQ, analytical 

models estimate the uncertainties of the process and the parts. 

Those uncertainties can be due to the lack of knowledge 

(epistemic) or intrinsic randomness (aleatoric) [22]. MCDM 

includes scaling, normalization, weighting, and aggregation 

components for the final decision-making [23]. The following 

subsections will explain the information flows in DH-SM and its 

issues. 

 

3.1 Cyber-Physical System 
Cyber-Physical System includes two modules, Digital Twin 

and Physical Entities. The process parameters are first decided 

in the Physical Entities, and then the experimental configurations 

are set, considering the available OMEs. Data acquisition 

devices are then employed to obtain signatures to establish a 

relationship  among  the  process,  structure,  property,  and 
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performance (PSPP) [24]. The signatures are divided into  

 

 
 
FIGURE 3: THE MODULES AND INFORMATION FLOW OF DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED SMART 

MANUFACTURING 
 

process signatures  and part signatures. The process signatures 

can be 1D, such as current and voltage; 2D, such as the data 

extracted from a charge- coupled device (CCD) camera, high 

dynamic range (HDR) camera, and high-speed camera; and 3D, 

such as the data from the profilometer. 1D process signatures 

are much easier to handle and store, while 2D and 3D 

signatures contain more information and can be used in 

different data structures. 

On the other hand, the acquired part signatures in the 

architecture can be classified into three types. The first type is 

the signatures based on the microstructure of the part, obtained 

through material characterization techniques such as optical 

microscope image, scanning electron microscope (SEM), and 

electron backscatter diffraction (EBSD). These signatures can 

shed light on the anisotropic and heterogeneous behavior of AM 

parts. The second type is mechanical properties extracted by 

tests such as tensile that can be used to obtain the stress-strain 

curve for the materials. Finally, the third type is signatures 

based on the part geometry obtained using a coordinate-

measuring machine (CMM), which measures geometrical 

accuracy and surface roughness. The part signatures can be 

used to validate the physics-based and data-driven models. 

The data acquisition devices can be (1) internal or built-in 

sensors such as welding power measurement and the position 

tracking systems for the robot and (2) external sensors such as 

pyrometers, HDR cameras, high-speed cameras, thermocouples, 

and CCD cameras. In the proposed architecture, the process 

monitoring, and control should be simultaneously addressed in a 

unified system. This governs that the system responsible for 

controlling the AM system must also communicate with the 

software to run online diagnostics during manufacturing. 

Through this approach, any detected failures could be corrected 

or compensated by modifying or sending additional commands 

to the system. The framework is constructed to allow quick 

adaptation to new manufacturing conditions and the 

incorporation of multiple diagnostic tools. 

The other module in CPS is the Digital Twin, which aims to 

create a digital replica of the physical entities and phenomena 

through different modeling and simulation approaches, including 

but not limited to physics-based, data-driven, physics-informed 

data-driven, and surrogate models. Surrogate models are simpler 

versions that mimic the mechanisms of complex models. Their 

purpose of surrogates is to reduce the computation time. In the 

proposed architecture, surrogate models can be generated for 

processes and parts. The design of experiment (DOE) is widely 

employed to create surrogate models due to its effectiveness and 

efficiency. 

Nevertheless, (1) DOE cannot be used for real-time 

monitoring and control, and (2) a considerable number of 

experiments have to be carried out, which requires significant 

resources. To overcome the two limitations, machine learning 

(ML) surrogate models based on process signatures for real-time 
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monitoring and control have gained increasing attention due to 

low cost, less time consumption, and high accuracy. ML,  

specifically the semi-supervised learning algorithm and 

generative adversarial network (GAN), has been extensively 

employed for anomaly detection as in AnoGAN [25] and MAD-

GAN [26]. In addition, ensemble learning (EL) has been used 

to improve classification, prediction, and/or function 

approximation [27]. EL systematically generates and combines 

several models, such as classifiers or experts, to solve a 

computer intelligence problem. Despite their advantages, ML-

based surrogate models demand massive data, thus hindering 

their widespread application. 

 
3.2 Avatar-User System 

The avatar user system includes two main modules: Human 

Digital Twin and Enhanced User. In Human Digital Twin, the 

Data Preparation component stores and preprocesses both 

quantifiable and unquantifiable data, while the Information 

Model component formalizes them. The Immersive Analysis 

component analyzes and synthesizes the data sets. CraftsAvatar 

has domain-specific data demonstrating how to perform a task 

and give advice based on the user’s skill levels or professional 

maturity. CraftsAvatar can access, analyze, and synthesize 

manufacturing domain-specific data, information, and 

knowledge through the DT module. This will lead to domain- 

specific wisdom and intuition after further analysis and synthesis 

of information from DT and EH. 

There are several research and technical issues. First, the 

knowledge needed to digitize and formalize the data types is 

significantly lacking. For example, how to formalize human 

knowledge and intuition should be investigated as part of the 

Data Preparation and Information Model. Second, the concept 

and the implementation of Immersive Analysis are still in the 

initial stage. Third, detailed case studies should be performed to 

demonstrate the effectiveness of a semi-autonomous 

CraftsAvatar. 

The second module in AUS, the Enhanced User module, 

provides immersive interactions with other physical entities 

based on the human’s visual, auditory, and touch senses (taste 

and smell are excluded due to the current technological 

limitations). Photorealistic visualization plays the most crucial 

role in immersion since humans collect up to 80 % of their 

surrounding information through vision. The auditory and tactile 

senses greatly enhance the immersion by hearing (e.g., 3D 

sound) and providing a touch feeling of an object (e.g., the 

texture of a car shift knob and handlebar). This sensory realism 

can be implemented utilizing industrial metaverse technologies 

for remote virtual training, concurrent design, and remote 

monitoring. Users can then generate the two types of data already 

discussed: (1) the quantifiable (e.g., Likert scale of customers’ 

preference) and (2) the unquantifiable (e.g., description of 

customers’ perception). 

Implementing this module, however, demands solutions to 

several research and technical issues. First, as the number of data 

modalities increases, the user’s immersive experience will 

improve; but more complicated integration tasks will be 

required. To address these issues, new open-source software tools 

and interface standards will be needed. Second, the 

implementations will require huge computational costs. For 

example, photorealistic visualization of an object by rendering 

tools is the result of complex interactions among light (e.g., 

spectrum), 3D models (e.g., texture), and viewing (e.g., 

direction) conditions. For this, an affordable high-end graphics 

process unit (GPU) should be available. Third, new types of user- 

friendly interfaces are required. For example, head-mounted 

displays are reported to cause discomfort, pain, or visual fatigue 

after use [28]. 

 

3.3 Collaborative Decision-Making Engine 
The resulting data will enable “collaborative decision- 

making” based on a multi-criteria optimization approach that can 

improve the performance of the process and the quality of the 

parts. The analytical models should be verified, validated, and 

uncertainty must be quantified for accurate analyses. Then, 

different analytical models must be composed into a single, 

aggregated, integrated analytical model. Figure 4 conceptually 

shows the composability task using three different models (A: 

response surface model, B: artificial neural network, and C: 

Kriging model). Then, the composed model needs to characterize 

its component’s uncertainties and their propagation in the 

aggregated model. Propagation requires careful consideration in 

scaling, normalizing, weighting, and aggregating methods. The 

decision will be transferred to the physical entities if a near- 

optimal solution is determined. If not, additional data must be 

collected, and further analysis must be performed. 

 

 

FIGURE 4: DIFFERENT TYPES OF SURROGATE MODELS 

 

For this module, a robust approach is needed to compose 

individual analytical models and propagate the uncertainties that 

arise from disparate manufacturing resources. To develop this 
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approach, four significant challenges must be overcome and/or 

managed: (1) high uncertainty, conflicting objectives, 

heterogeneous forms of data, multi-interests, and perspectives; 

(2) complex and dynamically evolving manufacturing processes 

and environments; (3) inherent interoperability issues in 

MCDM; and (4) requirements of verification and validation in 

aggregated/composed model [29]. 

 

4. A USE CASE IN WIRE + ARC ADDITIVE 
MANUFACTURING 
Metal AM has attracted much attention since many 

complicated machinery components should be produced with 

metal, and other conventional manufacturing processes are much 

more time- and cost- intensive. Among various metal AM 

processes, Directed Energy Deposition (DED) uses a focused 

energy source where the material is melted and deposited by a 

nozzle. One of the representative forms of DED is WAAM, 

which uses metal wire as the feedstock and an arc as an energy 

source. Since the material in this process is deposited through 

metal wire, the amount of metal usage can be minimized. In 

addition, it benefits from a high deposition rate and is suitable 

for large and custom-made metal parts. To demonstrate a use 

case, we use the in-house WAAM system [30].  

Although WAAM has many benefits, most companies still 

hesitate to adopt it due to some its drawbacks. The additive 

process based on arc welding can raise problems such as 

spatter, porosity, undercut, deformation, crack, and slag [31]. 

Moreover, the design space in the WAAM process is huge, and 

numerous parameters, directly and indirectly, influence the 

final part, therefore, choosing the near-optimal process 

parameters becomes of prime importance. To ensure that optimal 

parameters are selected, human cognition is kept in the loop 

with AI in the collaborative decision-making engine. In 

addition, in-situ process monitoring and control are ultimately 

lacking in the current WAAM systems. 

To address these issues, we instantiated the DH-SM 

architecture for the WAAM problem. As shown in Figure 5, we 

generated the system architecture based on Figure 2. The use 

case consists of the physical entity, the digital twin, the human 

digital twin, and the enhanced users. In the following subsection, 

each of these components will be discussed. 

 

4.1 Cyber-Physical System for the WAAM Case 
In accordance with Section 3, the CPS comprises two main 

modules: Physical Entities and Digital Twin. The Physical 

Entities include a GTAW-based WAAM system, as shown in 

Figure 6. It also consists of a robot arm that moves to the 

coordinates designated by the controller. The tungsten inert gas 

(TIG) torch is attached to the hand of the robot arm and supplied 

with energy from the energy source. It deposits a feeding 

material provided by the wire feeder to generate weld beads on 

the substrate. Process parameters, including travel speed, Wire 

Feed Rate (WFR), and current, are determined by the controller 

input, wire feeder, and energy source, respectively. Current and 

voltage sensors measure the numerical values of the arc 

characteristics in real time. A data interface monitors and 

acquires the arc current and voltage data delivered from the 

sensor [32]. An HDR camera is attached to the torch to capture 

weld pool and bead images along with the movement of the torch 

[33]. This camera was optimized for arc welding with a dynamic 

range of 140 dB to capture high-quality video frames. Standard 

camera systems are inapplicable due to their low dynamic ranges 

and lightning interferences in arc welding. A camera data 

interface recorded the images and converted them into .jpg file 

formats. 

 

FIGURE 5: CONCEPTUAL ARCHITECTURE OF THE DH-SM 

FOR A WAAM CASE 

 

 

FIGURE 6: EXPERIMENTAL ENVIRONMENT INCLUDING 

WIRE FEEDER, SHIELDING GAS, TIG POWER SOURCE, TIG 

TORCH, ROBOT, AND HDR CAMERA 

 

The other module in CPS is the Digital Twin. This module 

paves the way for creating a digital twin of the physical entities 

by applying 3D visualization, data analytics, physics-based 

models, data-driven models (machine learning), and surrogate 

models. A DT of the WAAM process was built to improve 

product quality and production efficiency. Real-time monitoring 

data was collected to consistently achieve the mapping and 

interaction between data and models to form the real-time 

interaction between the physical and digital twins. Then the 



7 © 2023 by ASME  

process is analyzed. Firstly, a DT with 3D visualization of the 

WAAM process is implemented. Secondly, as shown in Figure 

7, residual stress modeling and Crystal Plasticity Finite Element 

Simulation Method (CPFEM) are employed to model the 

physical phenomena and the microstructural evolution of the 

parts. Thirdly, data-driven approaches are employed for real- 

time process monitoring. Finally, surrogate models that aim to 

convert the computationally expensive models to a reduced- 

order model are employed to enhance the DT of the process. 

Figure 8 shows an example of real-time anomaly detection using 

machine learning. 

 

 

(a) 

 

 
(b) 

FIGURE 7: DT COMPONENTS FOR WAAM PARTS: (a) 

RESIDUAL STRESS AND (b) CPFEM 

 

The data collection is realized by the sensors and data 

acquisition devices. By combining the real-time process, process 

design, and process simulation, the DT elements are constructed. 

Then, by combining the historical and real-time data, online 

process monitoring is enabled by data analysis. In case of any 

abnormality, the correction process parameters will be timely 

sent back to the physical entity. Thus, the quality prediction and 

control of welding of ship group products are realized. 

 

4.2 Avatar-User System for the WAAM Case 
In the AUS, the concept of Human-in-the-Loop is ultimately 

realized by the human DT and enhanced user modules. An 

enhanced user module can be categorized into edge users and 

cloud users. The edge EU benefits from AR technology through 

XR glasses and suits to perform remote inspection and training. 

Using the XR technology, the users can access real-time data 

such as the process parameters, online video of the process 

including high dynamic range images, thermal images and CCD 

cameras, simulations, and models. In remote locations, the users 

can have the same level of access to the system through XR and 

VR. The cloud-enhanced users at the cloud layer can modify the 

process where needed, change the process parameters based on 

their cognition and the real-time data acquired for the sensors, 

and perform a real-time inspection of the process and the parts. 

In addition, stakeholders of an enterprise can also have direct 

access to the physical entities and the process and investigate the 

possible enhancements. Figure 9 demonstrates the edge and the 

cloud-enhanced users. Both types of users can access to real-time 

process parameters, computational analysis of the process, and 

microstructural analysis of the parts. One of the significant 

advantages of EU at the edge and the cloud layer is that it 

enables easy training sessions for expert users to teach the 

process to beginners remotely and in real time. 
 

(a) 
 

 

(b) 

FIGURE 8: MACHINE LEARNING FOR REAL-TIME ANOMALY 

DETECTION (a) NORMAL AND (b) ABNORMAL BEADS [32] 

 

The Human Digital Twin module includes a craft avatar for 

every individual, including operators, technicians, engineers, 

trainers, and trainees at the edge layers and managers and 

stakeholders at the cloud layers. These craft avatars can be used 

for different purposes, including but not limited to training, real- 

time monitoring, control, and maintenance. This becomes 

advantageous, particularly in the case of complicated processes 

like WAAM, where the window map is narrow, meaning that it 

is challenging to find the near-optimal process parameters. This 

is also true for most metal AM processes due to low process 

repeatability and part reproducibility [19]. As shown in Figure 

10, three types of interactions are foreseeable, human, avatar, 

and human-avatar in the HDT module. Human interactions are 

already well-established and available in the industry; however, 

the  other  two  types  are  still  to  be  developed.  These 
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communications have numerous applications, such as training, 

where a beginner is taught fundamentals, and concepts of the 

WAAM process or an apprentice is trained to become an 

operator. 
 

(a) 
 

 
(b) 

FIGURE 9: ENHANCED USERS AT (a) THE EDGE LAYER (b) 

THE CLOUD LAYER 

 

 
 

The architecture proposed in this paper, DH-SM, can be 

used to support the integration of physical assets with humans 

and digital twins. It will help enable real-time, collaborative 

decision-making between humans, software, and machines. For 

example, when evaluating a new product design, information 

about the product’s physical features, manufacturing 

requirements, and customer experience must be processed 

concurrently [34]. Moreover, the DH-SM architecture can 

support the creation of an immersive environment that allows 

customers to be effectively involved in manufacturing. 

However, due to current standards and technology 

limitations, implementing the DH-SM architecture still has 

some challenges. First, realizing the real-time bidirectional 

information flow is demanding. For example, the 3D-rendered 

object of a human in an immersive environment must take place 

in real time, currently, however, implementing such a real-time 

interaction is challenging because of the huge amount of data that 

must be collected and processed. In addition, since these 

interactions occur in a wireless environment, the low data 

transmission rate is another issue. Advanced wireless techniques 

(e.g., 5G and 6G) should be investigated and developed. To 

achieve this, the interfaces between the architecture modules 

must be implemented. Second, the concept of “Plug and Play” is 

difficult to achieve. Software or devices need to work perfectly 

when first used or connected without the need for 

reconfiguration or adjustment by the user. Interoperability 

standards are required to support these functionalities and 

integration. The interface specifications and communication 

protocols are not yet well developed. Third, cybersecurity is an 

ongoing issue that must be linked to those interoperability 

standards because the abundance of personal data and immersive 

content is prone to cyber threats [35]. Fourth, many 

manufacturers, especially Small and Medium-sized Enterprises 

(SMEs), lack the infrastructure needed to use cloud-based 

standards such as open platform communication unified 

architecture (OPC-UA). 

To provide a sense of realism to users, new immersion 

methods will also be needed. These methods will provide users 

with a more accurate perception of real manufacturing activities 

with comfort and intuition. For this to be realized, immersive 

modeling techniques should be advanced. Common interactive 

technologies include XR and human-computer interface. 

Current issues with these technologies include (1) the 

interactive devices are not lightweight and transparent enough, 

(2) the cost of the devices is high, and (3) there are also 

associated costs for learning and using these devices. In 

addition, the user’s mental/physical health and socio-economic 

impacts must also be considered. We believe the existing 

sustainable and smart manufacturing guidelines can be 

extended and updated for DH- SM. 

FIGURE 10: INTERACTIONS BETWEEN THE HDTS AND EUS 

 

 

5. DISCUSSION 

One of the main incentives for DH-SM is realizing the 

concept of non-contact and remote manufacturing, which is one 

of the fast-paced advancing technologies. Metaverse technology 

adds an immersive experience to the configuration layer of 
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cyber-physical systems. In manufacturing, the Industrial 

Metaverse’s purpose would be to speed up processes like repairs, 

maintenance, starting new manufacturing lines, remote 

monitoring, control, and new user/manager training through 

simulation. [36]. More efforts will be needed to ensure the 

seamless and secure communication and synchronization 

between digital twins, remote human users, and physical 

systems for non-contact manufacturing. 

 

6. CONCLUSION 

 
We believe that the DH-SM concept and the proposed 

architecture are particularly relevant today, especially for 

manufacturing processes that require human intervention. Since 

these manufacturing processes include humans at every level, 

taking advantage of the human’s perception, cognition, and 

intuition is essential. We believe the DH-SM architecture will 

provide real industrial impacts by managing a user’s 

involvement in the evolving, complex, and dynamically 

changing manufacturing environment. Accordingly, it will 

change the manufacturing landscape and can guide future 

research directions for developing standards, reference 

architectures, technologies; researching necessary components; 

and implementing case studies. In further studies, we aim to 

develop the presented conceptual framework with different 

experimental plans and physical entities to demonstrate the 

capabilities and efficacy of the proposed DH-SM architecture. 

 

DISCLAIMER 
Certain commercial software systems are identified in this 

paper to facilitate understanding. Such identification does not 

imply that these software systems are necessarily the best 

available for the purpose. No approval or endorsement of any 

commercial product by NIST is intended or implied. This 

material is based upon work supported by the National Science 

Foundation under Grant No. 2015693. 
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