
Attacks on ML Systems: From Security Analysis
to Attack Mitigation

Qingtian Zou1, Lan Zhang1, Anoop Singhal2, Xiaoyan Sun3, and Peng Liu1

1 The Pennsylvania State University
{qzz32,lfz5092,pxl20}@psu.edu

2 National Institute of Standards and Technology
anoop.singhal@nist.gov

3 California State University, Sacramento
xiaoyan.sun@csus.edu

Abstract. The past several years have witnessed rapidly increasing use
of machine learning (ML) systems in multiple industry sectors. Since se-
curity analysis is one of the most essential parts of the real-world ML
system protection practice, there is an urgent need to conduct systematic
security analysis of ML systems. However, it is widely recognized that
the existing security analysis approaches and techniques, which were de-
veloped to analyze enterprise (software) systems and networks, are no
longer very suitable for analyzing ML systems. In this paper, we seek to
present a vision on how to address two unique ML security analysis chal-
lenges through a new security analysis approach. This paper intends to
take the initial step to bridge the gap between the existing cyber security
analysis approaches and an ideal ML system security analysis approach.

Keywords: Machine learning, Deep learning, Security analysis

1 Introduction

The development and use of machine learning (ML) systems is significantly in-
creased in the past several years. Autonomous cars are using object detection
systems to process the images or videos from their cameras to understand the
real-time traffic around them [12]; machine translation has been deployed in
many languages [3]; Companies such as Mozilla [33], Google [5], IBM [2], and
so on, have developed deep learning-based audio products. Even in art and en-
tertainment, there exist “AI artists” that can compose poetry, sing songs, and
draw [57].

As the usage of ML systems is on the rise, they are also attracting more and
more attackers. One of the earliest famous attacks to ML system is Microsoft’s
Twitter chat-bot, Tay [1]. Built with online machine learning, Tay was led astray
by some users, who ask Tay to repeat potentially harmful or inappropriate con-
tents. In the end, Microsoft shut down Tay in short order due to its negatively
impactful communicative behavior. This security incident indicates that it is
increasingly more important to protect ML systems.



2 Q. Zou et al.

Since security analysis is one of the most essential parts of the real-world
ML system protection practice, there is an urgent need to conduct systematic
security analysis of ML systems. However, it is widely recognized in the secu-
rity community that the existing security analysis approaches and techniques,
which were developed to analyze enterprise (software) systems and networks,
are no longer suitable for analyzing ML systems that are deployed in contexts
broader than the enterprise and can cause negative impacts on society. There
are at least three main reasons for this. First, the security vulnerabilities of ML
systems are different from the traditional enterprise networks. While the security
vulnerabilities of traditional enterprise information systems are mainly associ-
ated with program logic and software implementation bugs, the vulnerabilities of
ML systems are associated with not only traditional security bugs, but also some
fundamental limitations of ML algorithms/models. For example, the existence
of universal adversarial perturbations [30] is one of the fundamental limitations
of deep learning algorithms. These fundamental limitations introduce a variety
of adversarial attacks such as adversarial examples, data poisoning, and model
backdoors.

Second, the architecture of a ML system and the architecture of a traditional
enterprise information system are no longer similar. Besides the traditional soft-
ware engineering perspective, ML systems also have other perspectives. In this
paper, we present the ML perspective, the platform perspective, and the sup-
ply chain perspective, detailed in Section 2. These new perspectives and unique
components introduce new challenges for security analysis.

Third, the above-mentioned two reasons introduce new kinds of causality re-
lationships which are unable to be sufficiently handled by current approaches for
security analysis. For example, attack graphs [21, 44] are fundamental tools for
enterprise security analysis but mainly focus on causal relationships between
security vulnerabilities (such as CVEs - Common Vulnerabilities and Expo-
sures [10]) and exploits (which mainly focus on newly gained permissions/accesses).
In contrast, a good foundation for analyzing security issues in ML systems must
also capture the causality relationships involved in adversarial attacks. It is clear
that such causality relationships are not really relevant to traditional attacks that
involve CVEs.

The adversarial consequences of ML systems are in many cases measured
by the severity (e.g. the impact and damage) of these consequences. Here ad-
versarial consequences include but are not limited to ML model output manip-
ulation [25], model extraction [53] and membership inference [52]. The causal
events must be systematically analyzed to understand how these adversarial
consequences are generated. Below, we show a variability in the causal events
encountered from attack scenarios - with some being straightforward and others
being complex. This helps describe the necessity for a new approach for ML
security analysis.

Example 1: Simple causality relation. In the autonomous driving sce-
nario, a traffic sign recognition (TSR) system is used to recognize various traffic
signs (e.g. speed limits, stop signs, cross roads, etc.). For practical usage, the



Attacks on ML Systems: From Security Analysis to Attack Mitigation 3

TSR system is expected to recognize traffic signs correctly on a near real-time
basis.

However, it has been verified that carefully spoofed traffic signs, though easily
observed by humans, can still fool the TSR system [15, 27, 32, 35]. As shown in
Fig. 1, the attacker can use a projector to project a crafted image on one stop sign
and cause the sign to be misclassified as a “speed limit 50" sign by an approaching
vehicle [27]. In this example, the causal events and their relationships are very
clear: the image crafting attack action enables the projection event to fool the
TSR system. Such attacks can lead to serious consequences such as paralyzed
traffics and even injuries or worse.

Fig. 1. Stop sign attack [27]

Example 2: Complicated causality relation. As shown in Fig. 2, the
attacker intends to trigger a neural network to translate a newly constructed En-
glish word into a specific meaning within another language (e.g. Spanish) [43].
In Fig. 2, each ellipse node represents a causal event, the rounded rectangle node
represents the production, and each edge represents causality. The word-to-word
translation ML system takes an English word as the input, and outputs the word
with the same meaning in another language. It uses English Wikipedia as the
training data source. Because Wikipedia is publicly editable, the attacker can
post his/her pre-designed contents there. If those contents are gathered by the
ML developers, then the training data is poisoned, which eventually results in
a tainted ML model that acts wrongly to certain words. That is, if this word is
given, instead of the correct word, the tainted model will output an arbitrary
word of the attacker’s choice. Although the attack sounds simple, it already
involves multiple causal events and quite complicated causality relationships.
Although we will not explain the individual causality relationships until Section
IV, we note that the complexity is mainly caused by the logic of machine learn-
ing. In particular, (a) word embeddings (i.e., using a low-dimensional vector to
represent a word) encode word “meaning" in such a way that distances between
words’ vectors correspond to their semantic proximity. (b) Instead of directly
applying deep learning against the Wikipedia public data, the ML system firstly
performs unsupervised learning to get the semantic embeddings. (c) Instead of
directly poisoning the training data used by the deep learning agent, the attacker
poisons the data used by the unsupervised learning agent, since an attack on the
semantic embeddings can affect diverse downstream tasks.

Besides the “complicated causality relationships" challenge shown in Example
2, we find that ML system security analysis faces another daunting challenge,
which is the rapid-changing deep learning techniques. Although the computing



4 Q. Zou et al.

Make up a new 
English word and 

create N Wikipedia 
entries using the new 

word

Wikipedia 
website

Crawlers of the victim
Wikipedia corpus 

with malicious 
changes

Unsupervised learning
(manipulated) 

Semantic 
embeddings

Deep learning

Word translation neural 
network using the 

semantic embeddings to 
initialize the embedding 

layer

Fig. 2. Word-to-word translation attack

platform and the data supply chain are relatively stable for a particular ML-
based application, new variants of ML models, like convolutional neural network
(CNN), recurrent neural network (RNN), and graph neural network (GNN),
and ML methods, like supervised, semi-supervised, and self-supervised ML, keep
on emerging, and the existing ML-based applications keep on evolving through
adopting these new variants. Accordingly, new variants of adversarial attacks
may keep on emerging. As a result, the set of causality relationships for the
particular ML-based application may dynamically change from time to time, and
this makes security analysis hard to keep pace with the changes. The causality
relationships needs to be updated constantly in order to ensure the accuracy and
validity of security analysis.

In this paper, we seek to present a vision on how to address these two daunting
challenges - the complicated causality relationships and the constant changes of
such relationships - through a new ML system security analysis approach. This
paper intends to take the initial step to bridge the gap between the existing
cyber-attack security analysis approaches and an ideal ML system security anal-
ysis approach. Specifically, we first review prior works which study ML system
security from different aspects. Then, based on existing qualitative ML system
security management, we identify the (quantitative) security analysis require-
ments of ML systems. Next, we propose a preliminary ML security analysis
approach. Lastly, we present a case study showing how one could analyze the
security associated with the word-to-word translation attack (see Fig. 2), and
how the preliminary approach could be leveraged to mitigate security issues in
ML systems.

This paper is organized as follows. Section 2 provide a brief review of the
existing works studying ML system security issues from various aspects. Section 3
identifies the security analysis requirements of ML systems. Section 4 depicts our
vision of what the new ML system security analysis approach should be, and
discusses a demonstrating use case. Section 5 discusses mitigation techniques in
response to security issues of ML systems. Section 6 shows our conclusions.



Attacks on ML Systems: From Security Analysis to Attack Mitigation 5

2 ML Systems and Attacks

2.1 ML Systems Have Three Main Perspectives

Since ML systems are highly sophisticated, it is unlikely to gain a good un-
derstanding of a ML system based on a single perspective view of the system.
Rather, we find that ML systems have at least three essential perspectives, which
are as follows.

The ML perspective. The ML pipeline consists of two sets of cyclic or
non-cyclic workflows. The first workflow produces deep learning (DL) models:
raw data are processed to feed to a model which can be deployed in production
systems. During training phase, the ML pipelines include four main steps. First,
given a repository of Raw Data, they manually or semi-automatically annotate
each unit of raw data with a label. Second, the data are processed including
feature extraction and data structure formation for next step. Third, the Model
Training step trains a model using the initial set of training data samples. Lastly,
the trained models are deployed for the second workflow. The second workflow
consumes DL models: they take (newly arrived) raw data as input, and output
classification or prediction results. During test phase, when newly arrived unit
of raw data needs to be classified, the unit will be sent to the Data Processing
component and then be fed into the Deployed Model.

The platform perspective. Even for the same ML model, the model
training platform is often different from the model deployment platform. For
example, while a private cluster (e.g. Kubernetes) is employed to train a model,
the trained model could be deployed in a public cloud environment (e.g. AWS).
In case the trained model is deployed at the edge of a cloud, the computing
resources could be much more restrictive.

The supply chain perspective. We find there are three main supply
chains involved in real-world ML systems. The data supply chain involves the
data collection, data annotation, data processing, and data consumption. The
model supply chain involves the usage of pre-trained models, the adoption of
continuous model training, and the usage of foundation models (e.g. GPT-3).
The library supply chain is a ML-specific type of software supply chain, since
during the model training phase engineers usually use ML libraries provided by
a upstream supplier/company.

2.2 Adversarial Attacks

As shown in Table 1, we classify the representative adversarial attacks based on
the three supply chains mentioned in the previous section.

Evasion attacks through adversarial examples. The model supply chain
are involved in evasion attacks because the attackers generally take advantage
of vulnerabilities in the ML models. Evasion attacks refer to crafting malicious
inputs during the test phase in order to evade the ML detection models. The
evasion attacks are grouped into two categories based on the access permission
of the ML models. In the white-box scenario, attackers have access to the neural



6 Q. Zou et al.

Table 1. Attack Summary

Adversarial Attacks Attack Name Supply Chain
Evasion Attacks L-BFGS attack [47] Model

FGSM attack [16] Model
BIM & ILCM attack [23] Model
JSMA attack [39] Model
DeepFool attack [31] Model
C&W attack [8] Model
Universal attack [30] Model
Zoo attack [11] Model
GAN attack [49, 56] Model
RL based attack [19, 22, 55] Model

Poisoning Attacks Backdoor attack [17, 51] Data & Model
Trigger attack [24, 26, 34, 36] Data & Model
subpopulation attacks [20] Data & Model

Exploratory Attacks Model Inversion attack [13, 14] Model
Model Extraction attack [48] Model
Information Inference attack [7, 45] Model

Software Attacks DOS attack [4, 50] Library
Code Execution attack [29, 4, 50] Library
Overflow attack [4, 50] Library
Memory Corruption attack [4, 50] Library

networks such as the architecture, parameters, training weights, and training
data distribution. In the black-box scenario, attackers can only access to model
information that is publicly available such as input format and classification
confidential scores. However, they have no clue regarding the internal structure,
parameters, and training datasets.

Since white-box attacks obtain detailed knowledge of the ML models, those
attacks take advantage of the gradient of the network to generate perturbation on
the inputs. Szegedy et al. [47] first identified the blind spot in deep learning mod-
els using small perturbations to the images. They proposed a box constrained
L-BFGS algorithms to generate a small perturbation on original image so that it
is misclassified by the models. Goodfellow et al. [16] proposed the Fast Gradient
Sign Method (FGSM) algorithm to obtain an optimal max-norm constrained
perturbation using the gradient of the cost function with respect to the input.
Basic Iterative Method (BIM) and Iterative Least Likely Class Method (ILCM)
developed by Kurakin et al. [23] extended and improved FGSM by iteratively
generate adversarial samples in small step size. Jacobian-based Saliency Map
Attack (JSMA) proposed by Papernot et al. [39] leveraged the saliency map to
select critical features to modify the original binaries. Su et al. [46] perturbed
the original image by using Differential Evolution. Moosavi-Dezfooli et al. [31]
proposed DeepFool algorithm that utilizes distance metric to measure the deci-
sion boundary of the target neural networks to perturb the image in an iterative
manner. Carlini and Wagner [8] proposed gradient-based attacks to generate
adversarial samples by calculating one back-propagation step. Moosavi-Dezfooli
et al. [30] designed a universal perturbation that can be added to any image to
evade the detection model. Yuan et al. [54] injected voice commands into songs
to control the automatic speech recognition system without being noticed.

The black-box attacks generate an implicit approximation to the gradient of
the networks using limited information. Papernot et al. [38] designed a substitute
model to attack against the black-box models and then generated adversarial
examples with the gradient of the substitute model. Zeroth order optimization



Attacks on ML Systems: From Security Analysis to Attack Mitigation 7

based black-box attack estimates the approximate gradient using a finite differ-
ence method [11]. Generative Adversarial Network(GAN) is introduced to gen-
erate adversarial examples directly from the generative adversarial network [49,
56]. Guo et al. [18] proposed an attack based on a greedy local-search technique.
Reinforcement learning are also introduced to generate adversarial examples by
adding small perturbations with the gradient of the loss function or the confi-
dential score of the models [19, 22, 55].

Evasion attacks are very often conducted towards TSR systems. Nassi et
al. [35] conducted a real-world experiment to fool advanced driver assistance
systems using a drone equipped with a portable projector. The projector pro-
jected an incorrect traffic sign, e.g. speed limit sign, to a wall and the TSR
system of a drive-by car was misled to classify the spoofed sign as a real sign.
Gnanasambandam et al. [15] proposed a projector-camera system that trans-
form the adversarial samples in the real metallic stop sign, and the TSR system
misclassified it as a Speed 30 sign. Lovisotto et al. [27] proposed Short-Lived
Adversarial Perturbations (SLAP) to generate physically robust real-world ad-
versarial examples by using a projector in a variety of light conditions (including
outdoors), and against state-of-the-art object detectors Yolov3 and Mask-RCNN
and traffic sign recognizers Lisa-CNN and Gtsrb-CNN.

Poisoning attacks and backdoors. The goal of poisoning attacks is to
craft malicious examples during the model training phase to plant a backdoor
or vulnerability in the network models for future attacks. Both the data supply
chains and model supply chains are involved in poisoning attacks because 1) at-
tackers manipulate the training data, 2) the tainted data will affect the produced
ML models, and 3) the affected ML models will be used for detection later.

Visible backdoor triggers, which are easily identified by humans, are first
injected to the ML models by introducing a trigger including a pixel pattern
and its target label. Gu et al. [17] demonstrated the potential vulnerabilities in
the deep learning supply chain. If the model is trained with poisoned data, or if
the model is based on a malicious pre-trained models, the attacker can leverage
the backdoor in the ML models to evade detection. Xu et al. [51] investigated the
backdoored DNN and proposed an effective defense method that can decrease
the attack success rate and also correctly classify the clean images. Liu et al. [26]
proposed a trojan trigger generation algorithm that takes the gradient of a cost
function to generate masks on the initial images.

Invisible backdoor triggers proposed by Li et al. [24] used the gradient of loss
function and saliency map to generate invisible triggers. Ning et al. [36] pro-
posed an invisible poisoning attack in the black-box scenarios. Muñoz-González
et al. [34] proposed a new algorithm based on back-gradient optimization for
multiclass problems. Jagielski et al. [20] proposed subpopulation attacks that
can misclassify a subpopulation in the data and maintain the performance of
points outside this subpopulation. Patel et al. [41] introduced a method to inject
spurious concepts that degrade the performance of the system.

Exploratory attacks. The goal of exploratory attacks is to obtain the infor-
mation about ML models so the model supply chain are affected. For example,



8 Q. Zou et al.

model inversion attacks [14, 13] can extract private and sensitive features and
recover facial images with the outputs of ML model. Model extraction attacks
via APIs [48] learn to extract parameters of popular model classes including
logistic regression, neural networks, and decision trees. Inference attacks [7, 45]
gather relevant information from ML models, i.e., whether a given data belongs
to the training set of the model.

Software Attacks. Software attacks are related to library supply chain,
which leverage the vulnerability of dependency package to attack the ML sys-
tems. More than 10 new software bugs and their dependency packages, which
cause heap overflow, integer overflow, crash, and denial-of-service (DoS) in sev-
eral deep learning frameworks, have been reported [50]. [4] lists 299 vulnera-
bilities of Google Tensorflow reported since 2019. Products built on PyTorch
versions below 2.3.24 [29] use unsafe YAML loading, which causes the embedded
malicious code designed by attackers to be run locally.

3 Security Analysis Requirements of ML Systems

3.1 ML System Security Analysis Requirements

We envision that to successfully perform ML security analysis, a (quantitative)
analysis approach should demonstrate the following:

– R1: The approach should address the “complicated causality relationships"
challenge (see Example 2) through a systematic, largely automated approach.

– R2: The approach should help security analysts avoid common mistakes in
keeping pace with changes due to ML system evolution and new variants of
ML models and methods.

– R3: Since ML systems have three main perspectives, isolated component-
level security analysis is very limited. The approach should be able to conduct
synthesized security analysis at the ML system level.

– R4: Security analysis results should be explainable.
– R5: If a defense measure could result in notable attack mitigation effects, the

defense measure and/or the mitigation effects should be able to be explicitly
modeled in the approach.

– R6: Newly discovered ML system security issues does not need any method-
ological changes of the approach itself.

3.2 Limitations of Prior Work on ML Security Analysis

We divide the prior works into three categories: those that focus on individual
attacks, those that do qualitative systematic analysis, and those that focus on
traditional security analysis.

Individual adversarial attacks: Recently, a substantial amount of work
has been done on (quantitative) individual security analysis. Such works focus on
a particular type of ML system security issues and/or a particular component.
In Section 2, we have already enumerated many such attacks, so we will not



Attacks on ML Systems: From Security Analysis to Attack Mitigation 9

discuss such works in detail here. This kind of work shares the same limitation.
That is, individual security analysis cannot help a lot for security analysis at
a larger scale, the whole system level. What is more, simply summarizing (e.g.
weighted sum) all the individual security scores does not automatically result in
meaningful application-level security analysis. Therefore, another approach at
the application level is necessary.

Qualitative ML system security analysis: Such works [28, 37] try to
answer the question of how to synthesize the aforementioned individual security
analysis results in a meaningful way. They first model the whole ML system,
enumerate all possible attack surfaces and impacts, and then try to provide
prevention/mitigation suggestions. However, being “qualitative” is not enough.
ML system security should be quantified in a meaningful way.

Traditional security analysis: Traditional security analysis approaches
such as attack graphs [21, 44] are fundamental for enterprise security analysis.
Attack graphs can generate possible attack paths by analyzing the causal rela-
tionships between security vulnerabilities (such as CVEs existing in the network)
and exploits. However, in ML systems, many times there are no clearly defined
CVE vulnerabilities or relevant causality relationships between the vulnerabil-
ities and exploits. The adversarial attacks could simply leverage the data col-
lection and model training process without involving any system vulnerabilities.
Therefore, modeling the adversarial attacks and capturing the causality relation-
ships involved in these attacks correctly is the prerequisite for performing ML
system security analysis.

4 Proposed approach

In order to meet the requirements identified in the previous section, we propose
a preliminary ML system security analysis (ML-SSA) approach that consists
of the following three main parts:

– An AI Security Causality (AISC) graph which captures all the causality
relationships that play a role in assessing the likelihood of adversarial con-
sequences. Compared to traditional causality graphs such as attack graphs,
the AISC graph is unique because it captures the intrinsic causality relations
involved in adversarial attacks.

– A two-layer ML system dependency (MLSD) graph which not only
captures the traditional kinds of dependencies in software systems, but also
captures the dependencies introduced by the supply chain perspective of an
ML systems. A main motivation for the MLSD graph is that the MLSD
graph could be used to identify a good portion of the edges and nodes in the
AISC graph in a largely automated way.

4.1 The AI Security Causality Graph

The AISC graph is proposed to meet requirement R1 described in Section 3.1.
It also plays an essential role in meeting the other requirements. In order to



10 Q. Zou et al.

illustrate the causality relationships involved in the word translation attack (see
Fig. 2) mentioned in Section 1, we build the corresponding AISC graph which
is shown in Fig. 3. This example indicates that AISC graphs have the following
characteristics:

: Software attack

: Adversarial attack

(p1) The attacker makes up a new 
English word and create N 

Wikipedia entries using the new 
word

(p2) The value of N is above a 
threshold

(p3) The crawler collects Wikipedia 
corpus without checking validity

(p4) The Wikipedia corpus is 
poisoned

(p5) Unsupervised learning is 
abused

(p6) Semi-supervised learning is 
abused

(p10) The library supply chain has 
a security vulnerability

(p8) The server has a remote 
exploit vulnerability

(p9) The attacker has 
compromised the server where 

the neural network is stored

(p11) A library used by the deep 
learning script is infected by a 

Trojan

(p7) The semantic embeddings 
used by the deep learning script 

are flawed

(p12) The translation neural 
network is flawed: it translates the 

new word into a target word in 
another language

Fig. 3. The causality relationships involved in the word translation attack scenario.

– In an AISC graph, each node is a proposition (a.k.a statement) describing
a pre-condition or a post-condition for a causal event, and each edge rep-
resents a particular causal relationship between two nodes. For example,
proposition p4 (“The Wikipedia corpus is poisoned") is a pre-condition for
p5 (“Unsupervised learning is abused"); and both p4 and p5 correspond to
the unsupervised learning causal event.

– One causal event could have two or more pre-conditions. For example, only
when the calculation result of formula “p1 AND p2 AND p3" is True, post-
condition p4 can become True. More complicated relationships like “OR”
can also be defined. Here in our demonstration, we only use the “AND”
relationship for simplicity.

– The pre-conditions for one post-condition could include not only propositions
about adversarial attacks, but also propositions about traditional software
attacks. For example, node p12 has three pre-conditions: while p7 describes
the effect of the attacker’s data poisoning attack on semantic embeddings, p9
and p11 describe two effects of the attacker’s software attacks on the server
and a library, respectively.

Regarding why AISC graphs can play an essential role in analyzing the adver-
sarial consequences, we have the following observations. First, in order to avoid
ignorance-related mistakes in analyzing adversarial consequences, it is impor-
tant to gain awareness of all the relevant causality relationships. Following this
principle, the ML-SSA approach requires AISC graphs to hold all the identified
causality relationships.



Attacks on ML Systems: From Security Analysis to Attack Mitigation 11

Second, we observe that the causality relationships captured by AISC graphs
enable logical reasoning through proposition logic. It is clear that such reason-
ing would play an essential role in analyzing adversarial consequences. Through
such reasoning, we can identify alternative attack paths towards a particular
adversarial consequence, and compare the different paths.

Third, we observe that AISC graphs make quantitative security analysis pos-
sible. For example, when analyzing data-poisoning attack in a ML system, the
literature of data-poisoning attack is either focused on worst case analysis (i.e.,
whether such an attack is possible) or focused on estimating how many (e.g.
x%) poisoned data samples are needed to make the attack succeed. In contrast,
security analysis usually needs to make all the attack assumptions explicit and
analyze not only the individual pre-conditions (of the attack) but also the pre-
condition combinations. Probabilistic causality reasoning based on AISC graphs
makes it possible to perform quantitative analysis based on pre-condition com-
binations.

4.2 The ML System Dependency Graph

The security analysis process could become very error-prone and costly if too
much manual effort is involved in building AISC graphs. Therefore, we propose
to build MLSD graphs and use them to reduce the amount of manual effort in
building AISC graphs. MLSD graphs are also built to help meet requirement
R3.

A representative MLSD graph is shown in Fig. 4, which consists of two layers:
the end-user layer, which is intended to describe how end users interact with the
ML system, and the ML system pipeline layer, which describes how developers
produce the ML system and deliver it to end users. The end-user layer describes
how end users interact with the ML system, and we intentionally omit many
details. It starts with the user input raw data, and ends with the outputs. Other
components such as how raw data is processed and how the model uses it for
inference are put in a black box, as end users do not need to know these details.

The ML system pipeline layer starts from sampling engineer raw data and
ends with an optimized model to be delivered to end users. It should be noted
that the engineer raw data is different from that of user input, and we depict
it as engineer raw data pool. The user input raw data may not be collected by
the developers, and even if they are collected, such data may not be sampled
by the developers. As a result, the engineer raw data pool is usually a subset of
all user input data, so we use two different nodes to depict them. The following
ML functionalities, datasets, models, and supporting libraries show the pipeline
of how the ML system is engineered, and each functionality is supported by the
corresponding domain knowledge. For the sake of readability, only some typical
domain knowledge is listed.

In the ML system pipeline layer, we define five kinds of nodes, which are ML
functionalities (actions to develop the model), supporting libraries (3rd party li-
braries supporting functionalities), datasets (data objects involved in ML system
developing), models (models involved, no matter downloaded or self-trained),



12 Q. Zou et al.

Inference

Deployed 
model

User input 
raw data

Output

End-user layer

Supporting 
library

Supporting 
library

Supporting 
library

Supporting 
library

ML system pipeline layer

: Library : Functionality : Object

Engineer raw 
data pool

Data 
sampling

Pre-
processing

Training 
dataset

Model 
training

Trained 
models

Evaluation
Best-

performing 
model

Data dependency Model dependency Library dependency

Supporting 
library

Supporting 
library

Supporting 
library

Supporting 
library

Test 
dataset

Runtime 
optimization

Optimized 
model

Supporting 
library

Supporting 
library

Black box to end users

Deploy/Update model

Pre-trained 
model

Raw data pool

Computation environment
Hardware/
Software 

stacks

: Knowledge

Sampling 
criteria

Knowledge support

• Feature engineering
• Cleansing approach
• Target data sample 

shape
• Etc.

• Model architecture
• Loss function
• Hyper-parameters
• Etc. Metrics

• Aspect to optimize
• Optimization parameter

Fig. 4. A representative MLSD graph.

and domain knowledge (selection of techniques, data processing and model pa-
rameters, and other “virtual” entities supporting various functionalities), and
three kinds of dependencies:

– Data dependencies are shown as a solid line in Fig. 4. They show how
raw/processed data are transferred among different components. For exam-
ple, the training dataset is the output of pre-processing, and is the input of
model training. Because only data is directly involved, they are connected
by data dependency.

– Model dependencies are shown as a dashed line in Fig. 4. Model dependencies
can start with pre-trained models (if the ML developers do not want to start
from scratch) or with model training (if the ML developers don’t use of
existing models but start from scratch). Taking the evaluation node as an
example, it takes all trained models as one of the inputs, and outputs the
best-performing model. Among those three nodes, only models are passed,
so they are connected by model dependency.

– Library dependencies are shown as a dotted line in Fig. 4. They show all the
third-party libraries used by ML developers. We only use such dependencies
between functionality and library nodes, because libraries are to support
functionalities. Though some objects like datasets and models are also sup-
ported by libraries, they are still direct outcomes of the functionalities before
them, so we believe they are indirectly related to libraries and do not add
library dependencies to such objects. Taking the model training node as
an example, some well-known supporting libraries, include TensorFlow [6],



Attacks on ML Systems: From Security Analysis to Attack Mitigation 13

PyTorch [40], scikit-learn [42], etc., directly support the model training func-
tionalities and thus create library dependencies.

Please note that the ML system pipeline layer is backed by the computation
environment with multiple platforms and software stacks, such as Kubernetes
software stacks for ML. The computation environment shown in Fig. 4 supports
almost every node in the ML pipeline layer.

In addition, some cross-layer connections are also shown in Fig. 4. Along the
direction from the ML pipeline layer to the end-user layer, the special edges
indicate how a ML system starts from the optimized model at the pipeline layer,
goes through model deployment/updating, and ends at the deployed model at the
end-user layer. Along the direction from the end-user layer to the ML pipeline
layer, the special edges indicate how a ML system starts from the user input
data, goes through the raw data pool, and ends at the data sampling in the ML
pipeline layer.

Using MLSD graphs to reduce the amount of manual effort in building AISC
graphs. We observe that there exists a mapping between the causality relation-
ships captured by an AISC graph and the various kinds of dependencies captured
by a MLSD graph. For example, node p11 in Fig. 3 is mapped to the “Supporting
library" node (i.e., the node under the “Model training" node) in Fig. 4; node p12
in Fig. 3 is mapped to the “Trained model" node in Fig. 4. Moreover, the library
dependency between the “Supporting library" node and the “Model training"
node in Fig. 4 is mapped to edge from p11 to p12 in 3.

In principle, all of the three kinds of dependencies (i.e., library dependencies,
data dependencies and model dependencies) in a MLSD graph may be mapped to
corresponding edges in an AISC graph. Accordingly, instead of building an AISC
graph from scratch through manual effort, one could firstly use a MLSD graph to
automatically infer a subset of nodes and edges for the AISC graph. In addition,
one may use a MLSD graph to automatically check whether a manually-built
AISC graph has any missing nodes or edges.

4.3 Using the ML-SSA Approach to Analyze the Word Translation
Attacks

Let’s revisit the word translation attack shown in Fig. 2. When the ML-SSA
approach is used to analyze the security of the attack, we should firstly build
the corresponding AISC graph which is shown in Fig. 3. As illustrated in this
AISC graph, in order to result in a flawed translation neural network the attacker
could consider three alternative attack paths. The first attack path includes
p8, p9 and p12; the second attack path includes path p10, p11 and p12; the third
path includes p1, p2, p3, p4, p5, p7 and p12. In addition to identifying these
attack paths, we can also reason the likelihood of each attack path using propo-
sition logic. (Note that the AISC graph is essentially a set of proposition logic
formulas.)



14 Q. Zou et al.

5 AI Security Analysis and Attack Mitigation

Regarding the viable attack mitigation strategies and how to properly implement
a fine strategy, our main observations are as follows.

First, based on the observation that in many cases the direct effect of an
AI attack is not the ultimate attack goal, the attacks can often be effectively
mitigated by blocking (or slowing down) the propagation of the attack’s impact.
Usually there exist one or more impact propagation paths that leads the
AI attack to the ultimate attack goal. If such paths are blocked, the ultimate
attack goal won’t be achieved. Taking data poisoning attacks as an example, the
direct effect of the attack is the corruption of a particular sub-set of training data
samples. Through security-aware active learning, a good portion of the corrupted
data samples may get excluded from the labelled training set. In this way, the
attack impact on the trained model will be significantly reduced. Nevertheless, we
note that the defense mechanisms for blocking (or slowing down) the propagation
paths of AI attacks are still under-investigated in the research community.

Second, instead of blocking (or slowing down) the propagation paths of AI
attacks, the attacks could also be mitigated by preventing a propagation path
from being formed. Taking the data poisoning attack as an example again, in
some close-loop deployment environments (e.g. a factory) of a ML system, it is
actually feasible to certify all the data providers. This can make it very difficult
for the attacker to corrupt enough data samples.

Third, in addition to the above two categories of attack mitigation strategies,
the attacks could also be effectively mitigated by confusing the attackers through
moving target defenses. For example, a) fake propagation paths could be created
to mislead the attacker; b) decoy ML models could be deployed; c) some ML
models could serve as a honeypot; d) the ML models could be trained with
randomized samples or adversarial examples.

Fourth, as soon as impact propagation is detected, the attack impact could be
substantially reduced by taking a (proactive) quarantine and isolation strategy.
For example, if training data from external sources (e.g. twitter comments, cus-
tomer reviews, user-provided images etc.) are used, we could isolate the data col-
lection process to prevent malicious data from entering the training/deployment
process. Also, before the collected the data is used for model training, the devel-
opers can check the validity of the data through semantics or outlier detection.

Fifth, in-depth analysis of the AISC graphs and the ML system’s causality
relationships can help identify the actionable strategies of mitigating attacks.
In particular, we observe that 1) evasion attacks and exploratory attacks are
often related to the model supply chain, so the integrity of the model’s publish-
ers should be checked to make sure the models are not intentionally poisoned
or compromised; 2) protecting data supply chain including training data and
test data is the key to prevent poisoning attacks; 3) keeping software up-to-date
helps to protect the library supply chain; 4) if public ML models from GitHub
or PyTorch Hub are used (for transfer learning, fine-tuning, or other reasons),
it’s better to put them in a isolated environment to make sure the downloaded
models are free of malicious components, in both the ML security and the soft-



Attacks on ML Systems: From Security Analysis to Attack Mitigation 15

ware security aspects. Therefore, the proposed approach can help with blocking
the propagation paths by 1) firstly constructing the propagation path; and then
2) identifying key components in the propagation path that can be isolated or
enhanced.

5.1 Using the Example Word-to-word Translation ML System to
Illustrate Relevant Mitigation Strategies

To mitigate the potential attacks towards the word-to-word translation ML sys-
tem, we also consider how the attacker can impact the three supply chains. As a
data poisoning attack, this attack is mostly related to the data supply chain. The
attacker’s action happens at a very early stage and usually taints the raw data
gathered by the ML developers. Therefore, one immediate mitigation approach
is to validate the gathered raw data (eliminating possibility of p3 in Fig. 3),
so that any attacker tainted content will not get into the corpus, or that the
amount of tainted content getting into the corpus will be decreased. In addition
to validating collected data, there are also training data fault mitigation tech-
niques to mitigate data poisoning [9], such as label smoothing, label correction,
robust loss, etc. By assuming the collected data is faulty, these techniques can
protect the ML models at an early stage. Another possible mitigation method
is to conduct extensive model testing before deploying the model, with the hope
that the strange behavior of the trained model can be uncovered.

6 Conclusion and future directions

Since the existing security analysis approaches and techniques were mainly de-
veloped to analyze traditional security issues in enterprise networks, they are no
longer very suitable for analyzing ML systems. Therefore, we seeks to present
a vision on how to address two unique ML security analysis challenges through
a new security analysis approach. This paper intends to take the initial step to
bridge the gap between the existing cyber security analysis approaches and an
ideal ML system security analysis approach.

The proposed ML-SSA approach is preliminary and may present the following
future research opportunities: 1) designing a systematic, largely automated ap-
proach to build AISC graphs; 2) investigating approaches for AISC-graph-based
probabilistic reasoning; and 3) exploring AISC-graph-based security threat mit-
igation algorithms and procedures.

Disclaimer

Commercial products are identified in order to adequately specify certain proce-
dures. In no case does such identification imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply that
the identified products are necessarily the best available for the purpose.



16 Q. Zou et al.

References

1. DailyWireless (Mar 2020), https://dailywireless.org/internet/what-happened-to-
microsoft-tay-ai-chatbot, [Online; accessed 8. Feb. 2022]

2. IBM Watson - Speech to Text (Aug 2021), https://www.ibm.com/cloud/watson-
speech-to-text, [Online; accessed 8. Feb. 2022]

3. Machine Translation - Microsoft Translator for Business (Sep 2021),
https://www.microsoft.com/en-us/translator/business/machine-translation,
[Online; accessed 8. Feb. 2022]

4. Google Tensorflow : CVE security vulnerabilities, versions and detailed
reports (Jul 2022), https://www.cvedetails.com/product/53738/Google-
Tensorflow.html?vendor_id=1224, [Online; accessed 11. Jul. 2022]

5. Speech-to-Text: Automatic Speech Recognition | Google Cloud (Feb 2022),
https://cloud.google.com/speech-to-text, [Online; accessed 8. Feb. 2022]

6. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

7. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hack-
ing smart machines with smarter ones: How to extract meaningful data from ma-
chine learning classifiers. International Journal of Security and Networks 10(3),
137–150 (2015)

8. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

9. Chan, A., Gujarati, A., Pattabiraman, K., Gopalakrishnan, S.: The fault in our
data stars: Studying mitigation techniques against faulty training data in machine
learning applications. In: DSN (2022)

10. Cheikes, B.A., Cheikes, B.A., Kent, K.A., Waltermire, D.: Common platform enu-
meration: Naming specification version 2.3. US Department of Commerce, National
Institute of Standards and Technology (2011)

11. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: Proceedings of the 10th ACM workshop on artificial intelligence and
security. pp. 15–26 (2017)

12. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A review and comparative
study on probabilistic object detection in autonomous driving. IEEE Transactions
on Intelligent Transportation Systems (2021)

13. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. pp. 1322–1333
(2015)

14. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: An {End-to-End} case study of personalized warfarin dosing.
In: 23rd USENIX Security Symposium (USENIX Security 14). pp. 17–32 (2014)

15. Gnanasambandam, A., Sherman, A.M., Chan, S.H.: Optical ad-
versarial attack (2021). https://doi.org/10.48550/ARXIV.2108.06247,
https://arxiv.org/abs/2108.06247



Attacks on ML Systems: From Security Analysis to Attack Mitigation 17

16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

17. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

18. Guo, C., Gardner, J., You, Y., Wilson, A.G., Weinberger, K.: Simple black-box
adversarial attacks. In: International Conference on Machine Learning. pp. 2484–
2493. PMLR (2019)

19. Huang, S., Papernot, N., Goodfellow, I., Duan, Y., Abbeel, P.: Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284 (2017)

20. Jagielski, M., Severi, G., Pousette Harger, N., Oprea, A.: Subpopulation data poi-
soning attacks. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. pp. 3104–3122 (2021)

21. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceed-
ings 15th IEEE Computer Security Foundations Workshop. CSFW-15. pp. 49–63
(2002). https://doi.org/10.1109/CSFW.2002.1021806

22. Kos, J., Song, D.: Delving into adversarial attacks on deep policies. arXiv preprint
arXiv:1705.06452 (2017)

23. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Artificial intelligence safety and security, pp. 99–112. Chapman and
Hall/CRC (2018)

24. Li, S., Zhao, B.Z.H., Yu, J., Xue, M., Kaafar, D., Zhu, H.: Invisible backdoor
attacks against deep neural networks. arXiv preprint arXiv:1909.02742 (2019)

25. Li, Y., Jiang, Y., Li, Z., Xia, S.T.: Backdoor learning: A survey. IEEE Transactions
on Neural Networks and Learning Systems (2022)

26. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning
attack on neural networks (2017)

27. Lovisotto, G., Turner, H., Sluganovic, I., Strohmeier, M., Martinovic, I.: {SLAP}:
Improving physical adversarial examples with {Short-Lived} adversarial perturba-
tions. In: 30th USENIX Security Symposium (USENIX Security 21). pp. 1865–1882
(2021)

28. McGraw, G., Figueroa, H., Shepardson, V., Bonett, R.: An architectural risk anal-
ysis of machine learning systems: Toward more secure machine learning. Berryville
Institute of Machine Learning, Clarke County, VA. Accessed on: Mar 23 (2020)

29. MITRE: CVE of Sockeye. https://www.cvedetails.com/cve/CVE-2021-43811/
(2022)

30. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 1765–1773 (2017)

31. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2574–2582 (2016)

32. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with
adversarial traffic signs. arXiv preprint arXiv:1907.00374 (2019)

33. mozilla: DeepSpeech (Feb 2022), https://github.com/mozilla/DeepSpeech, [On-
line; accessed 8. Feb. 2022]

34. Muñoz-González, L., Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V.,
Lupu, E.C., Roli, F.: Towards poisoning of deep learning algorithms with back-
gradient optimization. In: Proceedings of the 10th ACM workshop on artificial
intelligence and security. pp. 27–38 (2017)



18 Q. Zou et al.

35. Nassi, D., Ben-Netanel, R., Elovici, Y., Nassi, B.: Mobilbye: Attacking
adas with camera spoofing (2019). https://doi.org/10.48550/ARXIV.1906.09765,
https://arxiv.org/abs/1906.09765

36. Ning, R., Li, J., Xin, C., Wu, H.: Invisible poison: A blackbox clean
label backdoor attack to deep neural networks. In: IEEE INFOCOM
2021 - IEEE Conference on Computer Communications. pp. 1–10 (2021).
https://doi.org/10.1109/INFOCOM42981.2021.9488902

37. Papernot, N.: A marauder’s map of security and privacy in machine learn-
ing. arXiv:1811.01134 [cs] (Nov 2018), http://arxiv.org/abs/1811.01134, arXiv:
1811.01134

38. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings of the 2017 ACM
on Asia conference on computer and communications security. pp. 506–519 (2017)

39. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European sym-
posium on security and privacy (EuroS&P). pp. 372–387. IEEE (2016)

40. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: Pytorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran As-
sociates, Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

41. Patel, N., Krishnamurthy, P., Garg, S., Khorrami, F.: Bait and switch:
Online training data poisoning of autonomous driving systems (2020).
https://doi.org/10.48550/ARXIV.2011.04065, https://arxiv.org/abs/2011.04065

42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

43. Schuster, R., Shuster, T., Meri, Y., Shmatikov, V.: Humpty dumpty: Controlling
word meanings via corpus poisoning. In: IEEE S&P (2020)

44. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation
and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security
and Privacy. pp. 273–284 (2002). https://doi.org/10.1109/SECPRI.2002.1004377

45. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE symposium on security and privacy
(SP). pp. 3–18. IEEE (2017)

46. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation 23(5), 828–841 (2019)

47. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

48. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction {APIs}. In: 25th USENIX security symposium
(USENIX Security 16). pp. 601–618 (2016)

49. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610 (2018)

50. Xiao, Q., Li, K., Zhang, D., Xu, W.: Security risks in deep learning implementa-
tions. In: 2018 IEEE Security and Privacy Workshops (SPW). pp. 123–128. IEEE
(2018)



Attacks on ML Systems: From Security Analysis to Attack Mitigation 19

51. Xu, K., Liu, S., Chen, P.Y., Zhao, P., Lin, X.: Defending against backdoor attack
on deep neural networks. arXiv preprint arXiv:2002.12162 (2020)

52. Yin, H., Molchanov, P., Alvarez, J.M., Li, Z., Mallya, A., Hoiem, D., Jha, N.K.,
Kautz, J.: Dreaming to distill: Data-free knowledge transfer via deepinversion.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8715–8724 (2020)

53. Yu, H., Yang, K., Zhang, T., Tsai, Y.Y., Ho, T.Y., Jin, Y.: Cloudleak: Large-scale
deep learning models stealing through adversarial examples. In: NDSS (2020)

54. Yuan, X., Chen, Y., Zhao, Y., Long, Y., Liu, X., Chen, K., Zhang, S., Huang, H.,
Wang, X., Gunter, C.A.: {CommanderSong}: A systematic approach for practi-
cal adversarial voice recognition. In: 27th USENIX security symposium (USENIX
security 18). pp. 49–64 (2018)

55. Zhang, L., Liu, P., Choi, Y., Chen, P.: Semantics-preserving reinforcement learning
attack against graph neural networks for malware detection. IEEE Transactions
on Dependable and Secure Computing (2022)

56. Zhao, Z., Dua, D., Singh, S.: Generating natural adversarial examples. arXiv
preprint arXiv:1710.11342 (2017)

57. Zhou, L., Gao, J., Li, D., Shum, H.Y.: The design and implementation
of xiaoice, an empathetic social chatbot. arXiv:1812.08989 [cs] (Sep 2019),
http://arxiv.org/abs/1812.08989, arXiv: 1812.08989


