
Scalable Multi-Agent Lab Framework for Lab Optimization 
A. Gilad Kusne1,2,* (ORCID: 0000-0001-8904-2087)  Austin McDannald1 (0000-0002-3767-926X) 

1. Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg MD 20899 

2. Materials Science & Engineering Dept, University of Maryland, College Park MD 20742 

* Corresponding Author and Lead Contact: aaron.kusne@nist.gov 

 

 

Summary 

 
 Autonomous materials research systems allow scientists to 
fail smarter, learn faster, and spend less resources in their 
studies. As these systems grow in number, capability, and 
complexity, a new challenge arises – how will they work to-
gether across large facilities? We explore one solution – a 
multi-agent laboratory-control framework. The framework is 
demonstrated with autonomous material science labs in mind, 
where information from diverse research campaigns can be 
combined to address scientific questions. The framework 
can: 1) account for realistic resource limits, e.g., equipment 
use, 2) allow for research-campaign-running machine-learn-
ing agents with diverse learning capabilities and goals, 3) fa-
cilitate multi-agent collaborations and teams. The MULTI-
agent auTonomous fAcilities Scalable frameworK (MULTI-
TASK) makes possible facility-wide simulations, including 
agent-instrument and agent-agent interactions. Through 
modularity, real-world facilities can come on-line in phases, 
with simulated instruments gradually replaced by real-world 
instruments. We hope MULTITASK opens new areas of 
study in large-scale-autonomous and semi-autonomous re-
search campaigns and facilities. 

Introduction 

Autonomous research systems1 are a paradigm shifting 

method for performing systematic scientific research. For 

these systems, a machine learning agent is placed in control 

of automated equipment to control experiment design, exe-

cution, and analysis, with the system learning and evolving 

with each new datum in an evolving environment. A ma-

chine learning function is often used as a surrogate for the 

unknown relationship between experiment inputs and out-

puts, mapping the complex and vast search space. Data col-

lected from experiments are preprocessed and then used to 

improve the surrogate function’s predictive power. Experi-

ment design and selection is guided by active learning2 – the 

machine learning field of optimal experiment design. Sub-

sequent experiments are selected to provide maximal 

knowledge to the users. 

With such machine learning pipelines, order-of-magni-

tude improvements in research efficiencies are possible1. 

Even greater efficiencies are possible by incorporating prior 

knowledge of the research challenge - such as prior theory 

and exogenous experimental and simulation data - into the 

pipeline3. These efficiency gains are exemplified by recent 

successes of autonomous physical science in optimizing me-

chanical structure4, material processing5, device operation 

protocol6, and mixture rates of liquid-synthesized materi-

als7–9. Examples in solid-state material exploration and dis-

covery include mapping the composition-phase and compo-

sition-temperature-phase10–12 relationships as well as the 

first autonomous discovery of a best-in-class material – a 

phase change memory material11. 

As autonomous systems grow in number, capability, and 

complexity, a new challenge arises – how will these systems 

work together? Autonomous control can be extended 

throughout labs, research and development facilities, and 

warehouses to achieve many orders-of-magnitude improve-

ments in efficiencies. The benefits may be significant. For 

example, greater facility efficiencies may be gained by ad-

dressing multiple correlated challenges in concert, with each 

challenge benefiting from knowledge gained for the others. 

Such autonomous systems would free technical experts to 

focus on posing questions and gaining insight from results. 

As the scale of these systems grows, so too does the scope 

of the questions that can be addressed.  

Within a facility-scale architecture, there are different 

ways to organize the interactions of these autonomous sys-

tems, in particular their machine learning agents – each with 

its own goals. The simplest option for the agent architecture 

is perhaps autonomous control by a central machine learning 

agent that collects all data and makes all decisions. This ar-

chitecture has its benefits, including reducing the need for 

redundancies in data storage and computational resources 

by centralizing both. Another architecture is one with a cen-

tral decision-making agent combined with distributed learn-

ing-only agents, exemplified by federated learning13. This 

architecture reduces the network burden of transmitting all 

data to a central site. A third architecture of multiple inde-

pendent agents14 working in concert, has its own ad-

vantages. These advantages mirror those of having multiple 

human experts working together to solve large challenges. 

For instance, agents of differing algorithmic bias (similar to 

individual human bias due to education and training) can 

validate each other’s results.  

How the goals of each agent relates to those of the others 

and to the overall facility goal can be informative of the op-

timal architecture. For example, consider the collaboration 



between two agents working on disparate tasks. Collabora-

tion between the agents may provide research acceleration 

when the data from one task is informative of the other (e.g., 

phase maps and material properties11). Thus, improving 

overall facility performance. However, if data sharing is ex-

traneous, it may serve only to increase the computational 

cost for data analysis tasks. In the latter case, sharing only 

the learning from each agent (and not the data) may be pref-

erable. Similarly, distributing decision making may be com-

putationally preferable for agents with disparate goals. 

 The laboratory framework presented herein is flexible 

enough to allow for different agent-control architectures in-

cluding centralized agent, federated learning agents, and 

multiple independent agents – i.e., different modalities for a 

laboratory management system. Dynamic architectures are 

also possible, optimizing to match time-varying challenges. 

The framework is dubbed the MULTI-agent auTonomous 

fAcilities - a Scalable frameworK aka MULTITASK. This 

framework can demonstrate clear technical benefits. For ex-

ample, facilities may have systems from which collected 

data is large (volume, velocity, etc.), resulting in network 

bandwidth issues when centralizing data. Distributed agents 

can take advantage of edge computing and data storage to 

overcome this challenge by performing local experiment de-

sign, data collection and reduction, and data analysis15. 

Also, specialized agents can be paired with instruments that 

require specialized machine learning tools for data analysis, 

resource optimization, and decision making.  

MULTITASK also offers the flexibility of modularity, al-

lowing real-world autonomous spaces to come on-line in 

stages, with simulated instruments gradually replaced by 

real-world instruments. As facilities change in size and 

scope, and even grow to contain distributed instruments 

(e.g., across states or countries), a networked, multi-agent 

framework can scale to demand, varying the number and 

type of agents. If two disparate facilities overlap in some in-

struments, successful agents from one facility can be copied 

to the other. Additionally, local agents can focus on local 

challenges and collaborate with agents working on larger 

scale challenges, such as agents working to optimize both 

local and shared resources. Such lab modularity formalizes 

the collaborative interactions which can be especially im-

portant when dealing with data privacy and proprietary in-

formation. For example, a localized agent could serve as a 

gatekeeper, providing information of internal signal trends 

while maintaining intellectual property protections through 

data privacy, federated learning, and other techniques.  

We demonstrate MULTITASK in the context of an au-

tonomous experimental material science laboratory. While 

the framework is general and can be easily extended to other 

fields or applications, experimental material science is a par-

ticularly informative example since many of the research ef-

forts require input from multiple instruments. For example, 

to explore a class of materials for a particular application 1) 

a sample or set of samples must first be synthesized, 2) the 

structure and microstructure of those samples must be char-

acterized by a suite of instruments, and 3) the relevant prop-

erties of the samples must be measured by a different suite 

of instruments before 4) the sample performance can be 

evaluated and understood. 

MULTITASK’s integrated multi-agent system14 includes 

agents with autonomy in sensing, decision making, com-

municating, and (direct) acting. Agents are heterogenous in 

learning, goals, and decision making and they collaborate in 

either leaderless or leader-follow relationships. The collec-

tion of agent-agent and agent-instrument relationships form 

the network topology, with associated practical limits de-

fined by available instruments. Successful agent collabora-

tions require a set of agreement parameters. These are again 

lab-based, including a description of the target material sys-

tem space as defined by lab capabilities, pertinent materials 

and instrument physics, and instrument resource limits and 

queues. Agent-run research campaigns are composed of dis-

crete events that incorporate lab-based sample synthesis, 

transportation, measurement, and sharing delays. Research 

campaigns in a fully automated lab will not require agent (or 

autonomous system) physical mobility as only samples and 

resources move. However, labs undergoing automation can 

benefit from mobile autonomous systems8 with associated 

agents. 

The research lab provides further unique challenges for a 

multi-agent system. Agents follow the experimental process 

of sample synthesis, characterization, and analysis. Agents 

may face hysteretic or quantum mechanical challenges, e.g., 

the act of sensing may alter the target domain. Research 

campaigns are exploratory (heavily unsupervised) without 

clear end states. As a result, active learning methods are 

preferable over the more common use of multi-agent rein-

forcement learning. Furthermore, consensus between agents 

is achieved through multi-modal hypothesis testing – i.e., 

agents collaborate by playing each other’s devil’s advocate 

(which differs from typical game-type multi-agent collabo-

rations). Additionally, competing agents may avoid each 

other in the target domain, seeking orthogonal paths toward 

the same goal (which differs from typical game-type multi-

agent competitions). Through these interactions, hypotheses 

evolve from surrogate models to heuristics to potential phys-

ical models. 

In this work, MULTITASK manages a simulated materi-

als research lab with the goal of autonomous materials opti-

mization. Past work into agent-based machine learning for 

the materials sciences includes three studies. The first study 

utilizes data processing agents and learning agents for iden-

tifying the composition-phase map from previously per-

formed X-ray diffraction experiments16. Prior physics 

knowledge of phase mapping is encoded as a set of con-

straints, with different sets of learning agents able to apply 

different sets of constraints. One set of learning agents 

works together to identify viable phase map descriptions for 

small regions of the composition space. These results are 

unified by another set of learning agents to generate multiple 



viable solutions. The second study uses agents to identify a 

stable, optimal material by running density functional theory 

simulations17. In this study, a set of identical agents are in-

stantiated, each runs a fully independent campaign, and re-

sults are combined at the end. The third study describes a 

framework where again independent agents (called ‘orches-

trators’) run independent research campaigns18. For all these 

studies, ‘agents’ refer to independent learners, optimizers, 

or algorithmic units with predefined interactions. As agents 

do not have autonomy of sensing, action, or communication, 

these solutions are best described as distributed problem 

solving or parallel artificial intelligence rather than multi-

agent systems14. To the authors’ knowledge, there have been 

no investigations of multi-agent systems used in the context 

of autonomous facilities optimization. 

The contributions of this work are: 

• A unifying framework for an autonomous research 

lab, and a basis for similar facilities. The frame-

work allows for real-world modules to come on-

line unit by unit, replacing simulations and digital 

twins. 

• A visual language for describing autonomous la-

boratory architecture. This combines visualization 

of multi-agent networks19 with visualization of la-

boratory instruments and processes. 

• Demonstrations of autonomous Bayesian learning 

agents controlling a simulated materials research 

laboratory toward the two goals of materials sys-

tem exploration and optimization. Different lab ar-

chitectures are compared. 

• An algorithm for coregionalization of classifica-

tion and regression developed for learning the com-

position-structure-property relationship of solid-

state materials. 

In the next section Framework Description, we describe 

the working parts of the framework, present example code 

for instantiating an autonomous facility, and demonstrate a 

visual language for communicating different instantiations. 

In Demonstration, we describe a materials optimization 

challenge and MULTITASK results. For more information 

about implementation, see the Methods section. We con-

clude with the Discussion section. We begin with a brief de-

scription of materials optimization and discovery. 

Background: Materials Discovery 

 The discovery of novel solid-state materials is key to the 

success of numerous next-generation technologies such as 

quantum computing, carbon capture, and low-cost medical 

imaging. These materials must possess advanced properties 

selected for their technology applications. To find these ad-

vanced materials, researchers utilize a fundamental relation-

ship between how a material is made and its resulting struc-

ture and properties - the synthesis-structure-property rela-

tionship20 (SSPR). For example, a material’s properties are 

dependent on its elemental composition (e.g., iron, copper, 

etc.) and its phase – a description of the atomic organization 

within the material. 

A useful tool in the search for advanced materials is the 

‘composition-phase map’ which maps unique elemental 

compositions (and potentially other properties such as the 

temperature at which the material was synthesized) to the 

material’s phase20. The phase of a material is determined 

through characterization techniques including X-ray diffrac-

tion, Raman spectroscopy, and transmission electron mi-

croscopy. Phase maps are segmented into regions separated 

by boundaries, known as phase regions and phase bounda-

ries, respectively. Optimal materials of certain properties 

tend to occur within specific phase regions (e.g., magnetism 

and superconductivity) or along phase boundaries (e.g., ca-

loric-cooling materials). Additionally, the functional behav-

ior of material properties from phase region to phase region 

can vary, indicating a piece-wise nature dependent on struc-

ture. Thus, materials researchers identify and utilize compo-

sition-phase maps to guide their search for advanced mate-

rials. 

Framework Description 

A selection of ‘objects’ (for background on object-ori-

ented programming, see: 21) can be instantiated, consisting 

of: agents, resources such as instruments, individual sam-

ples (i.e., items) used for the machine learning campaigns, 

and repositories for either physical samples or data. Physical 

instruments include those used for sample synthesis, pro-

cessing, and measurement. Instruments also include compu-

tational tools used to generate sample simulation data (not 

used in the demonstration). Physical and computational in-

struments are represented as shared resources that produce 

or consume countable objects. For example, a synthesis in-

strument produces physical samples and devices while a 

computational instrument produces data for simulated sam-

ples and devices. 

To instantiate an agent, synthesis instrument, measure-

ment instrument, or other object just requires calling the 

class, i.e,. agent(), instr_synthesis(), instr_meas-

ure(). In Python, list comprehension can be used to instan-

tiate a list of these objects with a call such as: agents = [ 
agent(index, *properties) for index, proper-

ties in agent_descriptions ]. These objects can be 

combined into facility units with multiple agents, shared in-

struments, and shared sample and data repositories. 

Agents 

Agents consist of four basic properties. Internal represen-

tation (IR): An internal representation of the world. This in-

cludes a perception of the materials search space, the tools 

and samples available, past collected data, and the other 

agents. Goals: Each agent has a set of goals with an associ-

ated set of active learning acquisition functions, which 



quantify the utility of future experiments. Agents can work 

together in a group by combining their acquisition functions 

(i.e., goals), to identify the next set of experiments that ben-

efit the group as a whole.  Machine learning (ML): They 

have machine learning capabilities for data analysis, predic-

tion, and decision making (i.e., active learning). Each agent 

can have its own unique ML capabilities. In principle these 

capabilities can be any sort of algorithm for data analysis 

and prediction, be that deep learning models, Bayesian in-

ference models, physics-based analytical models, etc. 

In the present work, agents employ Bayesian models as 

they are particularly well suited for active learning. When 

sharing data between agents, agents employ a coregionali-

zation learning algorithm to exploit shared trends across the 

data sources (See Methods Section). Communication: 

Agents use functions for requesting, sending, and receiving 

data to share knowledge between individual agents, groups 

of agents, or with the full agent community through a central 

data repository. The four basic capabilities of IR, ML, goals, 

and communication are demonstrated through agent-agent 

collaboration for accelerated research campaigns. 

Instruments 

Instruments can perform certain operations with associ-

ated capacity and delays. An example set of instruments for 

materials or device research would consist of sample syn-

thesis, processing, property simulation, and characterization 

instruments. For instance, a synthesis instrument can be de-

fined so that it makes 2 material samples at a time, with a 

synthesis time of 10 minutes. Agents place requests to in-

struments to perform desired operations (e.g., a synthesis in-

strument to make a sample, a measurement instrument to 

measure a sample) and these requests are put into operation 

queues for the instrument. In performing their operations, 

instruments can draw on or create limited, consumable re-

sources. For example, a sample synthesis instrument may 

consume 1 silicon wafer to produce one material sample. 

Repositories 

Two types of repositories exist – ones that store physical 

samples and ones that store data. Each type has a dedicated 

management system for agent interaction. Sample reposi-

tory: Once a sample is synthesized, it is transferred to a sam-

ple repository to await a request to the repository manage-

ment system for the sample to be processed or measured. 

When the sample is unused, it is returned to the sample re-

pository. The sample-repository relationship is analogous to 

that of a book and library. The management system allows 

agents to identify which samples are in the repository and 

which are being lent out. Data repositories: These serve as 

central data storage facilities, where agents can share col-

lected data including measurement data as well as data anal-

ysis, prediction, and decision-making acquisition function 

data. Management provides agent read and write access to 

databases. 

Visualizing the Network 

A diagrammatic language can facilitate network descrip-

tion and comparisons through displaying the lab network in-

frastructure. Here we use shaped icons to indicate the phys-

ical and computing instruments (rectangle), repositories 

(hexagon), agents (oval), and humans (cut-off oval). Differ-

ent forms of agent-agent and agent-instrument interactions 

can be indicated through the graph connections. Here data 

sharing is shown with a graph edge (connection between ob-

jects, i.e., nodes). The additional icon ► indicates that this 

data sharing path also permits sharing data on acquisition 

function which impacts decision making. The direction of 

the icon indicates the hierarchy of decision making with { 

Leader ► Follower}. If both directions are shown, both 

agents share their acquisition functions and impact the 

other’s decision making. Edges marked with ∎ indicate 

physical sample sharing between objects. An example is 

shown in Figure 1.  

Results 

The coupled challenges of materials exploration and op-

timization present an excellent opportunity to demonstrate 

the multi-agent approach. More particularly, the fundamen-

tal dual challenge of exploring the synthesis-structure part 

of the SSPR through phase mapping, and the challenge of 

identifying materials with optimal functional property from 

the synthesis-property part of the SSRP (‘synthesis’ here in-

cludes composition). Through shared trends, knowledge of 

one can provide knowledge of the other, as demonstrated by 

recent autonomous materials discovery informed by the 

SSRP11. Agent collaboration can thus result in accelerated 

goal achievement. 

For this work, individual agents either seek to maximize 

knowledge of the synthesis-structure relationship or seek the 

synthesis composition that maximizes the target property. 

The former agents are labeled ‘PM’ for phase map and the 

latter are labeled ‘FP’ for functional property. In collabora-

tion, the agents combine data of composition, structure, and 

property to learn the SSPR relationship and thus improve 

analysis and prediction of their individual target objectives. 

By further combining their acquisition functions, agents can 

balance their goals with that of the community, selecting 

subsequent investigations that benefit overall community 

knowledge. 

The materials data challenge is drawn from the perovskite 

oxide material system as characterized by [22] for piezoelec-

tric response and structure. Data for samples near the Bi1-

xSmxFeO3 edge of this composition space are shown in Fig-

ure 2. For this system, composition, lattice structure, and pi-

ezoelectric properties are strongly linked. Figure 2(A1) 

shows the relationship between composition and the piezo-

electric coefficient d33 (pm/V) which has its maximum near 

the boundary between phase regions (2) and (3). This is an 

easy maximization challenge as the extrema is characterized 



by a peak profile that stretches the full composition domain. 

Experiments performed on either side can use simple gradi-

ent ascent to find the maximum. A synthetic and more diffi-

cult challenge is presented in Figure 2(A2). Here the maxi-

mum is characterized by a highly local peak profile in phase 

region (3) and phase regions (1) and (2) are described by 

their own broad peak profiles and local maximums. Addi-

tionally, for samples near the Bi(Fe1-ySmy)O3 composition 

binary, structure is measured using Raman spectra, with ex-

ample spectra shown for phase region (1) through (3) in Fig-

ure 2B along with the constituent lattice space groups. 

An agent requests a composition to investigate, the sam-

ple is synthesized if needed, and the agent then requests for 

the sample to be characterized for either d33 or Raman spec-

tra based on their agent type (PM or FP). Synthesis, charac-

terization, and sample requests from the sample repository 

have associated delays and queues. Agents, instruments, and 

data repositories are instantiated with facility units com-

posed of the simulated physical portion diagramed in Figure 

3A and a selection of the software portion given by either: 

Fig 3B) fully independent agents (named: Independent), Fig 

3C) agents that share sample data (named: Data Sharing), or 

Fig 3D) agents that share sample data and where the PM 

agent shares acquisition function results with the FP agent 

for joint decision making (named: Data Sharing and Joint 

Decision Making). Agents with access to disparate types of 

data utilize a multi-modal learning algorithm as described in 

the Methods. The ‘M’ in the top right corner of each of the 

‘plates’ in Fig 3 indicates that these objects are reproduced 

M times, as in the plate notation of probabilistic graphical 

models23 (similarly with ‘N’). For this demonstration, 

M=N=2. All objects associated with the physical lab share 

the same sample repository and all objects for the software 

portion of the lab share the same data repository.  

Diagrams of agent performance for each of the 3 facility 

types is shown in Figure 4A1 and 4A2 for the two chal-

lenges. For the simpler challenge, the pair of independent 

synthesis-property agents (black line) identify the best ma-

terial in 8 experiment design, execution, and analysis itera-

tions. The more advanced agents show a dramatic improve-

ment at lower iterations, with the agents sharing only data 

coming close to the best material in 7 iterations and the 

agents with joint decision making coming close to the best 

material in only 4 iterations. For the significantly more com-

plex Challenge 2, knowledge of the phase boundary loca-

tions provides a significant boost to both types of data shar-

ing agents bringing them close to the optimal material within 

6 iterations while one of the non-sharing agents got stuck in 

a local optimum. 

Figure 4B1 and 2 show the 95 % confidence intervals for 

the performance mean for each architecture and for each 

challenge over ten runs. Data sharing provides a significant 

performance boost for both challenges and joint decision 

making provides a moderate performance boost for chal-

lenge 2. Figure 4C displays an example of acquisition func-

tion combination. Figure 4D displays example functional 

property predictions from FP agents after 10 iterations under 

the various architectures shown in Figure 3. In this case, one 

of the non-data sharing agents (shown in Figure 4(D2)) iden-

tifies the optimal material despite operating under the incor-

rect assumption that the functional property has a uniform 

behavior (covariance length scale) across the entire compo-

sition space. However, this result is less robust than either 

of the Data Sharing architectures as evidenced for Challenge 

2 (shown in Figure 4(D1)), where the mean performance for 

the independent architecture fails to find the optimal mate-

rial after 10 iterations. Comparatively, both the FP agents 

with Data Sharing (seen in Figure 4(D3)) and Data Sharing 

and Joint Decision Making (seen in Figure 4(D4)) find the 

optimum within the 10 iterations. Furthermore, agents with 

Data Sharing both collect many data points near the opti-

mum within the 10 iterations, suggesting the robustness of 

this behavior.     

Discussion 

This preliminary work demonstrates the different perfor-

mance achievable using diverse autonomous laboratory ar-

chitectures. For these simple challenges, agent-agent data 

sharing and joint decision making performed better than 

only data sharing, which itself performed better than inde-

pendent agents. The presented framework can be extended 

for diverse research possibilities. For example, one can in-

vestigate: the impact of agent heterogeneity in learning and 

decision-making capabilities; the relationship between 

agent-facility architecture and challenge type and difficulty; 

as well as agent-agent interactions. This latter possibility in-

cludes investigating agents with internal representations of 

other agents (e.g., expected beliefs and actions), adversarial 

agents capable of introducing poisoned data or models to 

throw off their competitors, and collaborative agents work-

ing together to improve the certainty of their individual re-

sults (i.e., cooperative validation). 

Furthermore, just as multi-agent frameworks have been 

used to study markets24 and political systems25, the MULTI-

TASK autonomous laboratory framework provides an op-

portunity to model the interactions of physical scientists. 

The framework can be used to evaluate the impact of vary-

ing scientist capabilities and behaviors, their facilities, and 

their scientific challenges. MULTITASK can then be used 

to investigate how scientist-scientist interactions, resource 

and instrument limitations, and others scientific factors im-

pact learning, decision making, and discovery. 

Experimental Procedures 

Resource Availability 

Lead Contact: A. Gilad Kusne, aaron.kusne@nist.gov  

Materials Availability: No materials were produced in this 

work. 



Code and Data Availability: Both code and data are avail-

able on Github (https://github.com/KusneNIST/MULTI-

TASK_Matter) and are part of the upcoming NIST Hermes 

library to be found at https://pages.nist.gov/remi/ 

Agents: Independent Learning 

Independent phase mapping is performed by first cluster-

ing the materials 𝒙𝑠 with collected Raman data using Spec-

tral Clustering with a cosine measure applied to the Raman 

data (here intensities measured at different Raman shift val-

ues form individual vectors. The cosine measure is applied 

between vectors to define dissimilarity). The result is an ap-

proximate phase region labels 𝒚𝑠 for each sample. A full 

Bayesian extrapolation of phase region knowledge is then 

performed using Bayesian inference. For Bayesian infer-

ence step 𝑖 two change points values 𝒄𝑖 = {𝑐𝑖,1, 𝑐𝑖,2} are 

sampled uniformly over the composition domain. These 

change points are then used to define a categorical distribu-

tion 𝑴𝑠  for the structure measured materials 𝒙𝑠 with the 

boundary between categories defined by the change points, 

using one-hot encoding. The sum log likelihood 𝐿𝑠  of the 

observed phase region labels, given the categorical distribu-

tion is then computed. The set of Bayesian inference sam-

ples 𝑪 = {𝒄𝑖} approximate the posterior probability for 𝒄. 

The samples are then averaged to form a posterior probabil-

ity for class membership over the full range 𝑿. This Bayes-

ian inference operation is performed using the Pyro*26 pack-

age and allows for probabilistic structure labels as inputs. 

 

Bayesian inference step 𝑖: 
𝒄𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑿) 

𝑴𝑖,𝑠 =  𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝒄𝑖 , 𝒙𝑠)  

𝐿𝑖,𝑠 = ∑ ln[𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝒚𝑠(𝑗)|𝑴𝑖,𝑠)]

𝑗

 

Bayesian analysis 

𝑃𝑴 = mean[𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝒄𝑖 , 𝑿)] 
 

𝑃𝑴 the posterior for membership probability will tend to 

have greater uncertainty at the unknown changepoints. 

Independent functional property regression is performed 

using the Matern52 kernel over the composition domain 

with the standard Gaussian process regression function us-

ing the GPFlow package27 for materials 𝒙𝑓 with measured 

functional properties 𝒚𝑓. The output is a Bayesian Gaussian 

process with an estimate of the most likely 𝒚(𝒙) paired with 

quantified uncertainty. 

Agents: Multimodal Learning 

A custom Bayesian inference-based, full Bayesian core-

gionalization function is used to combine the tasks of phase 

mapping and materials property regression. First samples 

with Raman are clustered as with the independent phase 

mapping. The cluster labels define potential phase regions. 

Within a Bayesian inference model, change points are sam-

pled and converted to a categorical distribution to compute 

the likelihood of the observations given the samples, as in 

the independent phase mapping. The previous model is ex-

tended by using each defined categorical region (bounded 

by either a change point or the edge of the search space) to 

define a phase region 𝑟. The functional property in each 

phase region is represented by an independent radial basis 

function kernel Gaussian process, with Bayesian inference 

sampled set of parameters 𝝈𝑖,𝑟: 𝑙𝑖,𝑟  kernel length scale, 𝑠𝑖,𝑟 

kernel standard deviation, 𝑠𝑖 noise standard deviation – here 

it is assumed the measured noise is the same across all phase 

regions. Together, 𝐺𝑃𝑖,𝑟 the phase-region-bound GPs form 

𝐺𝑃𝑖  a piecewise GP. The likelihood is then computed for the 

observed functional property data. Bayesian inference sam-

pling is guided by the sum of likelihoods from functional 

property regression and phase mapping. 𝑃𝒚 the Bayesian 

posterior for the functional property is approximated from 

the Bayesian inference samples by drawing a set of subsam-

ples 𝒚𝐺𝑃 from each 𝐺𝑃𝑖  and computing a mean and standard 

deviation over the subsamples. The mean and standard de-

viation are then employed in a multivariate normal distribu-

tion (MVN). 

 

Bayesian inference step 𝑖: 
𝒄𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑿) 

𝑙𝑖,𝑟~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,20) 

𝑠𝑖,𝑟~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,20) 

𝑛𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.01, 0.1) 

𝑴𝑖,𝑠 =  𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝒄𝑖 , 𝒙𝑠)  

𝐿𝑠 = ∑ ln[𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝒚𝑠(𝑖)|𝑴𝑠 )]

𝑖

 

𝐿𝑓 = ∑ ∑ ln [𝑃 (𝑦𝑓
𝑟(𝑖)|𝐺𝑃𝑖,𝑟(𝒙𝑓

𝑟 , 𝒚𝑓
𝑟 |𝑙𝑖,𝑟 , 𝑠𝑖,𝑟 , 𝑛𝑖))]

𝑖𝑟

 

Bayesian analysis 

𝑃𝑴 = mean[𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝒄𝑖 , 𝑿)] 
𝒚𝐺𝑃𝑖

~𝐺𝑃𝑖 

𝑃𝑦 ≈ MVN(mean[𝒚𝐺𝑃|𝒊], std[𝒚𝐺𝑃|𝒊] ) 

Agents: Independent Decision Making 

PM agents, which are focused on learning the composi-

tion-structure relationship, select subsequent compositions 

based on entropy over 𝑃𝑴. FP agents, which are focused on 

learning composition-property relationship use Gaussian 

Process Upper Confidence Bounds29 (GP-UCB) given by 

argmaxx[𝜇 + 𝜎√ln(𝐷𝑛2𝜋2)/3𝜆]. Here, μ and σ are the GP 

mean and standard deviation, respectively; n is the current 

iteration number; at each iteration a grid of D compositions 

is selected to search over; λ is a predefined constant, here set 

to 0.1. 



Agents: Joint Decision Making 

For this demonstration, each FP agent 𝑘 takes their initial 

GP-UCB acquisition function 𝛼𝑘 and combines it with �̅�𝑝𝑚 

the mean of the acquisition functions of the PM agents 

through the scheduled, weighted function:  𝑤𝛼𝑘 + (1 −
𝑤)�̅�𝑝𝑚. By combining acquisition functions focused on 

function property optimization with identification of 

changepoints, the combined functional property acquisition 

function will have greater utility near the phase boundaries. 

In other words, investigating material 𝑥 has greater desira-

bility if either it is associated with greater likelihood of be-

ing a change point location, or being the location of a func-

tional property maximum. Here the weight 𝑤 is given by 

𝑤 = min[max[𝒔𝑐𝑝], 2]/ 2, where the probability of each 

changepoint is represented by a normal distribution 

𝑁(𝜇𝑐𝑝, 𝑠𝑐𝑝) where 𝜇𝑐𝑝 is the mean and 𝑠𝑐𝑝 the standard de-

viation, and 𝒔𝑐𝑝 is the set of standard deviations for all 

changepoints. The value of 2 is used to provide a bound for 

the desired changepoint uncertainty through its standard de-

viation. As we have computed a probability for the location 

of each changepoint, this knowledge can be further ex-

ploited if one assumes functional property extrema occur at 

either the edge or center of a phase region using a function 

similar to that of [11].  

Data Repositories 

Each data repository is designed as an object with a Pan-

das DataFrame-based database and operational functions for 

common tasks such as adding and updating entries. 

Discrete Events and Resources 

The discrete events and resources are built using the Simpy 

library30. Measurement times and synthesis times are set to 

1 time unit.  
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Figures: 

 

 
Figure 1. Visual language for presenting framework implementations. A) implementation diagram including representation of 

the physical lab (blue region) and the software (green region). The legend can be found to the right of the figure. Connections 

between objects indicate information or sample flow paths. The physical lab consists of synthesis, structure measurement, and 

functional property instruments, a sample repository, and a human structure expert. Edges marked with ‘∎’ indicate sample 

paths. The software consists of agents and a data repository. Edges indicate paths for data transfer and the icon ► indicates 

additional sharing of acquisition function with directionality pointing from leader to follower. If both directions are present, 

each agent incorporates the others acquisition function data. B) The common ‘plate’ representation [22] can be used to indicate 

a number (here, M) of identical units. 

 

 
Figure 2. The two materials optimization challenges. The materials data challenge is drawn from the perovskite oxide material 

system as characterized by [22] for piezoelectric response and structure. Data for samples near the Bi1-xSmxFeO3 edge of this 

composition space is shown. A1) The functional property challenge is to identify the maximum value of the piezoelectric 

coefficient d33 (pm/V) (maximum indicated with red dot) and the associated composition. This parameter is strongly dependent 

on the phase diagram as indicated by the maximum located near the boundary between phases (2) and (3). The maximum 

occurs with a single peak which extends the entire shown composition range. A2) A more complex synthetic example where 

the target functional property peaks near the second phase boundary and is characterized by a narrow peak. B) Raman spectra 

for samples in the phase regions (1-3) are shown along with the lattice space groups present. 

 



 
Figure 3. Diagrams for portions of facility units. Here we use the plate notation with M multiples. A) The physical lab portion 

of the facility unit consists of a sample repository and the following instruments: sample synthesis, Raman-based structure 

measurement, and d33 functional property measurement. One sample repository is used for the M repeated objects. B) The 

software portion of the facility unit, containing two independent agents, agent1M:PM focused on synthesis-structure relationship 

(i.e., phase map) and agent2M:FP focused on the synthesis-property relationship. C) an alternative software portion where 

agents share sample data through the data repository. All agents share the same data repository. D) an alternative software 

portion where agents share sample data and acquisition functions. All agents share the same data repository. 

 

 
Figure 4. Materials optimization performance for different agent architectures. Materials optimization for  A1) one example 

run of challenge 1 and, A2) challenge 2. Performance is shown using % minimum regret. B1 and B2 show the 95 % confidence 

interval for the performance mean over ten runs for each challenge. The insets present the percent Fowlkes Mallow score for 

the corresponding phase mapping. Example of combining acquisition functions after 5 data points are collected: (C1) Before 

combination, using Gaussian Process Upper Confidence Bounds for agent FP1, (C2) entropy acquisition functions for 2 phase 

mapping agents (PM1, PM2), (C3) combined acquisition function with increased desirability for compositions that impact both 

phase mapping and functional property optimization. D) Example functional property predictions for Challenge 2 after 10 

iterations: of (D1) FP1 in the Independent architecture from Fig. 3B, where knowledge of the phase diagram is not employed 

and a single functional behavior is assumed across the composition search space, (D2) of agent FP1 for the Data Sharing 



coregionalization architecture from Figure 3C and (D3) of agent FP1 for the Data Sharing and Joint Decision Making core-

gionalization architecture with acquisition sharing from Fig. 3D. For these latter two, knowledge of phase boundaries allows 

for different functional property behavior for each prediction phase region. 

 

 


