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The National Institute of Standards and Technology is developing performance

tests and associated artifacts to benchmark research in the area of robotic

assembly. Sets of components consistent withmechanical assemblies including

screws, gears, electrical connectors, wires, and belts are configured for

assembly or disassembly using a task board concept. Test protocols

accompany the task boards and are designed to mimic low-volume, high-

mixture assembly challenges typical to small and medium sized manufacturers.

In addition to the typical rigid components found in assembled products, the

task boards include many non-rigid component operations representative of

wire harness and belt drive assemblies to support research in the area of

grasping and manipulation of deformable objects, an area still considered to

be an emerging research problem in robotics. A set of four primary task boards

as well as competition task boards are presented as benchmarks along with

scoring metrics and a method to compare robot system assembly times with

human performance. Competitions are used to raise awareness to these

benchmarks. Tools to progress and compare research are described along

with emphasis placed on system competition-based solutions to grasp and

manipulate deformable task board components.
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1 Introduction

Assembly is one of the most complex operations in manufacturing with many

fine robotic manipulation tasks still needing significant progression to achieve

adoption within real-world robotic manufacturing applications. Adoption of

these tasks requires implementations that minimize the use of specialized

fixtures and single purpose end-effectors which significantly increase the time

and cost to setup each new assembly process. Such strategies are paramount to
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the successful integration of robot systems that support the

low-volume, high-mix manufacturing paradigm.

Assembly processes are primarily comprised of insertion and

fastening operations such as threading, snap fitting, meshing, and

routing. Rigid components used in these operations include

screws, nuts, washers, gears, and electrical connectors.

Additionally, assemblies include non-rigid components, also

called deformable objects, such as belt drives and wires.

Assembly processes invloving deformable objects such as

wires, cables, and belts are in need of robotic solutions. The

process of grasping and manipulating deformable objects for

assembly is a difficult robotic task and an emerging research

problem in robotics.

The National Institute of Standards and Technology (NIST)

has developed a set of performance metrics, test methods, and

assembly task boards (ATB) for benchmarking research and

development efforts in robotic assembly (Kimble et al., 2020).

Guidance for the use of these benchmarking tools, as well as the

supporting artifact designs are available online at (Metrics and

Methods, 2022). First introduced to the robotics community in

2017 in the form of competitions, these tools facilitate

benchmarking among researchers to assess progress in the

design and development of robotic assembly systems (Sun

et al., 2021). The long-term goal of this work is the

development of performance test methods for robotic

assembly systems that will contribute to the generation of

technical specifications for robot systems to ultimately aid in

the selction of the best robotic system for an intended application

space (Shneier et al., 2015).

This paper introduces the benchmarking concepts of NIST

ATB test methods and artifacts with an emphasis on grasping

and manipulating deformable objects. Section 2 provides

some background on existing benchmarks to support

grasping and manipulation and shows the need for

deformable object assembly benchmarks that represent

real-world robotic applications. Section 3 describes the

NIST assembly task boards and associated test methods.

Example primary task boards as well as competition task

boards are described. Section 4 introduces the concepts of

design-for-assembly used in the development of the task

boards and provides examples of of time-based human

performance baselines for comparison with the

performances of automated assembly systems. Section 5

describes competitions that introduce these task boards to

the research community and provides comparable

performance results. A review of system performances

during NIST hosted competitions reveals techniques that

teams used to autonomously manipulate and assemble

deformable object components. Section 6 introduces a new

effort to provide a standardized object dataset to accompany

the current ATB benchmarking tools. Finally, Section 7

summarizes these discussions and provides insight into

ATB design improvements.

2 Towards deformable object
benchmarks

The use of benchmarks to compare performance across

robotic systems is gaining popularity within the robotics

community. Unified collections of test metrics, methods, and

object data sets using a common set of tasks allow researchers to

assess incremental improvements between systems. Well defined

and adopted benchmarks can be used to promote research in

crucial problem spaces and foster competitive and novel

solutions. The majority of benchmarks that support robotic

grasping and manipulation are primarily focused on rigid

objects and tasks associated with service robot applications.

Some examples of benchmarks focused on rigid body

grasping and manipulation are now presented. GRASPA

(Robot Arm graSping Performance BenchmArk) (Bottarel

et al., 2020) is a benchmark to test the effectiveness of

grasping pipelines on physical robot setups using a common

set of rigid objects. Here, system assessment is designed to

distinguish between failures caused by the testing platform

and those introduced by the pipeline under test. The YCB

(Yale, Carnegie Mellon, Berkeley) Object Dataset (Calli et al.,

2015) is widely distributed and relies on the robotic community

to develop accompanying test methods as benchmarking tools.

The YCB organizers maintain a repository of benchmark

protocols shared by users of the object set. The OCRTOC

(Open Cloud Robot Table Organization Challenge)

Benchmark (Liu et al., 2022) provides test setups for

performing table organizations tasks with varying levels of

difficulty utilizing remote hardware that is made available for

researchers to test their algorithms. To support aerial robot

research and development, (Suarez et al., 2020) evaluates

aerial manipulation of rigid objects with regard to accuracy,

execution time, manipulation capability, and impact response

over a range of tasks including positioning, bi-manual grasping,

load lifting, and contact force control.

Research in the area of robotic grasping and manipulation of

deformable objects has gained ground in recent years and along

with this research, supporting benchmarks are beginning to

emerge. Examples of these benchmarks are sparse and those

found are dissimilar to real world applications (Garcia-Camacho

et al., 2020). developed a benchmark to evaluate bimanual robot

tasks for grasping and manipulating textile objects of different

sizes and types: spreading a tablecloth, folding a towel, and

dressing, where each task is broken into sub-tasks for

incremental evaluation of varying levels of difficulty (Garcia-

Camacho et al., 2022). propose a cloth object set to support the

robotics cloth manipulation community. This set of household

cloth objects is being distributed in hopes to design common

benchmarks using a community driven approach. Soft Gym (Lin

et al., 2020) is a simulation based deformable object

benchmarking tool that goes beyond textile objects and

includes linear deformable objects such as rope to assess
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robotic grasping and manipulation solutions (Chatzilygeroudis

et al., 2020). propose benchmarks to assimilate two

manufacturing operations involving deformable parts,

assembly of a watch plate, and a belt drive. Watch parts are

replicated to be larger though 3D printer replication. A rubber

band and 3D printed pegs are used in place of an actual belt drive.

It is evident from the literature that more realistic object sets are

needed to represent specific application spaces.

Linear deformable objects such as wires and bundles of

wires (cables) are the prevalent flexible components used in

manufacturing assembly applications. Additionally, belts used

in mechanical drives to transfer rotary motion can often be

found in assemblies. In the case of wire harnessing, fixtures such

as cylindrical pegs, clips, and tubes are used to route wires/

cables to form the final wire harness assembly. This process to

construct the wire harness accounts for 70% of the total

production time where up to 90% of this process is manual

(Nguyen et al., 2021). In contrast, preparatory stages where

wires with different cross-sections are cut into predefined

lengths, stripped, and crimped are highly automated, and

manual work is only required for quality assurance,

machine-setup, and maintenance. The last process is to

assemble the final wire harness.

With respect to the grasping andmanipulation of deformable

objects for manufacturing assembly applications, emerging

research areas include gripper and manipulator design,

sensing, modeling, planning, and control (Zhu et al., 2022).

Because this is a complex, highly manual assembly operation,

there are several instances of research efforts which attempt to

solve this robotic automation problem. Some of these solutions

use collaborative robot systems to enable the tasks to be divided

between robots and humans (Heisler et al., 2021). Jiang et al.

investigates the design of a multi-robot system for installing the

completed wire harness into the body of an automobile (Jiang

et al., 2010). The ARM (Advanced Robotics for Manufacturing)

Institute, a Manufacturing Innovation Institute (MII) funded by

the United States Office of the Secretary of Defense and part of

the manufacturing USA network has identified several key focus

areas and funded projects in the areas of flexible material

handling and assembly of composites, textiles, and wire

harnessing (ARM (2022)).

Research in this area would benefit from a set of unified test

methods and artifacts to benchmark research progress as well as

to compare different approaches to solving the problem. Ideally,

these benchmarks could also mimic the problem space that

small and medium sized manufactures who most often produce

in batches with product variation from batch to batch. To

support production in such an environment where robot

expertise is often limited, and cost is always a factor, robot

systems must be easy to deploy and reconfigure with minimal

retooling. NIST assembly task boards introduce linear

deformable objects typical to the manufacturing assembly

application space in the form of wires and belts and

associated benchmarks that replicate real world applications.

The majority of the design choices for these deformable object

based benchmarks and associated task board components were

derived from reviews of typical mechanical assembly designs as

well as by robotic assembly research focus areas as identified by

the ARM institute.

3 NIST assembly task boards

Motivation for the creation of the task boards comes from the

need for a unified set of benchmarks that allow researcher to

adopt a known procedure and compare results across a larger

audience in a reliable and repeatable manner. The ATBs are

designed to incorporate standard off-the-shelf components of

varying sizes that are representative of components typical to

manufacturing applications (Kimble et al., 2020). Each of the four

ATBs presented below represents a subset of typical

manufacturing assembly tasks. The ATBs provide a means of

benchmarking the capabilities of a robot system by establishing a

procedure and scoring metric for each task associated with the

board. The task boards along with a description of each are

provided in Figure 1.

3.1 Protocols for using the task boards

The procedure for using any of the NIST assembly task

boards is broken down into two sub-tasks, disassembly and

assembly. During disassembly a fully assembled board is

placed on a surface and an empty bin is placed within the

work volume of the robot system. The goal for the robot

system is to remove all components from the board and place

them in the bin. The robot system begins removing each part

from the task board, one part at a time, until all parts have been

removed. The finish time is recorded.

To start the assembly process, a fully disassembled board is

placed on a surface alongside a kit-mat and any feeder or binning

mechanisms necessary for assembly. Each board has a kit-mat

specifically designed for its assembly that provides the specific

location and orientation of a start position for each part. The

robot system begins grasping each part from the kit-mat and

assembling it into the board. Each part is assembled and scored

one at a time until the entire board has been assembled. A finish

time is recorded. The protocol steps for disassembly and

assembly are shown in Table 1.

The protocol and task board benchmarks can be used test a

robot system’s ability to recognize, grasp, and assemble/

disassemble small parts. The option to randomize task board

and kit layout placement provides localization uncertainties that

must be resolved by the system under test. The boards can be

used to evaluate incremental system design improvements as well

as compare research results across the robotics research
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FIGURE 1
NIST Assembly Task Boards (ATBs): (A) ATB1 - peg insertions, gear meshing, electrical connector insertions, nut threading; (B) ATB2 - alignment
and insertion of collars and pulleys, handling flexible parts, meshing/threading belts, actuating tensioners, and threading bolts; (C) ATB3 - tracking,
placement, weaving, and manipulation of loose cables, handling flexible parts, and inserting ends into various connectors; (D) ATB4 - placement,
weaving, and manipulation of wires, pin insertions, bundling of wires, and connecting/disconnecting harness from connectors.

TABLE 1 Disassembly and assembly protocols.

Disassembly Assembly

1 Place the task board within the robot system work volume (task board position and
part locations are fixed or random per system capabilities).

Place the task board within the robot system work volume (task board position and
part locations are fixed or random per system capabilities).

2 Place the container to receive disassembled parts within the robot system work
volume (container position is fixed or random per system capabilities).

Place the kit of parts to be assembled within the robot system work volume (kit
position and part locations are fixed or random per system capabilities).

3 Initialize timing, recording the start time Tstart. Initialize timing, recording the start time Tstart.

4 If used, perform manual programming. If used, perform manual programming.

5 Start autonomous operation of the robot system. Start autonomous operation of the robot system.

6 The robot system disassembles a part from the task board. The robot system grasps a part from the kit layout.

7 The robot system places the removed part into the associated container. The robot system assembles the part onto the task board.

8 Repeat steps 6 and 7 for all parts in task board. Repeat steps 6 and 7 for all parts in the kit.

9 Record the finish time Tfinish. Record the finish time Tfinish.

10 Repeat this protocol for the desired number of trials of the task board under test. Repeat this protocol for the desired number of trials of the task board under test.
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community. Ideally, good system designs include the use of

perception such as machine vision and force sensing. Since in

manufacturing design, part data is readily available as Computer-

Aided Design (CAD) data, it can be leveraged to solve the

autonomy problem. Grasping type end-effector designs can

also be evaluated using these benchmarks Figure 2.

3.2 Adoption of the assembly task boards

NIST ATB 1 was established in 2017 and has been utilized in

many research efforts since its creation. Some of the most notable

implementations of the board are listed here. Wenzhao et al. used

the protocols established by the NIST ATB as a means of testing

off-the-shelf robotic solutions. They also used ATB 1 as the

benchmark for their performance (Lian et al., 2021). Thoo et al.

(2021) used ATB 1 to compare offline robot programming to

online using augmented reality. Narang et al. (2022) used the

rigid bodies of ATB 1 to establish a robot assembly test suite. Luo

et al. (2021) perform a thorough comparison of Deep

reinforcement learning(DRL) from demonstration, against

results of a professional industrial integrator on the

established NIST benchmarks. NIST ATB 2 saw its early use

as the inspiration for The World Robot Summit assembly

challenge, (Yokokohji et al. 2022) describes the details and

results of this competition.

4 Contrasting time-based human
performance

The design of each ATB utilizes reasoning put forth by design

for assembly (DFA) studies (Boothroyd et al. 2011). The studies

have identified and tabulated various important factors based on

manual human performance in assembly based tasks. For

instance, how the size and symmetry of parts, tool usage,

fixturing, mechanical resistance, mechanical fastening

processes, visual occlusion, and physical obstruction all

influence time-based human performance. Each task presented

by Boothroyd is broken into its most elemental state, e.g., the

time it takes to grasp an object of a particular size is separated

from the time it takes to insert the object. Each of these recorded

times notes the mechanical differences in assembly such as edges

with chamfers or ease of grasp. Boothroyd seeks to encourage

good mechanical design to decrease production time in assembly

operations.

The particular details of each part such as shape, size,

material, stiffness etc. Were chosen for each ATB based on

the tables presented by Boothroyd. The large amount of data

made it unrealistic to create a task board presenting all the

possibilities of parts so a select few were chosen. The pegs for

ATB 1 were chosen to span the limits of the recorded data

making sure to select a peg from each possible design parameter

(Boothroyd et al., 2011, p. 83). Given the limited benchmarking

efforts prior to this work it was important to make a decision for

each part so that future users of the ATB are performing tests

with the same repeatable parts.

The results of the studies present enough time-based data

that a theoretical model of nearly any assembly operation time

could be predicted by adding together the time for each

individual operation of the assembly. This paper presents a

means of utilizing this data to create the “calculated

experimental time” for task board 3. This same process could

be applied for each of the four task boards, but given the scope of

this paper being on deformable objects, only the cable routing

tasks were chosen for the experiment.

Boothroyd et al. present example tables with calculated times

for wire dressing based on the number of wires and whether or

not access is restricted (e.g. a 1-wire flexible cable might take 6.3 s

to dress). Another example presents assembly insertion times for

cable ends with assembly parameters for orientation required,

alignment features, and resistance to insertion (e.g. a single

insertion of an Ethernet cable would take 2.5 s according to

this table). Boothroyd breaks wire-types into three categories,

namely a single flexible wire, a stiff multi-wire, and a flat cable.

Furthermore, Boothroyd adjusts handling time based on the

length of the wire (Boothroyd et al., 2011, p. 178).

FIGURE 2
Calculated experimental time based on Boothroyd tables
compared against the local pilot data of three human subject
participants, ten trials each for assembly of ATB 3. Data is shown
per wire type as well as entire task board operation.
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4.1 Calculated experimental data

The wires/cables for Task Board 3 were chosen based on

widely used commercially available materials that fit the

categories determined by Boothroyd, namely an audio jack

cable, an ethernet cable, and serial advances technology

attachment (SATA) flat cable. The ATB 3 assembly, shown in

Figure 1C, requires the three wires/cables be manipulated

through various obstacles. Each wire is scored based on the

completion of the sub-tasks along the length of the board.

Based on the various tabulated results presented by

Boothroyd et al. an experimental calculation was generated to

estimate the time it might take a user to complete an assembly of

ATB 3. Table 2 shows the resulting experimental times for ATB 3.

Certain assumptions had to be made regarding the details of the

experimental times. Boothroyd did not provide a complete

description of the objects or environment of the experiments

such as the material of the items or the geometry of the work

space. This is likely due to these factors not significantly affecting

the handling time.

4.2 Local pilot data

A series of experiments were performed by three human

subjects initially unfamiliar with the tasks associated with the

board. This test was done to validate the calculated

experimental data. Test subjects were tasked with the

assembly and disassembly of ATB 3 using both hands.

Subjects began by routing the thin audio cable and inserting

its connector at the end of the board. The subject then moved to

the thick ethernet cable. Lastly, the subject assembled the flat

SATA cable. The overall time was recorded for assembly, then

subjects were asked to disassemble the board in reverse order.

The subjects were purposefully not given specific instructions

on the best practice or strategy. Over a series of 10 trials each

subject’s average performance was recorded for each wire as

well as the board as a whole. The resulting data presented in

contrast to the calculated “Boothroyd et al. 2011 Total” is

presented in Table 2 and Figure 2. The calculated results

match closely with the local pilot data presented below. Test

subjects’ averages for the flexible wire were within 93% of the

calculated values. The subjects’ averages for the stiff wire were

within 93% of the calculated values. The subjects averages for

the flat cable were within 84% of the calculated values. End-

users of ATB 3 might use this data as a goal for completion time

using their robot system for handling flexible parts. This study

was limited to colleagues currently working on the project as it

did not require any additional work or assistance to perform.

The study was used for collecting subject data in an effort to

provide expected handling and assembly times for known

flexible parts. User feedback regarding the protocol or

effectiveness of the experiment was not collected.

TABLE 2 Estimated time for assemblingwire fromBoothroyd and average time for human subjects to assemble the entire ATB 3 averaged across three
participants, 10 trials each. All units are in seconds.

Wire type Length (ft) Handling Routing Dressing Insertion Boothroyd total Subject data

Flexible wire 3.6 5.58 7.08 7.72 1.9 22.28 20.94

Stiff wire 3.4 8.78 10.28 7.48 2.2 28.74 26.97

Flat cable 3.3 9.98 12.14 11.38 2.5 36 30.47

Complete Task Board 87.02 78.39

FIGURE 3
ICRA2022 Grasping and Manipulation Competition:
Manufacturing track task board with four quadrants of the
following themes: (top-left) Threaded Fasteners, (top-right)
Insertions, (bottom-left) Belt Drive, (bottom-right) Wire
Harness/Routing.
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5 Competition solutions for handling
deformable objects

The Robotic Grasping and Manipulation Competition

(RGMC): Manufacturing Track has been used over the past

several years as a mechanism to introduce these

benchmarking concepts to researchers as well as to provide

feedback on areas for improvement. (ICRA (2022); IROS

(2020); IROS (2019); IROS (2017)). A new task board is

designed for each competition that presents a collection of

tasks from each of the primary NIST ATBs. The most recent

competition task board from the RGMC held at ICRA 2022 is

shown in Figure 3. Tasks are divided into quadrants that

represent four themes; fasteners, insertions, belt drive, and

wire harness/routing to provide best-in-class recognition for

each area in addition to a total score. The tasks for the

competition boards are subject to change each year eventually

allowing every aspect of the NIST ATB to be presented. Teams

were given a time limit to disassemble the competition board and

a separate time limit to assemble the board. The time limitations

are enforced to discourage the use of teach-style programming. A

randomly placed task board with unknown part positions and

associated computer-aided design (CAD) files are presented at

time zero, requiring teams to use a robot system that can be

rapidly reconfigured. This scenario is representative of the low-

volume, high-mixture manufacturing paradigm and the

availability of CAD data typically accompanying assembly

designs.

Scores for the competition are assessed on a per part basis

where each part receives points based on the completion of its

sub-tasks. Separating sub-tasks into partial points in this

manner mimics the data presented by Boothroyd and

FIGURE 4
Scoring for assembly of wire harness equates to 6 points per wire insertion into contact retainer: (A) 0 points, no wires routed through any
retainers: (B) 24 points, two wires each routed through two retainers; (C) 24 points, four routed through retainers and; (D) 36 points, two wires each
routed through three retainers.

Frontiers in Robotics and AI frontiersin.org07

Kimble et al. 10.3389/frobt.2022.999348

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.999348


documents the specific assembly processes that are problematic

for a robot system. An example of a partial score for the wire

harness task is shown in Figure 4, and for the belt drive in

Figure 5. The performance and feedback from teams to date

indicates that flexible parts are clearly an area where research is

needed as teams will often accept partial points for an

incomplete task or opt not to try any of the deformable

object assembly tasks. With this in mind, subsequent

competitions will aim to create a lower barrier of entry for

teams looking to score points on the deformable object sections

of the board, the goal being to encourage research to address

these specific deformable object assembly tasks.

The competitions created a challenge for teams that required

unique solutions to handling deformabe objects. Understanding

the solutions that teams are using helps drive the future

competition designs to ensure that they are always progressing

the technology. The hope is that these competitions could be used

to drive real solutions in industry and further increase the reach

and impact of the NIST established performance measures and

benchmarks.

Various solutions were implemented by teams attempting to

assemble the flexible elements of the task boards, namely the belt

and universal serial bus (USB) cable. Analysis of competition

videos revealed several strategies, the first of which localizes the

deformable object to a known position in order to assemble the

object. For the belt, competitors with one robot arm typically

attempted to catch the object on one of the pulleys to use as an

anchor, then pull until a desired force was reached. By stretching

the belt to a given force the competitor could more easily estimate

the actual position of the belt. In addition if the robot moved to a

known position and no force was felt at the end-effector it could

be determined that the belt was not properly seated on the pulley.

FIGURE 5
Scoring for assembly of the belt drive equates to 14 points per belt threading operation and 14 points for tensioning: (A) 14 points, threading one
pulley; (B) 28 points, threading two pulleys; (C) 42 points, threading two pulleys and tensioning belt.

FIGURE 6
A Team utilizing two robot arms to solve the task board by
extending the USB cable to its full length prior to assembly. FIGURE 7

A Team utilizing a specialized gripper for cable assembly that
allows the cord to be grasped tightly at certain points while also
allowing for the position along the length of the cable to be
adjusted without needing to re-grip.
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For competitors that used two arms the belt was grasped on

opposite ends by each arm then stretched to a known position

using position and force feedback. Gripper fingers were designed

to be narrow in order to keep the belt close to the second pulley

during the seating process which also eliminated over stretching

the belt.

When attempting the USB cable assembly the competitor

with two robot arms would anchor one end at table with the first

arm then stretch the cable to its full length vertically with the

other arm, see Figure 6. When a desired force was reached the

competitor knew that the cable was fully extended and therefore

knew the starting configuration of the cable. Using two arms to

reach a desired initial position of the deformable object appears

to be more reliable and faster than the single arm approach.

At least one competitor noted using a compliance controller

for handling the assembly of task board and specifically

mentioned that the stiffness and damping parameters for the

controller were modified during assembly of the cable and belt

(Gorjup et al. 2021). Another strategy utilized by a few

competitors is the use of a specialized gripper suited to cable

assembly. The gripper works in two different modes. One where

the cable is sufficiently pinched by the gripper so that it can be

moved without slippage, and another mode where the robot arm

can move while slipping to grasp the cable at another point along

its length. During the motion along its length, the circular shape

of the gripper end would prevent the object from being fully

detached from the robot. This was most effective in the assembly

of the USB cable where the robot could pinch the cable with

enough force to move certain sections of the cable into the

management slots then move along the length of the cable to

begin working on another slot without having to re-grasp the

object, see Figure 7.

6 Manufacturing Objects for
Assembly Dataset

Methods of recognition and representation of deformable

objects include the use of deep learning for processing sensory

data. In the case of linear deformable objects found in

manufacturing applications, there are typically connectors at

the ends of the wires/cables. These semi-deformable linear

objects (SDLO) provide a known part that can used for

training a neural network (Zhou et al. 2020). used vision

based learning techniques to solve for the position of the rigid

body at the end of the SDLO with an average error of 0.316 mm

and 0.211°. They were able to use this estimation to reliably grab

the connector and manipulate it into a receptacle using a dual

arm robot. A dataset of 2D and 3D images of manufacturing

based parts like the connectors in SDLOs, would greatly benefit

deformable grasping, manipulation, and assembly research.

Vision based models are used in tasks like rope manipulation

and the folding of cloth materials and similarly can support wire

manipulation and harness manipulation tasks. Data collection

for such materials can include static image information and video

demonstrations. In such systems, visual occlusions are a concern,

including self occlusion (Zhu et al. 2020). proposes that these

occlusions can be compensated for by using vision data collected

with different perspectives.

A Manufacturing Objects for Assembly Dataset (MOAD),

consisting of of 2D and 3D visual sensor data, will be developed at

NIST to support robot system solutions utilizing NIST task

boards. The YCB database provides high-resolution red green

blue depth (RGBD) scans, physical properties, and geometric

models of the objects for easy incorporation into manipulation

and planning software platforms (Calli et al. 2015). The YCB

dataset does not support multiple representations of the

deformable objects with different self occlusions. The YCB

dataset does include object mass properties and dimensions

which are properties inherent in the ATB component

manufacturing CAD data.

Figure 8 Shows the MOAD apparatus which acts as a reliable

and repeatable means of collecting image data from multiple

angles of a part. The apparatus presents a series of high resolution

and Laser Imaging, Detection, And Ranging (LIDAR) cameras in

an array from 0 to 90°, incremented at 22.5° intervals. Each of the

cameras point to a central point on a motorized platform where

the object is centered. The platform is programmed to rotate in 5°

steps. Images are captured by each camera at every step of the

rotation creating a large dataset of images for any object of

interest.

Representations of deformable objects in MOAD will

include examples of the objects with multiple orientations

and self occlusions. Video samples demonstrating the

FIGURE 8
MOAD Apparatus: used for gathering object data.
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behavior of the deformable object as it is manipulated

through its respective assembly are also pertinent. In

addition to the static data of objects, there are plans to

collect data of the flexible materials being manipulated

standalone as well as being manipulated within the ATB

by human agents, robot agents, and human robot teams,

including vision data from a variety of perspective angles.

Such data can be used to enable sim-to-real reinforcement

learning solutions, and provide models with deformation

information from a variety of angles (Matas et al. 2018). It

is conceivable that the MOAD data set will reduce the barrier

of entry for the usage of the NIST ATBs and enable the

development of novel solutions for robot manipulation for

flexible material assemblies.

7 Conclusion and future efforts

This paper provided an overview of a set of assembly task

boards and the associated test protocols for benchmarking

research in grasping, manipulation, and the assembly of

typical manufacturing components. The protocols presented

are designed to emphasize the challenges found in low-

volume, high-mixture manufacturing applications typical to

small and medium sized manufacturers. The ATBs are gaining

acceptance as a means of benchmarking and comparing research

within the robotics community and ATBs with deformable

objects are slowly being introduced through the primary ATBs

as well as through competition ATBs used in the RGMC

Manufacturing Track.

A more in-depth study to be performed in the future will

determine the calculated experimental data for all task boards

and a larger sample size of human test subjects will be used. A

process for determining the calculated experimental data

using Boothroyd’s work will be laid out so that future

users of NIST ATB are provided with a baseline of

assembly time for comparing time-based human data to

their robot system.

A future task board prototype is shown in Figure 9. In

addition to the assembly of a wire harness, this ATB also

includes the task of assembling the completed wire harness to

provide power to a motor driven belt drive unit also assembled

autonomously by the robot system under test. If the belt drive

is properly assembled and the wire harness is built and

assembled correctly, the belt drive can be operated to

provide linear motion to a rack and pinion gear set for

cyclic motion between two limit switches where an light

emitting diode (LED) indicator shows when the limit

switch is engaged.

The next steps for Manufacturing Objects for Assembly

Dataset is to use the developed apparatus and recording

technique to generate 2D and 3D sensor data of each part,

sub-assembly, and completed assembly. In addition to this

data, video footage of the assemblies being performed, CAD

models of each part, and additional pertinent metadata

regarding lighting environments and calibration

information will also be provided. Finally, a detailed set of

instructions for replication of the data collection rig and

process will be documented and made available to

researchers.

NIST’s work for ATB 1–4 has been recorded but this

work is ongoing and likely to add more boards as the

technology improves and industry needs change (Kimble

et al. 2020; Metrics and Methods 2022). This work is also

being considered for standardization under ASTM

International Committee F45 on Robotics, Automation,

and Autonomous Systems, Subgroup F45.05 Grasping and

Manipulation.
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