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ABSTRACT In the 6GHz spectrum sharing band, unlicensed devices are managed by automated
frequency coordination (AFC) systems to protect incumbent services from interference. Thus, it is important
to select accurate propagation models for interference calculation and analysis. This paper utilizes a model-
aided deep learning technique for path loss prediction at 7GHz, as a representative frequency within
the 6GHz band, in an urban environment. The proposed model is a hybrid model, which leverages both
domain expert knowledge from a physics-based general-purposed channel model as well as the learning-
based capability from a neural network, for path loss prediction. The model is trained and tested using
sufficient-quantity and high-quality real propagation measurement data collected in four locations in an
urban environment. Numerical results show that the deep learning model provides a better prediction
performance than most empirical models. Furthermore, the feasibility of proposed model generalization
to new locations after fine-tuning is examined.

INDEX TERMS Deep learning, path loss prediction, propagation model, spectrum sharing.

I. INTRODUCTION

THE ever increasing demand for more radio-frequency
(RF) spectrum to support high capacity, gigabit speeds,

and low latency wireless communications in fifth-generation
(5G) and upcoming sixth-generation (6G) is inevitable. One
of the promising solutions to tackle the spectrum bottleneck
problem is spectrum sharing technology, which can create
more opportunities for commercial services while protecting
incumbents from harmful interference.

In April 2020, the U.S. Federal Communications Com-
mission (FCC) adopted a Report and Order authorizing the
6GHz band (5.925 to 7.125) GHz to be shared between
unlicensed uses and current incumbents, including fixed mi-
crowave links [1]. Two types of unlicensed devices are speci-
fied in the report including standard-power access points and
low-power access points. The standard-power access points
operate under the control of an automated frequency coor-

dination (AFC)1 system to protect the incumbent microwave
receivers from harmful interference. Among many functional
and operational requirements, the AFC needs to utilize accu-
rate propagation models in order to effectively compute the
interference link budget at the incumbent receiver. After eval-
uating different propagation models, the FCC has suggested
to use a combination of i) the free-space path loss model
for distances up to 30m, ii) the Wireless World Initiative
New Radio phase II (WINNER II) for distances up to 1 km
along with buildings and terrain data for determining line-
of-sight (LOS) and non-line-of-sight (NLOS) path losses,
and iii) Irregular Terrain Model (ITM) combined with the
appropriate clutter model (e.g., International Telecommuni-
cation Union (ITU)-R P.2108 for urban and suburban, ITU-R
P.452 for rural) for distances greater than 1 km. Although the
models have been proposed by the FCC, several parameters
used in these models have not been determined. The Wireless

1Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Innovation Forum (WInnForum) 6GHz Committee has been
working on the propagation parameters to be included in the
AFC functional requirements [2].

Propagation modeling has been an intriguing yet con-
tentious research area in the wireless community. Numer-
ous models have been developed for different environments
and conditions in different frequency bands. The developed
models can be classified as purely theoretical models, em-
pirically (and statistically) fitted models, deterministic ray-
tracing models, or combination thereof. In recent years, with
the advancements of machine learning (ML) and deep learn-
ing (DL) technology, researchers have been applying these
techniques into the path loss prediction problem. Because
these ML/DL models are trained on a large amount of real
measurement data, they tend to provide better performance
accuracy than most traditional propagation models.

In this paper, we aim to apply a DL technique to predict
the path loss at 7GHz in an urban environment. The main
contributions of our work include:

• Enhancements to the model-aided DL models devel-
oped in [20], [22] for path loss prediction at 7GHz as
a representative frequency within the 6GHz band.

• Utilizing the real propagation measurement data col-
lected in four urban environments [23], [24] to create
training and test sets to train and test the proposed DL
model.

• Demonstration that the DL model can provide better
prediction accuracy than traditional path loss models,
and discussion of its generalization performance to new
locations after fine-tuning.

The remainder of this paper is organized as follows. In
Section II, we discuss related work found in the literature.
In Section III, we describe our proposed model-aided DL
approach for path loss prediction at 7GHz. In Section IV,
we provide details of the real measurement data, comparison
with empirical models, and our workflow of the main tasks
performed in this study. Then, we present numerical results
during both training and generalization processes of the
model in Section V. Finally, we summarize our results and
provide concluding remarks in Section VI.

II. LITERATURE REVIEW
Channel models play an important role in wireless com-
munication system planning and interference assessment,
particularly in spectrum sharing bands. Even though vari-
ous path loss models have been studied and evaluated for
different scenarios and at different frequencies within (0.5
to 100) GHz [3], [5], [6], choosing a relevant model for a
particular area of interest within a frequency band is not
always straightforward. Often, there is a trade-off between
the desirable performance accuracy from a model and the
computational complexity needed to achieve that level of
accuracy. The studies in [5], [6] found that typical best-case
performance accuracy from numerous path loss models is
(12 to 15) dB root mean square error (RMSE). Some of the
models that can be tuned or fitted with measurements can

further reduce the RMSE to (8 to 9) dB. Theoretical and
empirical models are generally simple and computationally
inexpensive, but they lack the capability to provide accurate
prediction results. On the contrary, ray tracing models can
provide more accurate path loss predictions in exchange for
more intensive computational efforts [7]. An example of
using 3D ray tracing method for indoor propagation loss
prediction is presented in [8].

Given the significant development of ML and DL tech-
nology in recent years, researchers have leveraged these
technologies to improve the performance accuracy of path
loss models while trying to limit the computation complexity
incurred. An overview of recent ML techniques, associated
input features and output, used for propagation modeling is
provided in [9]. The authors in [10] propose a feed-forward
deep neural network model to predict path loss of different
frequencies in (0.8 to 70) GHz in a mixed urban and suburban
and in NLOS environment. Both studies in [11], [12] use
principal component analysis to generate low-dimensional
environmental features for the dataset, and then employ arti-
ficial neural networks to learn the path loss from the reduced
dimension dataset. Another interesting approach proposed
in [13] is to develop a DL encoder-decoder architecture to
segment a satellite imagery of a given environment into three
different classes (i.e., urban, suburban, and rural). Depending
on the environmental class that each segment of the link
falls into, an appropriate Okumura-Hata model is used to
compute the path loss for that segment. Instead of predicting
path loss for each link, the authors in [14] present a different
approach to use the DL VGG-16 architecture to predict path
loss distribution of an area from 2D satellite images.

The authors in [15] propose a simple ML framework,
which uses terrain profile and distance between transmitter
and receiver as features, for outdoor path loss prediction
over irregular terrain. A more advanced framework using
specialized 3D engineered features and deep neural networks
to predict signal strength at the receiver is presented in [16].
Furthermore, the authors in [17] reformulate propagation
modeling problem to an image regression problem by con-
verting propagation parameters into image tensors and feed-
ing them into a deep convolutional neural network (CNN).
Similarly, the work in [18] manipulates and transforms the
vectors of tabular data into images. These synthetic images
are fused with images representing selected regions of the
area’s map and used as inputs to a CNN for path loss
prediction. Unlike previous approaches, a long short-term
memory neural network is proposed to predict path loss in
(2 to 26) GHz band in [19]. Among many innovative ML
and DL techniques, we found the approach proposed by [20]
interesting and closely related to our work. The proposed
model is a hybrid model which combines both a physics-
based model and a correctional neural network for path loss
prediction.
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III. MODEL-AIDED DEEP LEARNING APPROACH
We use a model-aided deep learning approach for path loss
prediction at 7GHz. The approach was first developed in [20]
for 811MHz and 2630MHz bands, and adapted in [22] for
3.5GHz band. Compared to previous models in [20], [22],
the proposed model in this paper uses a slightly different set
of input features (for both fundamental and engineered fea-
tures) and predicts the path loss directly (instead of received
signal strength). However, the proposed approach is still a
hybrid model, which includes a physics-based model and
a correctional neural network. We leverage both modeling-
based and learning-based capabilities to obtain better perfor-
mance accuracy for path loss prediction.

Fig. 1 shows the architecture of the proposed model-aided
deep learning model. The model takes in three inputs:

• x1 = [d, fc, hTX , hRX ]: fundamental features, where d
is the 3D distance between the transmitter and receiver
(km), fc is the center frequency (GHz), and hTX and
hRX are the respective transmitter and receiver heights
(m),

• x2 = [latRX , lonRX , d, dlat, dlon]: engineered features,
where latRX and lonRX are the respective receiver co-
ordinates in latitude and longitude, d is the 3D distance
(km), and dlat and dlon are the respective distances
in latitude and longitude between the transmitter and
receiver,

• A: satellite image, 256 pixel × 256 pixel (≈ 185m ×
185m), centered at the receiver location and rotated by
an angle equal to the bearing between transmitter and
receiver.

The final output of the DL model is the corrected path loss
value p from the transmitter to each receiver location. The
path loss p is the sum of the path loss estimate z (output from
the physics-based model) and the correction y (output from
the correctional neural network).

A. PHYSICS-BASED MODEL
The physics-based model provides domain expert knowledge
to assist in predicting the path loss. We use the 3rd Genera-
tion Partnership Project (3GPP) empirical channel model in
Urban Macro (UMa) scenario and NLOS condition [3] for
our physics-based model. Table 3 in Section IV-B describes
the equations and parameters of the 3GPP model in detail.
We select the 3GPP model because it is a general purpose
propagation model and it is applicable to a wide frequency
range (0.5 to 100) GHz.

The input parameters to the physics-based model are the
fundamental features x1, which include 3D distance d, center
frequency fc, transmitter height hTX and receiver height
hRX . The output is the median path loss estimate z between
the transmitter and receiver. In addition to serving as an
intermediate result, the path loss estimate z will be concate-
nated with the engineered features x2, and then input to the
correctional neural network to obtain a correction value y.

FIGURE 1. A model-aided deep learning architecture, which consists of a
physics-based model and a correctional neural network, is used for predicting
the path loss between the transmitter and receiver.

B. CORRECTIONAL NEURAL NETWORK
The correctional neural network, similar to the models pre-
sented in [20], [22], consists of three DL submodels. The
architecture and configuration parameters of these submod-
els are demonstrated in Fig. 2. The first DL model (NN1)
consists of three fully connected layers, as shown in Fig. 2(a).
The input to this network is a concatenation of the engineered
features x2 and the path loss estimate z. The second DL
model is a convolutional neural network (CNN), as shown
in Fig. 2(b). The input to this model consists of grayscale
satellite images A. The CNN model comprises six convolu-
tional blocks, followed by a simple dense layer with linear
activation. Each convolutional block includes a convolutional
layer, a max pooling layer, LeakyReLU activation, and batch
normalization. The outputs of NN1 and CNN are added
together to form the input to the third deep learning model
(NN2). The architecture of NN2 consists of two fully con-
nected layers, as shown in Fig. 2(c). The single output of this
model represents the correction factor y for the path loss.

The model is trained using a mean squared error (MSE)
loss function and Adam optimizer. To reduce overfitting,
weight decay is applied in addition to the batch normalization
layers shown in Fig. 2. Image augmentation with random
rotation angle relative to the original image orientation is also
used to improve generalization. The random rotation angle
is bounded by a maximum image augmentation angle. Fur-
thermore, a relatively small mini-batch size is used to speed
up the training process. The simulation hyperparameters are
presented in Table 1.

IV. DATASET GENERATION
Besides using a good learning algorithm, we also need suf-
ficient quantity and high quality data for training and testing
the model. In this section, we describe the real propagation
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(a) NN1 architecture (b) CNN architecture (c) NN2 architecture

FIGURE 2. Detailed architectures and parameters of three sub-models within the correctional neural network model.

TABLE 1. Simulation Parameters Used to Train the Correctional Neural
Network Model.

Parameter Value
Batch size 8
Loss function MSE
Optimizer Adam
Weight decay 2.8e-3
Learning rate 1e-3
Max image augmentation angle 20◦

measurement data collected in Colorado at 7GHz and how
we use them to generate the training set and test set.

A. REAL PROPAGATION MEASUREMENT DATA
We utilize real propagation measurement data collected in
four locations in mixed LOS/NLOS conditions in Boulder
and Louisville, Colorado, during the winter. Path loss was
measured in a light urban environment with residential build-
ings of up to five floors, commercial buildings of up to three
floors, and trees. A continuous wave signal was transmitted
at 18 dBm (dBm is power level expressed in decibels (dB)
with reference to one milliwatt (mW)) and input to a horn
antenna of 12 dBi gain located on top of a building. The half-
power beamwidth (HPBW) of the antenna is 50◦ on the E-
field and 40◦ on the H-field. The receiver was mobile, and
an omnidirectional antenna of 3.4 dB was mounted on a car
at 1.5m above ground level. A low-noise amplifier (LNA) of
36.4 dB was used and the peak power level of the received
signal was recorded using a spectrum analyzer. The total loss
through cables and connectors was 9.4 dB.

The transmitter was placed at four locations, i.e., three at
the University of Colorado Boulder and one on a roof of a
two-story office building in Louisville, Colorado. Their an-
tenna heights, azimuth angles, measurement radius and num-
ber of samples are indicated in Table 2. More information on
the measurement campaign can be found in [24]. Fig. 3 shows
the driving route within the HPBW of the transmit antenna
considered for each scenario. The colors represent the path

loss values at each receiver location. Specifically, the path
loss between a transmitter and a receiver can be computed as

PL = PTX +GTX − LCC +GLNA +GRX − PRX (1)

where PL is the path loss (dB), PTX is the transmitter power
level (dBm), GTX is the transmitter antenna gain (dBi), LCC

is the total loss of cables and connectors (dB), GLNA is the
low noise amplifier gain (dB), GRX is the receiver antenna
gain (dBi), and PRX is the measured received power (dBm).

B. COMPARISON WITH EMPIRICAL MODELS
The measurement data in each location have been compared
with the empirical channel models indicated in Table 3, such
as WINNER II [25] and 3GPP [3] in an Urban Macrocell
environment. WINNER II is used in the cellular industry and,
although is valid only up to 6 GHz, the FCC has suggested
it for spectrum sharing analysis in the 6 GHz band [1]. The
3GPP channel model has been proposed for 5G and is valid
up to 100GHz. Our measurement data have also been com-
pared with the floating intercept (FI) and close-in free space
reference distance (CI) path loss models [26]. Parameters of
the FI and CI models were previously calculated based on
measurement data in all four locations with slightly different
selected data points [24].

Fig. 4 compares the measured path loss (gray) in mixed
LOS/NLOS conditions with these empirical models and the
free space path loss for each scenario. Their performance is
evaluated using the root mean square error (RMSE), which is
computed as follows

RMSE =

√√√√ 1

m

m∑
i=1

(PLi − P̃Li)2 (2)

where i = 1, . . . ,m is the index of the sample, m is the total
number of samples, PLi is the measured path loss (dB), and
P̃Li is the predicted path loss from empirical models (dB).

Table 4 shows the RMSE performance of the empirical
models. Their difference is due to the different scenarios and
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TABLE 2. Transmitter Locations and Parameters

Location
number Location name Height (m) Azimuth

angle
Measurement
radius (km)

Number of
samples

1 CU Boulder, engineering tower, 7th floor 27 197◦ 1.5 15 771
2 CU Boulder, engineering tower, 8th floor 33 0◦ 3.3 9 258
3 CU Boulder, University Memorial Center, 5th floor 17 122◦ 1.8 4 875
4 Two-story office building in Louisville 10 4◦ 2.5 35 700

(a) Location 1 - Engineering tower, 7th floor (b) Location 2 - Engineering tower, 8th floor

(c) Location 3 - University Memorial Center, 5th floor (d) Location 4 - Two-story office building

FIGURE 3. Path loss data collected in four locations in mixed LOS/NLOS conditions in Boulder and Louisville, Colorado.

antenna heights. Since the parameters used in the FI and
CI models were calculated based on these measurements,
we observe that they provide the best fit to the data. The
FI model provides the lowest RMSE, because it is purely
based on a least-squares linear regression of the measured
data, while the CI model has a physical reference point that
corresponds to the free space path loss at a distance d0, in
our case, d0 = 1 m. For the WINNER II and 3GPP models,
NLOS conditions provide significantly lower RMSE than
LOS, which indicates that most of the data points correspond
to NLOS. The only exception is when the transmitter is on
the 8th floor in location 2, which is the highest transmitter

location, and it caused an increased number of LOS data
points along the driving path.

C. WORKFLOW

We summarize the end-to-end workflow of our study in
Fig. 5. Our first task is to get sufficient quantity and good
quality data to train and test the path loss prediction model
at 7GHz. We utilize the real propagation measurement data
collected in four locations in Boulder and Louisville, Col-
orado, as described in Section IV-A. We then use MATLAB
and Python to pre-process the raw data in order to extract
relevant features and targets for the model and save them in

VOLUME 4, 2016 5
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TABLE 3. 7 GHz Path Loss Models for Urban Environment

Path loss
model Condition Path loss (dB) Distance

Floating-
intercept

LOS 73.2 + 20.3 log10(d) 100 m<d<5 km
NLOS 74.7 + 20.4 log10(d)

Close-in
LOS 49.3 + 27.5 log10(d) 1 m<d<5 km

NLOS 49.3 + 28.5 log10(d)

WINNER II
LOS

39 + 26 log10(d) + 20 log10(fc/5) 10 m<d≤ dBP

40 log10(d) + 13.47− 14 log10(hTX − 1)− 14 log10(hRX − 1) + 6 log10(fc/5) dBP <d<5 km
NLOS (44.9− 6.55 log10(hTX)) log10(d) + 34.46 + 5.83 log10(hTX) + 23 log10(fc/5) 50 m<d<5 km

3GPP

LOS
28 + 22 log10(d) + 20 log10(fc) 10 m<d2D≤dBP

28 + 40 log10(d) + 20 log10(fc)− 9 log10((dBP )2 + (hTX − hRX)2) dBP <d2D<5 km

NLOS
max(PLLOS , PL′

NLOS), 10 m<d2D<5 km
PL′

NLOS = 13.54 + 39.08 log10(d) + 20 log10(fc)− 0.6(hRX − 1.5)

Where:
fc: center frequency (GHz); c = 3×108 (m/s) is the propagation velocity in free space;
hTX : transmitter (TX) antenna height (m); hRX : receiver (RX) antenna height (m); d: 3D TX-RX separation (m); d2D : 2D TX-RX separation (m);
Break-point distance dBP = 4(hTX − 1)(hRX − 1)fc ∗ 109/c, assuming an effective environment height of 1 m for urban macrocell (UMa)

(a) Location 1 - Engineering tower, 7th floor (b) Location 2 - Engineering tower, 8th floor

(c) Location 3 - University Memorial Center, 5th floor (d) Location 4 - Two-story office building

FIGURE 4. Real measurement data vs. predicted path loss from empirical models.
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TABLE 4. RMSE Path Loss Performance of Empirical Models (dB)

Propagation
model Condition Location

1
Location

2
Location

3
Location

4
Floating-
intercept

LOS 9.6 9.5 17.2 16.1
NLOS 8.3 9.7 15.5 14.4

Close-in
LOS 11.5 9.5 20.8 17.5

NLOS 9.2 9.8 18.1 14.8
WINNER

II
LOS 22.3 14.5 31.5 22.6

NLOS 12.6 22.9 6.1 15.1

3GPP
LOS 30.8 22.3 39.3 29.7

NLOS 8.5 20.6 9 8.9

.csv files. In addition, we generate satellite images centered
at the receiver locations by using the Mapbox tool through its
web services API. We combine these satellite images with the
features and targets files to create a training set and a test set.
For the training set, we further split it into a smaller training
set and a validation set, and then train the model against
the smaller training set and evaluate it against the validation
set. After the model is trained, we use the test set to fine-
tune and evaluate the prediction performance of the model.
Model training, testing, and performance evaluation tasks are
performed in PyTorch.

V. RESULTS
In this section, we present results of the path loss prediction
at 7GHz in an urban environment using the proposed model-
aided deep learning model, which is also preferred to as
a neural network (NN) model for short. We first describe
the training and evaluation on the training set, and then
discuss the generalization performance of the trained model
on the test set. We carefully partition the measurement data
collected in different locations for the training set and the test
set, so that we can demonstrate how well the trained model is
able to predict unseen data.

A. TRAINING AND EVALUATING THE MODEL ON THE
TRAINING SET
We select the measurement data collected in location 1 (CU
Boulder, engineering tower, 7th floor) as the training set.
This location has the largest number of samples among the
three CU Boulder locations, thus, it can provide sufficient
quantity of training data. Although location 4 (two-story of-
fice building in Louisville) has the most samples, we reserve
the measurement data at this location for the testing set, so
that we can assess the trained model performance at another
location outside of CU Boulder campus.

Fig. 6 shows the training route and validation route (left
subplot) and the path loss vs. distance of the training and
validation sets (right subplot). Out of 15 771 collected data
samples, we separate 12 810 samples for a smaller training
set and use the remaining 2 961 samples for the validation
set. The training route covers an area within the HPBW of the
transmitter antenna and about 0.3 km to 1.4 km away from it.
The validation route is much shorter within 0.5 km to 1 km
away from the transmitter. A few training samples appear on

the validation route due to redundant data collection during
the measurement campaign.

Optimizing the neural network architecture and hyper-
parameters is a challenging task due to the large search
space and lack of principled approaches. A successful op-
timization requires a combination of traditional grid search,
heuristic methods (such as genetic algorithms or Bayesian
optimization), and expert knowledge. In this work, we use a
combination of traditional grid search and expert knowledge
to come up with a model that provides good performance.
Specifically, we implemented and trained several architec-
tures of the correctional neural network, varying the NN1,
CNN, and NN2 configurations in terms of larger and smaller
architecture settings. Larger architecture configurations refer
to more layers and units, while smaller architecture con-
figurations refer to fewer layers and units. We also varied
some of the model’s hyperparameters. The best performance
we found, in terms of normalized MSE loss during training
and validation, was for models with the architecture and
parameters presented in Fig. 2 and Table 1.

The final correctional neural network model was trained
and validated using 50 epochs. Fig. 7 depicts the normalized
MSE loss at each epoch during training and validation. As
the number of epochs increases, the normalized MSE loss
for training process gradually decreases and reaches a stable
value below 0.3. On the other hand, the normalized MSE
loss for the validation process also trends downward but its
value is about 0.05 higher than the training loss. To reduce
severe overfitting, we used data augmentation and tuned
regularization parameters during training.

Our next step is to analyze the prediction performance on
the validation set. Fig. 8 shows the path loss vs. distance
prediction results of the proposed NN (blue) as well as
the physics-based model (green) against the validation set
(orange). Recall that the physics-based model is the 3GPP
model in UMa scenario and NLOS condition. While the
physics-based model tends to give higher predictions than
the validation data, the NN provides predictions closer to the
targets. To compare the predictive performance of the NN
and the physics-based models, we compute the RMSE, which
is a typical performance measure for regression problems.
A smaller RMSE value indicates a closer prediction to the
target. As expected, the NN model provides a very good
RMSE value of 4.5 dB, whereas the physics-based model
gives a higher RMSE value of 8.6 dB. Although in this
scenario both models have RMSE scores below or within
the range of (8 to 9) dB achieved by tuned or fitted models
described in [5], [6], leveraging the learned correction using
engineered features and satellite images, the NN is able to
predict the target more accurately than the physics-based
model alone.

B. GENERALIZATION PERFORMANCE ON THE TEST
SET
Having the NN model trained on the training set collected in
location 1, we evaluate the model on a test set, which com-
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FIGURE 5. Workflow summarizing main tasks performed in this study including data collection, data pre-processing, model training, testing, and performance
evaluation.

(a) Training route and validation route (b) Training set and validation set

FIGURE 6. Training and validation routes and datasets extracted from measurement data in location 1.

prises of measurements collected in location 2 (CU Boulder,
engineering tower, 8th floor), location 3 (CU Boulder, Uni-
versity Memorial Center, 5th floor), and location 4 (two-story
office building in Louisville). By analyzing the generalization
error, i.e., the error rate on new cases, we gain insight into
how well the model will perform on new data.

Since the data in the training and validation sets were
collected at different locations with different measurement
settings (e.g., different transmitter heights and antenna az-
imuth angles), they might not be perfectly representative
of the data in the test set. To mitigate the data mismatch
problem, for each test location, we hold out 10% of the
test set to fine-tune the model by retraining and then test
the newly trained model against the remaining 90% of the
test set. Fig. 9 shows the path loss prediction vs. distance
of the proposed NN model (blue) and of the physics-based
model (green) against the test set (orange) at each location.
Table 5 shows the generalization errors in terms of RMSE

TABLE 5. Generalization Performance at Three Test Locations.

Location
number

Neural network RMSE
performance (dB)

Physics-based RMSE
performance (dB)

2 4.5 20.6
3 4.9 9
4 4.3 8.9

for both the NN model and the physics-based model at these
locations. The NN outperforms the physics-based model as
its predictions are much closer to the test set with RMSE
values below 5 dB for all cases. In contrast, the physics-
based model provides higher RMSE values around 9 dB and
it overestimates the path loss in location 2. These values are
the same as those shown in the last row of Table 4 for the
3GPP model in NLOS condition.

To examine how well the trained model performs with
less fine-tuning data, we vary the ratio of data used for fine-
tuning and testing the NN, and then observe the predictive
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FIGURE 7. Normalized mean square error (MSE) loss during training and
validation of the deep learning model.

FIGURE 8. Prediction results of the neural network and physics-based
models on the validation set.

performance. Fig. 10 shows the RMSE performance for three
sets of (fine-tune, test) ratios at each location. Without fine-
tuning, i.e., (fine-tune, test) = (0%, 100%), the NN does not
perform well, especially in location 2. However, as the ratio
of fine-tuning data increases to 5%, the RMSE values drop
significantly, around 5 dB, for all locations. And when (fine-
tune, test) = (10%, 90%), the RMSE values decrease further,
but with negligible changes, for all locations. In summary,
the results show that the NN model, which was trained
with measurement data in a particular location, may not
immediately perform well at other locations. Nevertheless,
after fine-tuning with a reasonable amount of new data, the
performance of the NN model can be improved at other
locations.

To evaluate the effectiveness of the initial training proce-
dure, we tested the performance of the neural network model
using default randomized parameters on measurements col-
lected from different test locations. The RMSE results, as

(a) Location 2

(b) Location 3

(c) Location 4

FIGURE 9. Generalization performance of the neural network model at three
test locations.

presented in Fig. 11, demonstrate that the model trained from
scratch performs almost comparably to the pretrained model
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FIGURE 10. Generalization performance of the neural network with different
ratios of (fine-tune, test) at three test locations.

FIGURE 11. Prediction performance of the neural network with different ratios
of (train, test) at three test locations.

in Fig. 10. Therefore, the generalization capability of the
model to new locations remains uncertain and requires fur-
ther investigation. Obtaining additional data from various lo-
cations may assist in capturing the environmental and terrain
diversity, which could improve the model’s generalization
performance.

VI. CONCLUSION
We found that the model-aided deep learning technique can
provide better accuracy for path loss prediction than most
traditional models at 7GHz in an urban environment. The
RMSE performance of the trained and fine-tuned models is
within (4 to 5) dB range, which is more desirable than the (8
to 9) dB range achieved by tuned or fitted models [5], [6]. Al-
though the learning knowledge provided by the correctional
neural network plays an important role in lowering the RMSE
values, its main drawback is the computational complexity
during the offline training process.

For future work, we plan to update the physics-based
model with the hybrid propagation model developed by the
WInnForum. We also investigate the performance effects of

the model with and without using a large amount of satellite
images as input. Furthermore, we will extract 3D features,
e.g., building and vegetation heights, along the propagation
path and incorporate these features into the model to further
improve the performance accuracy. In addition, we will test
the model with data in other frequency bands (e.g., 13 GHz)
to ensure the robustness and accuracy of the work. Finally, we
will implement and compare the performance of our model
with other ray tracing models and ML/DL approaches.

NOTATION

Model-aided deep learning parameters
x1 Vector of fundamental features
d 3D distance from transmitter to receiver
fc Center frequency
hTX Transmitter height
hRX Receiver height
x2 Vector of engineered features
latRX Receiver latitude coordinate
lonRX Receiver longitude coordinate
dlat Distance in latitude
dlon Distance in longitude
A Satellite image
z Path loss estimate
y Correction
p Corrected path loss
Link budget parameters
PL Path loss
PTX Transmitter power level
GTX Transmitter antenna gain
LCC Total loss of cables and connectors
GLNA Low noise amplifier gain
GRX Receiver antenna gain
PRX Measured received power
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