
Multi-Mode Gaussian State Analysis with Total-Photon Counting

Arik Avagyan,1, 2, ∗ Emanuel Knill,1, 3 and Scott Glancy1

1National Institute of Standards and Technology, Boulder, Colorado 80305, USA
2Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA

3Center for Theory of Quantum Matter,

University of Colorado, Boulder, Colorado 80309, USA

The continuing improvement in the qualities of photon-number-resolving detectors

opens new possibilities for measuring quantum states of light. In this work we

consider the question of what properties of an arbitrary multi-mode Gaussian state

are determined by a single photon-number-resolving detector that measures total-

photon number. We find an answer to this question in the ideal case where the exact

photon-number probabilities are known. We show that the quantities determined

by the total-photon-number distribution are the spectrum of the covariance matrix,

the absolute displacement in each eigenspace of the covariance matrix, and nothing

else. In the case of pure Gaussian states, the spectrum determines the squeezing

parameters.

1. INTRODUCTION

Gaussian states in continuous variable systems are relatively easy to prepare experimen-
tally and can be used in quantum communication, quantum cryptography, quantum sensing
and other areas [1, 2]. In this context, the problem of experimentally analyzing and charac-
terizing Gaussian states becomes important. The most common methods of characterizing
single-mode and multi-mode states involve homodyne tomography and variants thereof [2–
12]. Homodyne tomography is based on quadrature measurements requiring photodiodes
that record the intensity of absorbed light in a high-amplitude regime. More recently, sev-
eral groups have proposed schemes for characterizing Gaussian states with click detectors or
photon-number-resolving (PNR) detectors. In particular, Ref. [13] proposed a scheme that
only uses beam splitters and single-photon detectors to measure the purity, squeezing and
entanglement of Gaussian states. Ref. [14] verified this scheme experimentally on single-
mode Gaussian states. For single-mode states several studies [15–20] have shown that the
statistics of photon counts obtained after displacing the state by different amounts allows
one to estimate the Wigner function. Photon counting with single-mode squeezed states
have applications in quantum metrology - in particular, they have been shown to enhance
the sensitivity of measuring the phase of an interferometer [21] as well as the coherent dis-
placement of a mechanical oscillator [22]. Numerical [23] studies show that comparatively
few number of measurements of the photon number of a single-mode non-displaced state
allow for accurate determination of its squeezing and temperature parameters. A recent
experimental study demonstrated that photon counting allows for a better precision mea-
surement of a weakly-squeezed vacuum state as compared to homodyning [24]. Ref. [25]
showed experimentally that the statistics of two-photon counters can be used to reconstruct
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the mode structure of a parametric down-conversion source. Full characterization of multi-
mode Gaussian states has been shown to be theoretically possible using PNR detectors on
each mode after passing the state through different linear optical circuits [26, 27]. The pro-
posed schemes either yield only general features of an arbitrary multi-mode state like the
mean displacement and the determinant of the covariance matrix [13], or are difficult to
realize in practice [26, 27].

In this light, we consider the problem of what can be learned about an arbitrary multi-
mode Gaussian state with a very simple setup - the state is measured by a single PNR
detector that returns the total number of photons in all modes. For this study, we make
the idealizing assumptions that the detector has no losses nor noise and that we learn the
exact probability of observing n photons for every n. These assumptions can be signifi-
cantly weakened, for example, the PNR detector can be lossy, see Sect. 5. We find that the
total-photon-number distribution determines the number of modes that are not in vacuum
as well as the spectrum of the covariance matrix in these modes. By spectrum we mean the
set of eigenvalues with their multiplicities, if there are degeneracies. The absolute values
of the displacement within each eigenspace of the covariance matrix are also determined
by the distribution. Conversely, any two states with the same covariance matrix spectrum
and absolute eigenspace displacements have the same photon-number distributions. If the
state is pure, this implies that the distribution determines the squeezing spectrum, by which
we mean the set of squeezing parameters, as well as the absolute displacement along each
squeezing axis (or subspace when the given squeezing value is degenerate). We discuss the
interpretation of the covariance matrix spectrum for mixed states and identify representa-
tives with diagonal covariance matrices for each equivalence class of Gaussian states with
identical photon-number distributions.

The paper is organized as follows. In Sect. 2 we formulate the problem. Our main
result is a parametrization theorem that shows that for Gaussian states, the total-photon-
number distributions are bijectively parametrized by the covariance matrix spectrum and the
absolute displacements in the covariance matrix eigenspaces. The parametrization theorem
is established in Sect. 3. Our main tool is the Husimi representation, from which we compute
the expectations of the anti-normally ordered powers of the total number operators. Then,
we use generating functions to prove the parametrization theorem. In Sect. 4 we show that
for pure Gaussian states, the covariance matrix spectrum determines the squeezing spectrum.
For mixed Gaussian states we determine the set of squeezing spectra of pure states from
which the state being measured could be obtained by adding Gaussian displacement noise.
We also study the set of diagonal covariance matrices with the same spectrum. We discuss
and conclude in Sect. 5.

2. PROBLEM FORMULATION

We assume familiarity with quantum optics mode operators and phase space representa-
tions. See [28] for a pedagogical treatment.

Consider S modes characterized by annihilation operators âi for i = 1, . . . , S. Our analysis
does not depend on the particular physical realization of these modes, but we refer to the
excitations of the modes as photons. The canonical quadrature operators q̂i and p̂i of mode
i are defined so that âi = 1√

2
(q̂i + ip̂i) and â†i = 1√

2
(q̂i − ip̂i). We define the vector of

quadrature operators as ⃗̂r = (q̂1, p̂1, . . . , q̂S, p̂S). We further define the vectors of annihilation
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and creation operators as ⃗̂a = (â1, . . . , âS) and ⃗̂a† = (â1
†, . . . , âS

†), respectively. We use the
convention that operators are denoted with “hats”. Density operators are excluded from
this convention. The variables without the hats denote scalar values or vectors of values. For
example, r⃗ is a vector of 2S values, which we interpret as values of phase-space coordinates.

We assume that the state ρ being measured is Gaussian, characterized by a displacement

d⃗ with entries di = ⟨r̂i⟩, and a covariance matrix Γ with entries Γij = ⟨r̂ir̂j + r̂j r̂i⟩ −
2⟨r̂i⟩⟨r̂j⟩. The notation ⟨. . .⟩ denotes expectation with respect to ρ. With these conventions
the covariance matrix of the vacuum state corresponds to the identity. The Wigner function
of ρ is given by

W (r⃗) =
1

πS

1√
det(Γ)

e−(r⃗−d⃗)TΓ−1(r⃗−d⃗). (2.1)

This corresponds to Eq. 20 in Sect. IIA of [2], where this expression is derived. We note
that we use a different convention than Ref. [2]. The annihilation operators are defined as
âi =

1
2
(q̂i + ip̂i) there, and the covariance matrix is equal to 1

2
Γ, which results in a different

form of the Wigner function.
We use the Husimi representation [28][Ch. 3] of Gaussian states. The Husimi represen-

tation can be obtained from the Wigner function by convolution with the Gaussian 1
πS e

−|r⃗|2

and is therefore also Gaussian. With our conventions, the Husimi representation of ρ is

Q(r⃗) =
1

πS

1√
det(I + Γ)

e−(r⃗−d⃗)T (Γ+I)−1(r⃗−d⃗), (2.2)

where I is the 2S × 2S identity matrix.
We analyze the situation where the S modes are measured by an ideal PNR detector that

does not distinguish the modes. The detector’s output is the number n of photons observed,
and the associated operator is the projector Π̂n onto the subspace of states with n photons.
Let n̂ denote the total-photon-number operator on the S modes so that n̂ =

∑S
i=1 âi

†âi. For

this work we assume that we have learned the exact probabilites ⟨Π̂n⟩ of having n photons
for every n. This means that we can assume as given the photon-number distribution. In
the next section, we solve the following problem:

Problem. What features of S-mode Gaussian states are determined by their total-photon-
number distribution?

The total-photon-number distribution is not affected by a passive linear optical trans-
formation defined by a unitary transformation of the mode annihilation operators. As a
result, the features that can be determined must be invariant under these transformations.
Such features include the spectrum of the covariance matrix of the state and the absolute
displacements in the eigenspaces of the covariance matrix, see Sect. 3. Other invariants
include squeezing and thermal spectra, see Sect. 4. We find that of these invariants, the
covariance matrix spectrum and the absolute displacements can always be determined, while
the squeezing and thermal spectra are not fully determined in general. However, the latter
are determined for states occupying a single mode, and for pure states.

For special states of one mode the relationship between the photon-number distribution
and the Gaussian parameters of interest is readily identified. For coherent states, which are
displaced vacuum states, the photon-number distribution is Poissonian with the probability
of n photons given by e−d2d2n/n!, where d is the absolute value of the displacement. For
single-mode squeezed states, the probability is zero for n odd, and n!

2n(n/2)!
(tanh rn/ cosh r)
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for n even, where r is the squeezing parameter. For single-mode thermal states, it is 2(ν −
1)n/(ν +1)n+1, where ν is the thermal parameter. In each case the relevant parameter - the
displacement, the squeezing or the thermal, is readily determined from the distribution. At
the same time, the three distributions are very different from each other, suggesting that
all three parameters can be simultaneously identified for general Gaussian one-mode states.
General expressions for photon-number distributions of single-mode Gaussian states have
been obtained and analysed, for example see [29–32]. In Sect. 4, we show that absolute
displacement, squeezing and temperature parameters can all be inferred from the photon-
number distribution for single-mode Gaussian states.

One way to tackle the multi-mode problem is to compute the expectations of the operators
Π̂n directly by summing the known expressions for the joint probabilities of detecting ni

photons in mode i. Examples of such expressions are in Ref. [33]. A review of related work
and further expressions can be found in Ref. [34]. These expressions depend non-linearly

on Γ and d⃗. Ref. [35] notes that their evalution requires computing Hafnians, and that
computing Hafnians is in general #P hard, suggesting that working directly with the joint
photon-number probabilities could be difficult. Thus we proceed differently.

We first make a few observations about relationships between the photon-number dis-
tribution, its moments, and the expectations of the anti-normally ordered powers of the
total-photon-number operator. The moments of the photon-number distribution are given
by ⟨n̂k⟩. Our calculations are simplified by considering instead the anti-normally ordered mo-

ments given by ⟨...n̂l...⟩. Here, the vertical triple dots denote anti-normal ordering of all mode
operators in the formal expression between the triple dots - that is, all creation operators
are moved to the right of the annihilation operators.

The Husimi representation of states satisfies the optical equivalence theorem for anti-
normal order. A general treatment of this theorem is in Refs. [36, 37]. These references
explain orderings for one mode. To generalize the treatment to multiple modes, it suffices
to apply the fact that operators from different modes commute. For the Husimi repre-

sentation, it implies that expectations of expressions f (⃗â, ⃗̂a†) whose terms are already in
anti-normal order can be evaluated as the expectation of f(α⃗, ⃗̄α) with respect to the Husimi
representation of the state. That is, if Q(α⃗, ⃗̄α) is the Husimi representation of ρ, then

⟨f (⃗â, ⃗̂a†)⟩ρ = ⟨f(α⃗, ⃗̄α)⟩H =

∫ ∏
i

dαidᾱif(α⃗, ⃗̄α)Q(α⃗, ⃗̄α). (2.3)

It follows that anti-normal ordering, like other such orderings, has the property that for a

general expression g(⃗â, ⃗̂a†) that may include terms that are not in anti-normal order, we

have ⟨...g(⃗â, ⃗̂a†)...⟩ρ = ⟨g(α⃗, ⃗̄α)⟩H - see Thm. I of Ref. [36]. We utilize the expectations of the
anti-normally ordered powers of the number operator. The l’th power of the total number
operator is expressed as n̂l = (

∑S
i=1 âiâi

†)l. In phase space, αiᾱi = (p2i + q2i )/2, and as a
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result we obtain

⟨...n̂l...⟩ = ⟨...(
S∑

i=1

â†i âi)
l...⟩

=

∫ ∏
i

dαidᾱiQ(α⃗, ⃗̄α)(
∑
i

αiᾱi)
l

=
1

2l

∫
d2S r⃗Q(r⃗)|r⃗|2l. (2.4)

Notice that for Gaussian states these integrals converge. Below we show that the anti-
normally ordered moments determine and are determined by the ⟨n̂k⟩. This implies that the
latter are defined as well.

Our result relies on analyzing the generating function for anti-normally ordered moments:

G(z) = ⟨...e−zn̂...⟩

=
∑
j

(−1)j
1

j!
⟨...n̂j...⟩zj. (2.5)

For Gaussian states, we find that G(z) is analytic in a neighborhood of z = 0, see Eqs. 3.3
and 3.4 in the next section. The next paragraph shows that the anti-normally ordered
moments carry the same information as the usual moments ⟨n̂k⟩. The relationship between
the two types of moments implies that the generating function for the ⟨n̂k⟩ is also analytic
in a neighborhood of z = 0, where it is determined by G(z). Crucially, this means that for
Gaussian states G(z) determines the photon-number distribution [38, Ch. 4].

According to Ref. [39], for one mode (S = 1), the operator-valued generating functions

e−xn̂ and
...e−xn̂... are related by

e−xn̂ = ex
...e(1−ex)n̂... . (2.6)

This identity extends to the total-photon number in an arbitrary numbers of modes as
follows.

e−x
∑S

i=1 n̂i =
S∏

i=1

e−xn̂i =
S∏

i=1

[
ex
...e(1−ex)n̂i

...

]

=

[
S∏

i=1

ex

]
...e(1−ex)

∑S
i=1 n̂i

...

= exS
...e(1−ex)

∑S
i=1 n̂i

..., (2.7)

where the second line is obtained from the first by applying the observation that antinormal
ordering and products over distinct, commuting modes can be interchanged without changing
the resulting operator. Introduce the new variable z satisfying x = ln(1 + z) and substitute
in Eq. 2.7 to obtain

e− ln(1+z)n̂ = (1 + z)S
...e−zn̂.... (2.8)
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From this we can write

G(z) = ⟨...e−zn̂...⟩ = ⟨e− ln(1+z)n̂⟩/(1 + z)S. (2.9)

Both expressions for G(z) are well-defined as generating functions. This identity implies
that the anti-normally ordered moments of degree j are a linear combination of the usual
moments of degree at most j and vice-versa. This can be verified as follows: Eq. 2.5 shows

that the coefficient of j’th power of z in ⟨...e−zn̂...⟩ is proportional to ⟨...n̂j...⟩. Expanding the
rightmost expression in Eq. 2.9 one can see that the coefficient of zj is a linear combination
of the ⟨n̂k⟩ for k ≤ j. To see the reverse, multiply both expressions for G(z) by (1 + z)S

and substitute z = ex − 1. Then, the rightmost expression has the coefficients proportional
to the powers of ⟨n̂j⟩, and for each j the transformed expression on the left can be seen to

be a linear combination of the ⟨...n̂k...⟩ for k ≤ j.

3. THE PARAMETRIZATION THEOREM

In this section, we prove the parameterization theorem. We first show that the anti-
normally ordered generating function G(z) defined in Eq. 2.5 may be expressed as a Gaussian
integral by means of the expression for the anti-normally ordered moments in terms of the
Husimi representation in Eq. 2.4. Further, we show that G(z) is analytic in a neighborhood
of z = 0. As explained in Sect. 2, this implies that G(z) determines the photon-number
distribution. We find that G(z) only depends on the spectrum of the state’s covariance
matrix Γ and the absolute displacement of the state within the eigenspaces of Γ. According to
the parametrization theorem the reverse also holds, that is, these parameters are determined
by G(z). Let {λi}Ni=1 be the distinct eigenvalues of Γ in decreasing order. Let Vi be the

eigenspace of Γ for eigenvalue λi and ki the dimension of Vi. The displacement d⃗ can be

written uniquely as a sum
∑N

i=1 d⃗i with d⃗i ∈ Vi. Let di = |d⃗i|. We refer to the family
{(λi, ki, di)}Ni=1 as the “normal parameters” of the Gaussian state.

Theorem 3.1 (Parametrization Theorem). The total-photon-number distribution of a Gaus-
sian state determines and is determined by the normal parameters of the state.

Proof. As explained in Sect. 2, the photon-number distribution determines the anti-
normally ordered generating function G(z). We show that G(z) is analytic in a neighborhood
of the origin, which implies that G(z) determines the photon-number distribution. This
implies an equivalence between the photon-number distribution and G(z). We further show
that G(z) determines and is determined by the normal parameters. The theorem statement
then follows from these two equivalences.

In terms of the Husimi representation Q(r⃗) and in consideration of Eq. 2.4, G(z) is
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expressed as

G(z) =
∞∑
l=0

(−z)l

l!
⟨...n̂l...⟩

=
∞∑
l=0

(−z)l

2ll!

∫
dr2SQ(r⃗)r2l

=

∫
dr2SQ(r⃗)e−

1
2
zr2 , (3.1)

where we used the convention that r = |r⃗|. According to Eq. 2.2 Q(r⃗) is a Gaussian with

covariance matrix (Γ+ I)/2 and displacement d⃗. Thus, the integral in Eq. 3.1 is a Gaussian
integral that can be evaluated to obtain a closed form expression for G(z). See, for example,

Ref. [40, Ch. 4]. To simplify the expressions, we define Γ′ = (Γ + I)−1 and y⃗ = r⃗ − d⃗. The
evaluation goes as follows:

G(z) =

∫
dr2SQ(r⃗)e−

1
2
zr2

=

√
det(Γ′)

πS

∫
dr2Se−(r⃗−d⃗)TΓ′(r⃗−d⃗)e−

1
2
zr2

=

√
det(Γ′)

πS

∫
dr2Se−(r⃗−d⃗)TΓ′(r⃗−d⃗)e−

1
2
z(r⃗−d⃗)T (r⃗−d⃗)−z(r⃗−d⃗)T d⃗− 1

2
zd⃗T d⃗

=

√
det(Γ′)

πS

∫
dy2Se−y⃗TΓ′y⃗e−

1
2
zy⃗T y⃗−zy⃗T d⃗− 1

2
zd⃗T d⃗

=

√
det(Γ′)

πS
e−

1
2
zd⃗T d⃗

∫
dy2Se−y⃗T (Γ′+ 1

2
zI)y⃗−zy⃗T d⃗. (3.2)

That G(z) is determined by the normal parameters can be deduced from the last expression.
First, det(Γ′) depends only on the eigenvalues of Γ′, and these eigenvalues are derived from
the normal parameters as 1/(λi+1) with multiplicity ki. Second, we can change variables in

the integral to diagonalize Γ′ and standardize d⃗. Let O be an orthogonal matrix for which

OΓ′OT is diagonal with the eigenvalues in non-ascending order on the diagonal and OT d⃗ has
the property that its nonzero entries are non-negative and associated with the first coordinate
of each eigenspace block of OΓ′OT with the same eigenvalue. To achieve the latter property,
it suffices to choose appropriate orthogonal transformations within each eigenspace block.
Then OΓ′OT is determined by the λi and ki, and the normal parameter di is the nonzero

entry of OT d⃗ associated with the eigenspace block for eigenvalue λ′
i = 1/(λi + 1) of OΓ′OT .

Changing variables according to ⃗̃y = Oy⃗ is equivalent to replacing Γ′ with OΓ′OT and d⃗ by

OT d⃗. This equivalence hinges on the rotational invariance of the measure of integration dy2S.
After this transformation, the integral factors as a product over each coordinate separately
and we find that the value of the integral is determined by the normal parameters. Here
is the explicit calculation. To express this transformation in the integral we index the new
variable of integration ⃗̃y according to the eigenspace blocks as ỹij, where i indicates the i’th
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of N blocks and j indicates the j’th of ki coordinates in the block. Then

G(z) =

√∏N
i=1(λ

′
i)
ki

πS
e−

1
2
z
∑N

i=1 d
2
i

∫
dỹ2Se

−
∑N

i=1

[
(λ′

i+
1
2
z)

∑ki
j=1 ỹ

2
ij

]
−
∑N

i=1 zỹi1di (3.3)

The integrand in Eq. 3.3 factors as a product of exponentials, each a function of one of the
coordinates ỹij. Therefore, the integral can be expressed as a product of one-dimensional
Gaussian integrals. Provided 1

2
z > −min{λ′

i}, every integral in the product is finite, so G(z)
evaluates to

G(z) =

√∏N
i=1(λ

′
i)
ki

πS
e−

1
2
z
∑N

i=1 d
2
i

N∏
i=1

[√
π

λ′
i +

1
2
z

]ki
e

z2d2i
4(λ′

i
+1

2 z)

=
N∏
i=1

[
λ′
i

λ′
i +

1
2
z

]ki/2
e
− 1

2
zd2i+

z2d2i
4(λ′

i
+1

2 z)

=
N∏
i=1

[
λ′
i

λ′
i +

1
2
z

]ki/2
e
− −zd2i λ

′
i

2(λ′
i
+1

2 z) . (3.4)

Since λi > 0 the minimum of the λ′
i is a strictly positive number. Therefore, G(z) is analytic

in a neighborhood of the origin.
One way to obtain the normal parameters from G(z) is to look at the first derivative of its

natural logarithm. ln(G(z)) is a multi-valued function, where the different “branches” differ
by an additive constant. Thus, the derivative of ln(G(z)) is a well-defined, single valued
function for z > −2min{λ′

i}:

L(z)
.
=

d ln(G(z))

dz

= −1

2

∑
i

d

dz
ki ln

(
λ′
i +

1

2
z

)
− 1

2

∑
i

d

dz
zd2iλ

′
i(λ

′
i +

1

2
z)−1

= −1

4

∑
i

ki(λ
′
i +

1

2
z)−1 − 1

2

∑
i

d2iλ
′
i(λ

′
i +

1

2
z)−1 +

1

4

∑
i

zd2iλ
′
i(λ

′
i +

1

2
z)−2

= −
∑
i

(
ki
2
(2λ′

i + z)−1 + 2d2i (λ
′
i)
2(2λ′

i + z)−2

)
. (3.5)

Because the G(z) is defined in a neighborhood of the origin, L(z) is also defined in a neigh-
borhood of the origin, but it can be extended to a function with a maximal domain of
definition on the complex plane. This is true for any function defined on a non-empty,
open subset of the complex plane, and the procedure is known as analytic continuation [41,
Ch. 16]. In this case the analytic continuation of L(z) is the extension of the domain to
all z where the expression on the right side of Eq. 3.5 is defined. We refer to the analytic
continuation of L(z) as La.c.(z). According to Eq. 3.5, La.c.(z) is analytic except at poles
of at most second order at zi = −2λ′

i for each i. By uniqueness of analytic continuations,
the locations of the poles and their coefficients are determined by G(z). The positions zi of
the poles and the coefficients of the corresponding orders 1/(z − zi) and 1/(z − zi)

2 can in
principle be extracted by contour integration. The position of each pole determines a λ′

i and
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therefore a λi. From the coefficient of the pole at zi we obtain the multiplicity parameter ki
and the displacement di. It follows that G(z) determines the normal parameters.

4. INTERPRETATION OF NORMAL PARAMETERS FOR PURE AND MIXED

STATES

Thm. 3.1 shows that the photon-number distribution determines the spectrum of the
covariance matrix and the absolute displacement in each eigenspace, and nothing else. But
what does this tell us about the physical properties of the Gaussian state such as the amount
of squeezing along different directions of phase-space or the temperature parameters (defined
in the paragraph below) of the modes? The set of all Gaussian states can be divided into
equivalence classes, such that the states in a given equivalence class have the same normal
parameters. We are interested in characterizing the physical properties of the states that
belong to the same equivalence class. We show that for pure Gaussian states, the squeezing
parameters are determined by the normal parameters. We characterize the set of normal
parameters of Gaussian states, and we show that for such normal parameters, there is always
a Gaussian state with diagonal covariance matrix in a fixed mode basis with these normal
parameters. We further investigate sets of states that have the same normal parameters and
whose covariances are all diagonal in the same mode basis. The background material for
this section can be found in reviews and textbooks such as Ref. [42].

Let Γ be the 2S × 2S covariance matrix of the observed state in some mode basis. The
mode basis determines an antisymmetric matrix J that is preserved by the action of Gaussian
unitaries on the mode operators. We order the coordinates so that the antisymmetric matrix

J is block diagonal with S blocks of the form

(
0 1
−1 0

)
. Gaussian unitaries that involve no

displacement are characterized by transformation matrices A that satisfy ATJA = J . Such
matrices are called symplectic. There exists a symplectic matrix A such that Γ = ATTA

[42][Secs. 3.2.3 and 3.2.4] with T diagonal and consisting of S blocks of the form

(
νi 0
0 νi

)
with νi ≥ 1, where we normalized mode operators so that the vacuum covariance matrix
is the identity. We refer to T as the symplectic diagonalization of Γ, and to the family
consisting of the νi as the symplectic spectrum of Γ. The Gaussian state with covariance
matrix T is thermal in each mode, and the modes are uncorrelated. We call such states
“independently thermal states”, where νi is the temperature parameter for the i’th mode.
In terms of the expected number of quanta in mode i, the temperature parameter νi is given
by νi = 2⟨n̂i⟩ + 1. Symplectic transformations can be physically realized by a combination
of squeezing and linear optical transformations. Passive linear optical transformations are
represented by symplectic matrices O that are also orthogonal, that is OTO = I. Every
symplectic matrix has a representation A = KQL where K and L are symplectic and
orthogonal, and Q squeezes each mode by different amounts [42][Sect. 5.1.2] . Such a Q is

diagonal with diagonal blocks of the form

(
eri 0
0 e−ri

)
where ri is the squeezing parameter

for mode i. The squeezing parameters of Γ are determined by Q. For one mode, S = 1,
the symplectic diagonalization T is proportional to the identity and commutes with K.
Consequently Γ = LTQTQL, where QTQ has spectrum (ν1e

2r1 , ν1e
−2r1), and therefore, so

does Γ. In this case, the thermal and squeezing parameters are determined by the spectrum
of Γ.
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For a multi-mode state where Γ is diagonal, the previous paragraph implies that Γ is

composed of S consecutive blocks of the form

(
νie

2ri 0
0 νie

−2ri

)
, where νi and ri are the

temperature and squeezing parameters of mode i, respectively. The product of the diagonal
elements of these 2 × 2 matrices are ν2

i , which satisfy ν2
i ≥ 1. Conversely, consider any

diagonal positive matrix M with S diagonal 2 × 2 blocks, where the block for mode i is

of the form

(
γi 0
0 γ′

i

)
with γiγ

′
i ≥ 1. Then M is the covariance matrix of a Gaussian state.

To see this it suffices to transform for each i, the i’th mode’s block with the symplectic

diagonalization 2 × 2 matrix Bi =

(
(γ′

i/γi)
1/4 0

0 (γi/γ
′
i)

1/4

)
. This gives a covariance matrix

that is independently thermal in each mode as described above. We say that M is the
covariance matrix of a Gaussian state where the i’th mode is a squeezed thermal state. The
i’th mode has temperature parameter νi =

√
γiγ′

i and squeezing parameter ri = ln(γi/νi)/2.
We call covariance matrices of Gaussian pure states “pure covariance matrices”. To de-

termine these states’ parameters, we need the following characterizations of pure covariance
matrices:

Lemma 4.1. Let Γ be a covariance matrix of a Gaussian state on S modes. The following
are equivalent: 1. The matrix Γ is pure. 2. det(Γ) = 1. 3. The eigenvalues (γj)

2S
j=1 in

non-ascending order of Γ satisfy the tight pairing condition γjγ2S+1−j = 1. Furthermore, in
case 3. the quantities ln(γj)/2 for j ≤ S are the squeezing parameters of the state.

Proof. The equivalence of 1. and 2. can be found in [42, Ch. 3, Sect. 5], but we provide
a proof for completeness. Since displacements are realized unitarily and do not affect the
covariance matrix, we may assume that the state is undisplaced so that the quadrature
operators have zero mean. Write Γ = ATTA with A simplectic and T diagonal with thermal
blocks. Since A is realized by a Gaussian unitary transformation, Γ is pure iff T is. The
covariance matrix T is pure iff T = I, or equivalently, iff the temperature parameters of all
modes are 0. The identity ATJA = J implies that det(A) = ±1. Thus det(Γ) = det(T).
The form of T implies that det(T) ≥ 1 with det(T) = 1 iff all temperature parameters are
zero, that is, iff T is the covariance matrix of vacuum. This proves the equivalence of 1. and
2.

Write A = KQL with K and L simplectic orthogonal and Q diagonal with blocks of

the form

(
erj 0
0 e−rj

)
. We may assume without loss of generality that rj ≥ 0. According to

the previous paragraph, if Γ is pure, then T = I. Since KTK = I, we have Γ = ATTA =
LTQTKTTKQL = LTQ2L. Since L is orthogonal, the spectrum of Γ is that of Q2, and
the pairing condition is satisfied by Q2. The relationship of the eigenvalues to the squeezing
parameters is implied by this form. Conversely, suppose that the pairing condition is satisfied
by Γ. Then det(Γ) = 1 so Γ is pure.

The next theorem establishes the relationship between normal parameters and squeezing
parameters of pure Gaussian states.

Theorem 4.2. Let F = {(λi, ki, di)}Ni=1 be the family of normal parameters of a Gaussian
state. The state is pure iff

∏
i λ

ki
i = 1. For pure states, the squeezing parameters are

determined as follows: Let (γj)
2S
j=1 be the non-ascending sequence of length 2S =

∑
i ki in

which λi occurs ki times. The S squeezing parameters of the state are given by ln(γj)/2 for
j = 1, . . . , S.
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Proof. Let Γ be the covariance matrix for the Gaussian state. For the first statement, it
suffices to observe that

∏
i λ

ki
i is the determinant of Γ and apply Lem. 4.1. If the state is

pure, write Γ = LTQKT IKQL as discussed at the beginning of this section. Since K is
orthogonal, KT IK = I and Γ = LTQ2L. Since L is orthogonal, the spectrum of Γ is the
spectrum of Q2, whose entries are e±2rj , where the rj are the squeezing parameters. This
proves the second statement.

As noted at the beginning of the section, for one mode, the squeezing and the thermal
parameters of a Gaussian state are determined by the spectrum. Therefore, in this case
the normal parameters determine the temperature and squeezing parameter of the state. If
the state is unsqueezed, one can determine the absolute displacement. Otherwise, one can
determine the absolute displacements in the squeezed and in the antisqueezed directions.
For mixed Gaussian states on two or more modes, it is in general not possible to determine
the squeezing and thermal parameters from the normal parameters, but we can determine
diagonal representatives of the set of Gaussian states with the same normal parameters and
characterize the set of normal parameters.

Lemma 4.3. Let Γ be the covariance matrix of a Gaussian state. Then there exists a
diagonal covariance matrix D of a Gaussian state with the same spectrum as Γ.

Proof. To prove the lemma we use the fact that there exists a pure state covariance matrix
Γp such that Γp ≤ Γ and then apply Weyl’s monotonicity principle [43, Ch. 3] to compare
the spectra. For the first step, we write Γ = ATTA with A simplectic and T independently
thermal in each mode. Then T ≥ I, and I is the covariance matrix of vacuum, which is
a pure Gaussian state. Therefore, Γp = AT IA is the covariance matrix of a pure state,
and Γ = ATTA ≥ AT IA = Γp. Let (γj)

2S
j=1 and (γ′

j)
2S
j=1 be the eigenvalues of Γ and Γp in

non-ascending order. By Weyl’s monotonicity principle, γj ≥ γ′
j. By Lem. 4.1, for j ≤ S

we have γ′
jγ

′
2S+1−j = 1, which implies that γjγ2S+1−j ≥ 1. Let D be the 2S × 2S diagonal

matrix where the j’th mode’s 2× 2 block has diagonal (γj, γ2S+1−j). Then D has the same
spectrum as Γ and as observed at the beginning of this section, D is the covariance matrix
of a Gaussian state.

Corollary 4.4. Consider the family of normal parameters F = {(λi, ki, di)}Ni=1 for S modes.
Let (γj)

2S
j=1 be the non-ascending sequence of length 2S =

∑
i ki in which λi occurs ki times.

There exists a displaced Gaussian state with diagonal covariance matrix whose family of
normal parameters is F .

Proof. By Lem. 4.3 there exists a diagonal covariance matrix of a Gaussian state ρ′, whose
non-zero entries are composed of the γi. We may assume that ρ′ is undisplaced, so that
it has zero-mean quadratures. To obtain the desired Gaussian state, it suffices to displace
the quadratures associated with the first coordinate of each set of coordinates with identical
eigenvalues by di.

Theorem 4.5. Let F = {(λi, ki, di)}Ni=1 be a general family of triples with λi and di real and
ki positive integers. Let (γj)

S′
j=1 be the non-ascending sequence in which λi occurs ki times.

F is the family of normal parameters of a Gaussian state on S modes iff the following
conditions hold:

0. λi > 0 and di ≥ 0.
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1. S ′ is even, S ′ = 2S.

2. γjγ2S−j+1 ≥ 1.

Proof. Suppose first that the conditions hold. Let Γ be the diagonal matrix with diagonal
entries determined by Γ2j−1 = γj and Γ2j = γ2S−j+1 for j = 1, . . . , S. As explained at
the beginning of this section, Γ is the covariance matrix of a Gaussian state where the
j’th mode is a squeezed thermal state with temperature parameter νj =

√
γjγ2S−j+1 and

squeezing parameter rj = ln(γj/νj)/2. For the state to have the given normal parameters,
it suffices to displace the quadratures associated with the first coordinate of each set of
coordinates with identical eigenvalues by di.

Let Γ be the covariance matrix of a Gaussian state. Conditions 0. and 1. hold by the
definition of the normal parameters. We prove that condition 2. holds. By Lem. 4.3, there
exists a diagonal covariance matrix T with the same spectrum as Γ. The diagonal block
of T corresponding to mode j has diagonal entries τj, τ2S−j+1 and is the covariance matrix
of a squeezed thermal state. This implies that τjτ2S−j+1 ≥ 1. By permuting the blocks
and swapping the pair of quadrature coordinates in a block if necessary, we can assume
that τj ≥ τ2S−j+1 and τj is non-ascending, which implies that the entire sequence (τj)

2S
j=1 is

non-ascending. Since this sequence is the spectrum of T and Γ, it follows that γj = τj and
condition 2. is satisfied.

We end this section with a brief discussion of the general problem of characterizing the
set of covariance matrices of Gaussian states with a given family of normal parameters. We
focus on the case of no displacement, in which case the problem is to characterize the set G
of covariance matrices Γ of Gaussian states such that Γ has a given spectrum, namely the
spectrum entailed by the family of normal parameters. Let Γ0 be the diagonal covariance
matrix of a Gaussian state with the same spectrum as Γ, constructed as in the proof of
Cor. 4.4. Then G is the intersection of the orbit O of Γ0 under the orthogonal group
O(2S) and the set C of covariance matrices of Gaussian states. In general, G is a strict
subset of O. For example, with S = 2, the two diagonal matrices Diag(2, 1/2, 4, 1) and
Diag(1, 1/2, 4, 2) are in the same orbit of O(2S), but the second one is not the covariance
matrix of a Gaussian state, because the first mode, associated with the first two coordinates,
violates the uncertainty principle, which requires the product of the two diagonal entries to
be at least 1.

The set G is a disjoint union of orbits under the group of orthogonal and symplectic
(OS) matrices. Each such orbit is identified by its squeezing and its thermal spectrum.
The results of this section imply that for S = 1 or for a pure state (det Γ0 = 1) G consists
of a single such orbit. In general, there are more orbits. For example, if the spectrum of
Γ0 is (4, 3, 1, 1), then the diagonal matrices Diag(4, 3, 1, 1) and Diag(4, 1, 3, 1) are both in
G and have different squeezing spectra and thermal parameters. Not all OS orbits have
representatives that are diagonal. Examples of such orbits exist for S ≥ 2. Consider S = 2.
It suffices to exhibit a covariance matrix Γ that cannot be diagonalized by an OS matrix.
We construct Γ such that its spectrum is different from that expected from its temperature
and squeezing parameters. This prevents diagonalization by an OS matrix because if there
exists an OS matrix A such that D = AΓAT is diagonal, then the diagonal of D contains the
spectrum and can be arranged to be of the form (ν1e

2r1 , ν1e
−2r1 , ν2e

2r2 , ν2e
−2r2), where ν1, ν2

are the temperature parameters and r1, r2 are the squeezing parameters of Γ. To construct
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Γ, let c, s, τ be positive real numbers satisfying c2 − s2 = 1 and define

∆ =


1 + 2τ 0 0 0

0 1 + 2τ 0 0
0 0 1 0
0 0 0 1



R =


c 0 s 0
0 c 0 −s
s 0 c 0
0 −s 0 c


Γ = RT∆R. (4.1)

Then R is symplectic and ∆ is a thermal, diagonal covariance matrix. Therefore Γ is
the covariance matrix of a Gaussian state. In this case the two temperature parameters
are ν1 = 1 + 2τ , ν2 = 1 and one can verify that the squeezing parameters are given by
r1 = r2 = 1

2
ln
(
c+s
c−s

)
by computing Q in the decomposition R = KQL, where K and L are

OS and Q is diagonal. Because R is symmetric, K = LT , so it suffices to check the spectrum
of R. If Γ were OS diagonalizable, because the squeezing and temperature parameters do
not change under OS transformations, its spectrum would be ((1 + 2τ) c+s

c−s
, (1 + 2τ) c−s

c+s
,

c+s
c−s

, c−s
c+s

). For τ > 0 and s > 0, this consists of at least three distinct values. However,
direct calculation of the spectrum of Γ shows that there are only two distinct eigenvalues
g± = (1+ τ)(c2+s2)±

√
4(1 + τ)2c2s2 + τ 2, each with multiplicity 2. We conclude that Γ is

not OS diagonalizable. Because not all OS orbits have diagonal representatives, an analysis
of squeezing and thermal spectra of members of G can not be reduced to an analysis of
diagonal covariance matrices with the given spectrum.

5. DISCUSSION

We investigated the problem of what properties of an arbitrary multi-mode Gaussian
state are determined by the total-photon-number distribution. We found that the photon-
number distribution determines the spectrum of the covariance matrix and the absolute
displacement within each eigenspace. For pure states this implies that the distribution
determines the squeezing parameters and the absolute displacement within each subspace
of the phase space where the Gaussian state has the same amount of squeezing. The same
holds for one mode in a mixed state, in which case the temperature parameter can also be
determined. In general, we identified representatives for each equivalence class of Gaussian
states with the same normal parameters and characterized the set of normal parameters of
Gaussian states.

We established the mathematical relationship between photon-number probabilities and
the normal parameters consisting of the spectrum and the displacement of a Gaussian state.
Since the number of normal parameters is at most four times the number of modes, we
conjecture that for a fixed number of modes not in vacuum it suffices to know a finite
number of photon-number probabilities to calculate the normal parameters.

We assumed that the photon-number probabilities are exactly known. Experimental
photon counters are lossy and noisy, and therefore they cannot perfectly resolve the number
of photons in the state to be measured. However, this does not prevent determining the
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photon-number probabilities from the observed statistics. Loss and typical sources of noise
can be modeled as a combination of a perfect photon counter followed by a classical noise
process. Given the probabilities of outcomes after the classical noise process, it is often
possible to invert the noise process to determine the original photon-number probabilities
[44]. In particular, one can infer the needed probabilities from the output probabilities of
lossy photon counters if the loss is known and is identical for all modes. In this case, the
probability of detecting k photons ok is given by ok =

∑
l Mklpl, where pl is the probability

that there were l photons and Mkl is an upper triangular matrix with positive diagonal
satisfying

∑
k≤l Mkl = 1. Therefore Mkl is finitely invertible, and pl =

∑
l M

−1
lk ok. For

one mode, Mkl can be derived from the representations of loss channels in Ref. [44]. If our
conjecture that a finite number of probabilities suffices to infer the normal parameters holds,
then photon counters whose output saturates for high photon counts are also sufficient.

Pure states and single-mode states are often the most experimentally relevant. In par-
ticular, the states of interest are often pure in applications, and it is desirable to have a
simple method for verifying the squeezing and displacement parameters. In the situation
where the experimental state is almost pure as revealed by the normal parameters that can
be inferred from the photon-number probabilities, the squeezing parameters can also be
verified. Further research is needed to determine the sensitivity of squeezing parameters to
deviations from purity. Similarly, the stability and relevance of inferred parameters when
the experimental state is slightly non-Gaussian needs to be investigated.

Our results assume that photon-number probabilities are exactly known or inferrable
from measurements. In reality, photon-number probabilities are not known exactly, because
of statistical uncertainties with finite data, and because of uncertainty in measurement
device parameters such as losses. A goal of future research is to determine effective methods
for inferring the normal parameters from finite data, where the inferred photon-number
probabilities have statistical uncertainties.
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