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Abstract 

 

Significance: Mueller matrix polarimetry (MMP) and spatial frequency domain imaging (SFDI) are wide-field optical 

imaging modalities that differentiate tissue primarily by structure alignment and photon transport coefficient, 

respectively. Because these effects can be related, combining MMP and SFDI may enhance tissue differentiation 

beyond the capability of each modality alone. 

 

Aim: An instrument was developed to combine MMP and SFDI with the goal of testing whether it enhances contrast 

of features in reflection mode. 

 

Approach: The instrument, employing liquid crystal elements for polarization control, a digital light processing 

projector for generating sinusoidal illumination patterns, and a digital camera for imaging was constructed. A 

theoretical analysis shows that the spatial frequency domain Mueller matrix is complex-valued and does not follow 

the same behavior as a regular Mueller matrix. Images were acquired from an anisotropic tissue phantom, an optical 

fiber bundle, and cerebellum, thalamus, and cerebrum tissues.  

 

Results: The measurement results suggest that singly scattered, few scattered, and diffusely scattered photon paths 

can be distinguished in some of the samples investigated.  The combined imaging modality yields additional spatial 

frequency phase information, which highlights paths having only a few scattering events. 

 

Conclusions: The combination of MMP and SFDI offers contrast mechanisms inaccessible by each modality used 

alone. 
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1 Introduction 

The Mueller matrix characterizes the polarization-sensitive reflection or transmission 

properties of a material for a given optical path.1,2 From the Mueller matrix, specific polarimetric 

properties, such as retardance, diattenuation, and depolarization, can be determined. Highly 

scattering materials, such as biological tissues and optical phantoms intended to mimic them, 

generally exhibit a strong depolarizing response.3 Retardance and diattenuation can be observed 

in anisotropic media, such as connective tissue, muscle, and brain tissue.4-9 Mueller matrix 

measurements in transmission can be interpreted in terms of a differential formalism yielding 

birefringence or diattenuation.6,10-12 Coherent Stokes vector and Mueller matrix methods in 

transmission have shown differentiation between structures in different biological tissues.13-18 

Changes in retardance and diattenuation can reflect disruptions in connective tissue, and Mueller 

matrix polarimetry (MMP) has been shown to be useful for detecting changes in collagen 
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alignment, such as in cervixes during pregnancy or cancer.4,5,19 MMP is commonly conducted 

using full field illumination, allowing it to characterize a large sample region. The measured 

Mueller matrix results from all the paths the light takes, including those that have penetrated deeply 

into the sample. Biological tissues, however, are rarely uniform in their optical properties 

throughout a volume,20 and discrimination between contributions from surface and deep tissues 

can be important. Organization of structures is important in distinguishing healthy and diseased 

tissue, and MMP is particularly sensitive to changes in structural organization.19 One issue with 

MMP is that deeply penetrating photons can impede detection of those photons that have only 

interacted with shallow tissues. Confocal MMP imaging has been one technique that has been 

attempted to circumvent this issue.21,22  

Spatial frequency domain imaging (SFDI) has the potential for controlling the penetration 

depth of investigating photons.23 In SFDI, an incoherent sinusoidal spatially periodic pattern is 

projected onto the material, and the amplitude of the reflected modulation is recorded as the phase 

of that pattern is varied.  In this manner, only photons whose path lengths are shorter than the 

period of the pattern are sensed, making depth sensitivity possible. A high spatial frequency can 

mitigate the amount of noise in an image by reducing the multiply scattered photons detected in 

favor of singly scattered photons and providing better image contrast.23,24 Like MMP, SFDI 

provides full field imaging, allowing for a macroscopic sample area to be investigated. 

Measurements of the polarization of light scattered a distance from a point of illumination have 

been performed in the past, but the method is less amenable to full field imaging.25 Since SFDI is 

typically operated in reflection mode, it can be employed non-invasively.  

In this paper, we describe the combination of SFDI and MMP imaging and present some 

example measurements. While polarized SFDI has been studied in the past,24,26 we expand on this 

idea by measuring full Mueller matrices in the spatial frequency domain (SFD). In terms of the 

instrumentation, combining SFDI with MMP is relatively straightforward, as they share a number 

of components, and each modality only needs the addition of those specific to the other. Both 

modalities are also inexpensive compared to some other imaging modalities, such as confocal 

imaging or optical coherence tomography. By blending these methods, we combine the structural 

sensitivity of MMP with the photon path length selectivity of SFDI.   

This work expands on two previous studies,27,28 which first explored this combination of 

modalities, by improving upon the data acquisition and analysis and expanding the range of 

materials studied. For example, a number of details need to be addressed to ensure that unwanted 

artifacts do not appear. In addition, it is found that a SFD Mueller matrix differs from a regular 

Mueller matrix, in that it does not follow the same rules and is complex-valued. 

In Section 2, we develop the theory associated with the combined SFDI and MMP modalities. 

In Section 3, we describe the instrumentation for our measurements. Our data reduction methods 

are then outlined in Section 4. The samples we use to demonstrate the measurements are described 

in Section 5. In Section 6, we show the results of the measurements. We discuss the combined 

method in Section 7 and make some conclusions in Section 8. 

 

2 Theory 

SFDI is often interpreted using an approach based upon the diffusion equation.23 However, 

this approach does not account for singly scattered radiation and is not valid when the spatial 

frequency is on order of or greater than the transport coefficient. Polarization imaging often is 

particularly sensitive to the contributions of singly scattered radiation, and as a result, we find that 

a different approach is needed. In the theory of spectrophotometry,29,30 the bidirectional scattering-
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surface reflectance distribution function (BSSRDF) 𝑆 expresses the relationship between the 

radiance d𝐿r reflected from a surface at a location 𝑥, 𝑦 and propagating in a direction 𝜃, when 

radiant power dΦi = 𝐸i d𝑥′ d𝑦′ (𝐸i is the incident irradiance) is incident from a direction 𝜃′ onto 

the surface at a location 𝑥′, 𝑦′. When considering polarization, the radiation properties are naturally 

represented as 4-element Stokes vectors, and the BSSRDF as a 4×4 Mueller matrix. Thus, we make 

the transformation to Stokes vector quantities, d𝐿r → d𝐋r, dΦi → d𝚽i, and 𝐸i → 𝐄i, the Mueller 

matrix 𝑆 → 𝐒, and express this relationship as  

d𝐋r = 𝐒 d𝚽i = 𝐒 𝐄i d𝑥′d𝑦′. (1) 

In Eq. (1), we abbreviate d𝐋r =  d𝐋r(𝑥, 𝑦), d𝚽i = d𝚽i(𝑥′, 𝑦′), 𝐄i = 𝐄i(𝑥′, 𝑦′), and 𝐒 =

𝐒(𝑥, 𝑦; 𝑥′, 𝑦′). We also drop the directional coordinates 𝜃 and 𝜃′, as well as the wavelength 

dependency, as they are generally fixed in our measurements. While the phenomenological 

BSSRDF does not describe the physics of the scattering process, it successfully describes the 

radiation redistribution caused by the material under conditions of incoherent illumination.  It is 

also straightforward to model using Monte Carlo methods.31-33 It should be borne in mind that 

regular Stokes vectors obey the inequality, for example, 

𝐿r,1 ≥ (𝐿r,2
2 + 𝐿r,3

2 + 𝐿r,4
2 )

1 2⁄
, (2) 

where 𝐿r,𝑗 is the 𝑗th element of 𝐋r. Stokes vectors that obey Eq. (2) are either fully polarized (in 

the case of equality) or the sum of two (in the case of inequality) fully polarized Stokes vectors. 

The Mueller matrix 𝐒 obeys the requirement that it must map the space of valid Stokes vector 

radiant powers onto the space of valid Stokes vector radiances. In addition, 𝐒 must satisfy the 

Cloude requirement that it be the convex sum of up to four non-depolarizing Jones-Mueller 

matrices.34,35  

In SFD Mueller matrix imaging, we illuminate the surface with an incoherent Stokes vector 

irradiance 

𝐄i(𝑥′, 𝑦′) = 𝐄0[1 + cos(2𝜋𝑓𝑥′ + 𝜙)], (3) 

where 𝑓 is the spatial frequency, 𝜙 is a phase, and 𝐄0 is a Stokes vector irradiance. Note that we 

could generalize 𝑓 to include the direction along which illumination is oriented, and in some of 

our measurements, we modulated the irradiance along 𝑦′. The radiance emitted by the surface is 

determined by integrating Eq. (1): 

𝐋r = ∬ 𝐒 𝐄i 𝑑𝑥′𝑑𝑦′ . (4) 

If we insert the irradiance Eq. (3) into Eq. (4), and assume that the material is uniform [so that 

𝐒(𝑥, 𝑦; 𝑥′, 𝑦′) = 𝐒(𝑥 − 𝑥′, 𝑦 − 𝑦′)], the radiance is given by 

𝐋r = 𝐟r𝐄0 + ∫ 𝐒1(𝑥 − 𝑥′)𝐄0 cos(2𝜋𝑓𝑥′ + 𝜙) 𝑑𝑥′ , (4) 

where the line spread function is given by  

𝐒1(𝑥 − 𝑥′) = ∫ 𝐒(𝑥 − 𝑥′, 𝑦 − 𝑦′) 𝑑𝑦′ , (5) 

and 𝐟r is the Mueller matrix bidirectional reflectance distribution function (BRDF).  

In SFDI, we vary the phase 𝜙 of the irradiance and measure the modulation of the radiance. 

To demodulate the radiance, we evaluate 

�̃�r(𝑓) =
1

𝜋
∫ 𝐋r exp(2𝜋i𝑓𝑥 + i𝜙) 𝑑𝜙

2𝜋

0

. (6) 

If we insert Eq. (4) into Eq. (6), and perform the integral, we obtain 
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�̃�r(𝑓) = ∫ 𝐒1(𝑥 − 𝑥′)𝐄0 exp[2𝜋i𝑓(𝑥 − 𝑥′)] 𝑑𝑥′ . (7) 

The SFD Stokes radiance �̃�r(𝑓) does not obey the same inequality Eq. (2) as the regular Stokes 

vector 𝐋r, because it is not a convex sum of regular Stokes vectors. Furthermore, it can be complex-

valued. Negative radiance can be interpreted as radiance emitted from locations in the troughs of 

the irradiance, while complex parameters result from the polarization of radiation emitted to one 

side being different from that emitted from the other. At 𝑓 = 0, the integral in Eq. (7) evaluates to  

�̃�r(0) = 𝐟r𝐄0. (8) 

We thus define the SFD BRDF 

𝐅r(𝑓) = ∫ 𝐒1(𝑥 − 𝑥′) exp[2𝜋i𝑓(𝑥 − 𝑥′)] 𝑑𝑥′ , (9) 

so that  

�̃�r(𝑓) = 𝐅r(𝑓)𝐄0. (10) 

We notice a couple interesting properties of the matrix 𝐅r(𝑓). Because the quantity is a Fourier 

transform of a regular Mueller matrix, it is not necessarily physically realizable as one. That is, 

Mueller matrices can only be safely added with positive coefficients. Matrices that are physically 

unrealizable have the property that they can over-polarize or yield negative power. If radiation is 

incident at one location and exits from another location, the SFD Stokes radiance and the SFD 

BRDF may not follow the customary rules that apply to regular Stokes vectors or Mueller matrices. 

We use the term SFD Mueller matrix, or SFD BRDF to represent the generalization of the Mueller 

matrix and emphasize that its properties at non-zero spatial frequency differ from those of regular 

Mueller matrices.  

A regular Mueller matrix can be expressed34,35 as a covariance matrix 𝐇, whose ordered 

eigenvalues obey 𝜆0 ≥ 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0. The polarimetric purity indices36 

𝑃1 =
𝜆0 − 𝜆1

∑ 𝜆𝑖𝑖
, 𝑃2 =

𝜆0 + 𝜆1 − 2𝜆2

∑ 𝜆𝑖𝑖
, 𝑃3 =

𝜆0 + 𝜆1 + 𝜆2 − 3𝜆3

∑ 𝜆𝑖𝑖
 (11) 

obey the inequality 

0 ≤ 𝑃1 ≤ 𝑃2 ≤ 𝑃3 ≤ 1. (12) 

In the SFD, some of the eigenvalues 𝜆𝑖 can be negative or even complex-valued, and the 

polarimetric purity indices no longer obey the inequality in Eq. (12). In particular, 𝑃3 can be greater 

than unity. 

If the BSSRDF is asymmetric, i.e., 𝐒1(𝑥 − 𝑥′) ≠ 𝐒1(𝑥′ − 𝑥), then the matrix 𝐅r(𝑓) will be 

complex-valued. Note that the absolute phase of the signal is not necessarily known in an 

experiment. For example, for non-normal illumination and viewing, the surface topography and 

the depth of the scatterer can affect the overall phase of the image compared to the illumination.  

As a result, we correct the phase by requiring that the upper-left (11) element be real-valued. 

 

3 Instrumentation 

Figure 1(a) shows an illustration of the SFD Mueller matrix imaging system. Structured 

illumination is generated using a digital light processing (DLP) projector (Texas Instruments, 

model Lightcrafter 4500), which uses three light emitting diodes (LED) with wavelengths centered 

at 455 nm, 520 nm, and 630 nm as well as digital micromirror devices to pulse-width modulate 

the light source according to the image and settings sent to the device. All images in this study 

were taken using only the 630 nm LED, since using a single wavelength simplifies the operation 

of the instrument. This LED’s spectrum was measured to have a full width at half maximum 

(FWHM) of 16 nm centered at 628 nm. We used a 10 nm bandpass filter centered at 633 nm to 
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narrow the spectral width. The spectrum measured after applying the filter had a FWHM of 6.5 

nm centered at 632 nm. The illumination is approximately 20° from the sample surface normal. 

The DLP has 1140 pixels in the vertical direction and 912 pixels in the horizontal direction 

arranged in a diamond pattern [see Fig. 1(b)], with the rows being separated by half the distance 

of the columns and offset by half a pixel horizontally. In order to ensure that a horizontal or vertical 

sinusoidal projected pattern is commensurate with the array, to have a common number of phases, 

and to have a smoothly modulating pattern, spatial frequencies were restricted to those having 

periods with multiples of 3 pixels and 𝑁 = 6 phases were used, twice that necessary,37 providing 

some oversampling and improving complex-valued demodulation. The periods ∞, 24, 18, 12, 9, 

and 6 pixels on the projector correspond to f = (0, 1.2, 1.7, 2.5, 3.3, 5.0) cm−1 at the sample plane. 

Since 3 pixels are not truly commensurate with the array, demodulation was often poor and results 

from that spatial frequency are not presented. The projected sinusoidal pattern can be displayed in 

either the horizontal or vertical direction, both of which are used in this manuscript. An example 

image can be seen in Fig. 1(c), where a vertical sinusoidal pattern is used to illuminate a section 

of bovine thalamus at 𝑓 = 5 cm−1. The total area illuminated by the projector at the sample plane 

(> 17 cm diameter) is much larger than the imaged area (1.1 cm × 1.1 cm) and illuminates 

surrounding objects and the support structure. To avoid the effects of stray light, especially for 

𝑓 = 0 illumination, the projected pattern was cropped in software to illuminate only the area close 

to the sample.  

The sample is imaged normal to the sample with a 50 mm focal length objective (Edmund 

Optics, model 59-873) onto a monochrome 16-bit 2048 × 2048 scientific complementary metal 

oxide semiconductor (sCMOS) camera with (6.5 × 6.5) µm2 pixel area (PCO, model pco.panda 

4.2). The system has a full field of view at the sample plane of 7.5 cm × 7.5 cm, though all images 

presented here are cropped to 1.1 cm × 1.1 cm (300 × 300 pixels). The camera is synchronized to 

the projector, and its exposure time is set as a multiple number of milliseconds. Thus, to avoid 

interference of the camera exposure time with the pulse width modulation of the projector (frame 

rate 120 s–1), the camera exposure time was chosen to be a multiple of 25 ms (3 × 8.33 ms).  

The polarization state generator (PSG) and the polarization state analyzer (PSA) each consist 

of a polarizer and a pair of nematic liquid crystal (LC) retarders (Meadowlark Optics). The axes 

of the LCs are aligned nominally at 27.4° and 72.4° with respect to the polarizer, which is the 

optimum configuration.38 Each of the four LCs were switched between two retardance states 

(determined by applied voltage) providing the 16 different combinations needed to measure a full 

Mueller matrix. The polarimeter was calibrated with the eigenvalue method described by Compain 

et al. using three samples:39 air (no sample, in transmittance), a Glan-Thompson polarizer (in 

transmittance), and a Si wafer with an approximately 1000 nm thick SiO2 layer acting as a mirror 

with retardance and diattenuation (in reflection with an incident angle of 60°). This eigenvalue 

method yields a calibration that is valid for both transmission and reflection measurement 

geometries. The 10 nm spectral bandwidth filter, mentioned earlier, was necessary to achieve an 

acceptable calibration due to the native bandwidth of the light source producing a reduction matrix 

with high dispersion. The standard deviation of all the reference measurements across all elements 

of the normalized Mueller matrix was 0.014. We believe we can use this standard deviation as the 

standard uncertainty in subsequent measurements. Control of the projector, the LCs, and the 

camera was performed using a program written in MATLAB (MathWorks) software.  

The final array of 672 images (7 spatial frequencies × 6 phases × 16 PSG/PSA combinations) 

took 4.2 min to acquire, if only imaged with one spatial frequency orientation. This time was 

significantly improved from the previous iteration of the instrument, mostly due to the use of a 
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faster camera and synchronization of it with the projector27. The response and settling time of the 

liquid crystal retarders is the predominant factor limiting acquisition time.  

Figure 1(c) shows one acquired image, having a specific phase and PSG/PSA combination, 

for one of the samples (bovine thalamus, described later) for vertical sinusoidal illumination at 

𝑓 = 5 cm−1. Most of the phase variation observed in Fig. 1(c) is a result of the topography and 

shape of the specimen. The lack of sharp optical contrast is a result of diffuse scatter in the medium. 

 

4 Data Reduction 

In this work, we perform measurements of the radiance (an image) 𝐿r,𝑗𝑘 for a set of 16 

combinations of polarization state generator and analyzer configurations (denoted by index 𝑘) for 

each of 6 illumination phases (denoted by index 𝑗). We begin by demodulating the signal by 

substituting the integral in Eq. (6) with a sum, ignoring the overall phase factor exp(2𝜋i𝑓𝑥), 

�̂�r,𝑘(𝑓) =
1

𝑁
∑ 𝐿r,𝑗𝑘(𝑓) exp (i

2𝜋𝑗

𝑁
)

𝑁

𝑗=1

, (13) 

where 𝑁 is the number of phases. Note that this demodulation scheme preserves phase, unlike that 

typically used for SFDI, which only measures amplitude.23 We then apply a data reduction matrix 

𝐑𝑘 to the �̂�r,𝑘(𝑓) to yield the complex SFD Mueller matrix  

𝐌(𝑓) = ∑ 𝐑𝑘�̂�r,𝑘(𝑓)

16

𝑘=1

. (14) 

The data reduction matrix is determined from the eigenvalue calibration procedure.39 The SFD 

Mueller matrix carries with it the phase factor exp(2𝜋i𝑓𝑥), in addition to phase that results from 

topography and varying depth. We thus remove the overall phase by forcing 𝑀11 to be real-valued 

by applying the transformation  

𝐌(𝑓) ← 𝐌(𝑓)
|𝑀11(𝑓)|

𝑀11(𝑓)
. (15) 

Finally, the SFD Mueller matrix BRDF 𝐟r(𝑓) can be related to the measured matrix27 𝐌  

𝐅r(𝑓) = 𝐌(𝑓) ×
𝑓r

d

𝜋𝑀11
d (0)

×
𝑀11

r (0)

𝑀11
r (𝑓)

, (16) 

where the first correction factor uses a measurement 𝐌d(0) of a diffuse reflector of known BRDF 

𝑓r
d in the same incident and viewing geometry to provide a scale in inverse steradians, and the 

second correction factor uses a measurement of 𝐌r of a non-diffusive surface, such as a rough 

metal, to account for the modulation transfer function of the instrument. 

Further analysis of the SFD Mueller matrix is complicated by the fact that the matrix is not a 

convex sum of Jones-Mueller matrices and that it can be complex-valued. In those cases where the 

imaginary part of the matrix is negligible and the matrix is realizable, we can apply the Lu-

Chipman decomposition,40 expressing the matrix as the ordered product of a diattenuator 𝐌𝐷, a 

phase retarder 𝐌𝑅, and a depolarizer 𝐌Δ: 

𝐌 = 𝐌Δ𝐌𝑅𝐌𝐷 . (19) 

From these individual elements, we can extract the linear diattenuation, diattenuation orientation, 

linear retardance, retardance orientation, and depolarization.1 

The diattenuation 𝐷 shown in this paper is on a scale from 0 to 1, where 𝐷 = 0 indicates that 

the material has no selectivity of the orientation of the polarization plane of linearly polarized light, 

while 𝐷 = 1 indicates one polarization state is entirely attenuated. Anisotropic materials often 
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display some degree of diattenuation. In addition, the 20° incident angle geometry can impose 

some effective diattenuation.  

 

5 Samples 

We performed measurements on five samples. The first sample was a phantom with an 

anisotropic scatterer embedded at a graded depth in an isotropic scattering medium. The phantom 

fabrication procedure is detailed elsewhere,41 but in brief, polydimethylsiloxane (PDMS) 

(Corning, model Sylgard 184 Elastomer) was used as a base to create the scattering and absorbing 

media. Titanium dioxide (Atlantic Equipment Engineers, TI-602, size 0.3 µm to 1.0 µm) and 

carbon black particles (Atlantic Equipment Engineers, FE-603, size 1 µm to 2 µm) were mixed 

within the PDMS to act as scatterers and absorbers, respectively. The scatterer and absorber were 

kept in stock suspensions of 1 % mass ratio TiO2 powder in pure PDMS and 0.1 % mass ratio 

carbon black powder in pure PDMS, respectively. The absorption coefficient (0.4 cm−1) and the 

reduced scattering coefficient (7.5 cm–1) were determined from diffuse reflectance and 

transmittance measurements, together with an inverse adding-doubling algorithm.42 Para-aramid 

fibers obtained from cladding of furcation cables (Thorlabs, FT030) were used as anisotropic 

scatterers. The fibers were fixed to a glass microscope slide with adhesive. The slide was then 

inclined in a Petri dish acting as a mold and filled with the PDMS solution. The para-aramid fibers 

were set so that one end of the fibers was exposed while the other end was submerged. In this way, 

the thickness of the scattering/absorbing PDMS media above the fibers gradually increases from 

0 mm to 4 mm from one end of the slide to the other. Only a portion of the slide was imaged, so 

the results we present had fibers embedded less than about 1 mm. A glossy white ceramic tile was 

used as the background when this sample was imaged. The use of the tile was chosen to 

demonstrate the reduced impact of a highly depolarizing background. 

Our second sample was an optic fiber bundle (image conduit). The fiber bundle had a diameter 

of 3.2 mm, contained 50 419 individual fibers having 12 µm cores, and was approximately 25 mm 

long (Edmund Optics, model 53-839). The individual fibers are expected to act as anisotropic 

scatterers and scatter primarily perpendicular to the fiber axes. The fibers may also exhibit some 

form birefringence or diattenuation. Furthermore, light entering the bundle may internally reflect 

and be reemitted from a different location. We imaged the fiber bundle resting on its side upon the 

glossy white ceramic tile.  

The remainder of our samples were mammalian brain tissues: a caprine (goat) cerebellum, a 

bovine (cow) thalamus, and a bovine cerebrum. The brains were acquired intact from a local Halal 

abattoir. Sections of brain were then excised and placed in a Petri dish for imaging within an hour 

of acquiring the brains. The samples were all greater than 1.5 cm thick. 

 

6 Results  

 

6.1 Para-aramid fiber embedded in PDMS 

Figure 2 shows a subset of the SFD Mueller matrix images for the para-aramid fiber embedded 

in the PDMS phantom (full datasets are available online, see Data Availability below). Figure 2(a) 

shows the Mueller matrix BRDF at 𝑓 = 0 cm−1, while Fig. 2(b-c) show the real and imaginary 

parts, respectively, of the SFD Mueller matrix BRDF illuminated with a horizontal sinusoidal 

pattern at 𝑓 = 5 cm−1. All but the 𝑀11 terms are shown normalized to their respective 𝑀11, which 

are forced to be real-valued.  As 𝑀11 is defined to be real, it is zero in the imaginary part of the 
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SFD Mueller matrix [see Fig. 2(c)]. The thickness of the PDMS is very thin at the bottom of the 

images and increases to about 1 mm at the top of the image. The para-aramid fibers, which are 

embedded within the PDMS phantom, stretch vertically through the center of the image and are 

most visible at the bottom, where the PDMS is thinnest and some of the fibers are exposed at the 

edge. The 𝑀11 at 𝑓 = 5 cm−1 has lower intensity than that at 𝑓 = 0 cm−1, which is typical for 

SFDI and is due to the filtering of diffusing photons. The imaginary part of the 𝑓 = 5 cm−1 SFD 

Mueller matrix is negligible for this sample, suggesting that the scattering is primarily symmetric. 

The real part of the 𝑓 = 5 cm−1 SFD Mueller matrix has somewhat higher contrast than its 𝑓 =
0 cm−1 counterpart. Most noticeably, the vertical extent to which the fibers can be observed in the 

SFD Mueller matrix is increased at the higher spatial frequency. The spatial frequency imaging 

filters the diffusing photons, which are more depolarizing, yielding the increased image contrast 

in the SFD Mueller matrix elements. Because the scatter from the fibers is more dependent upon 

polarization than the scattering from the PDMS, the single scattering from the fibers can be 

observed from deeper in the material. 

The SFD Mueller matrix at  𝑓 = 5 cm−1 in Fig. 2(b) is mostly, but not entirely, a physically 

realizable regular Mueller matrix (as determined by evaluating the eigenvalues of the covariance 

matrix). As pointed out earlier in Sec. 2, nonrealizability occurs when there is significant radiance 

emitted from one location when irradiance is applied at another. Since most of the image contains 

realizable matrices, we can apply Lu-Chipman decomposition to them and determine local 

diattenuation. Figure 3 shows the local diattenuation as a function of spatial frequency. The 

background regions shows some diattenuation, which we attribute to the off-axis geometry of the 

measurement, while the fibers show additional diattenuation, which we attribute to their alignment. 

Included in Fig. 3 is a blue mask showing those areas of the image which are not realizable. As 

one can see, the area of the sample for which the PDMS layer is thinnest yields non-realizable 

behavior. We suspect that this occurs progressively in this region because the PDMS lies above a 

microscope slide, which separates the PDMS scattering medium from the diffusely scattering 

white tile under the slide. Note that the matrix is realizable in the region with the fibers. We believe 

that the fibers are more local scatterers, so that the signal from them is less dependent upon spatial 

frequency than that of the more diffusely scattering PDMS material. 

The length of the fiber that is visible in the diattenuation images extends deeper into the PDMS 

as the spatial frequency is increased. While SFDI is often used to reduce the probing depth, our 

observations suggests that the polarization information yields the opposite trend. Polarization 

preserving paths favor those which scatter the fewest times, and the combination of SFDI and 

MMP tends to enhance those paths.  

 

6.2 Optical fiber bundle 

Figures 4 and 5 show the SFD Mueller matrix BRDF measured for the optical fiber bundle at 

𝑓 = 0 cm−1  and 𝑓 = 5 cm−1, shown in the same manner as in Fig. 2, illuminated by the horizontal 

and vertical sinusoidal patterns, respectively. The image background is a glossy white ceramic. 

The results differ from those shown in Fig. 2 in that the SFD Mueller matrix has a significant 

imaginary component at the fiber bundle, especially when the spatial frequency pattern is oriented 

horizontally (see Fig. 4). The imaginary component arises, for example, because light incident on 

one side of the fiber bundle is emitted from the other side, both from scattering and from reflection 

inside the bundle. This behavior is less evident for the vertically oriented sinusoidal pattern (see 

Fig. 5), since this pattern selects light that is scattered and reflected horizontally, the opposite of 

the fiber bundle’s preferred scattering direction. 
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Figures 6 and 7 show the polarimetric purity indices (𝑃1, 𝑃2, and 𝑃3, described in Sec. 2) 

calculated using only the real part of the matrices at the different spatial frequencies and the 

horizontally and vertically patterned illumination, respectively. The color scale for Figs. 6–7 was 

chosen to highlight those values that are less than 1, compared to those greater than 1. Values 

greater than 1 signify that the SFD Mueller matrix is not a valid regular Mueller matrix. While 

the Mueller matrices at 𝑓 = 0 cm−1 are entirely realizable, as expected, the matrices in the 

location of the fiber bundle are not realizable for even the smallest non-zero spatial frequency for 

horizontal sinusoidal illumination (see Fig. 6). Starting from 𝑃1, values greater than one can be 

seen in the pixels that characterize the fiber bundle. The number of the non-realizable pixels can 

be seen to increase with 𝑃2 and 𝑃3, where a majority of the fiber bundle is greater than one. The 

fraction of pixels within the fiber bundle having polarization purity indices greater than one also 

increases with spatial frequency for all three polarimetric purity indices. For vertical sinusoidal 

illumination, the imaginary parts are much weaker, and the fiber bundle remains mostly 

realizable until about 𝑓 = 3.3 cm−1, where 𝑃3 becomes greater than 1 along the fiber bundle’s 

core (see Fig. 7). 𝑃3 of the fiber bundle is entirely greater than one by 𝑓 = 5 cm−1. The 

background ceramic tile does not show non-realizable behavior at the spatial frequencies shown. 

Due to the strong presence of non-realizable Mueller matrices measured from the fiber bundle 

itself and uncertainty as to how such matrices should be interpreted, further Mueller matrix 

decomposition was not performed. These results show that SFD Mueller matrix imaging has 

contrast mechanisms that are very different than those observed in either SFDI or MMP alone. 

 

6.3 Caprine cerebellum 

Figure 8 shows the SFD Mueller matrix BRDF images of the excised caprine cerebellum at 

𝑓 = 0 cm−1 and 𝑓 = 5 cm−1, shown in the same manner as in Fig. 2. The imaginary part of the 

normalized SFD Mueller matrix elements were multiplied by a factor of 5 so that their features 

would be more visible on the same color scale used for the real part of the SFD Mueller matrices. 

Due to the moisture present, the unevenness, and curvature of the surfaces in the excised tissue, 

some areas of specular reflectance could not be avoided during the measurement. These localized 

and saturated pixels were masked and are seen as white pixels in the SFD Mueller matrix images. 

Specular reflection was less of an issue in our previous samples, where we were better able to 

mitigate it.  

The branching structure observed in the images in Fig. 8 is white matter. Myelin sheaths that 

surround nerve fibers give those regions a different color and higher reflectance than the 

surrounding gray matter, which consists of cell bodies. The Mueller matrix at 𝑓 = 0 cm−1 [see 

Fig. 8(a)] shows less contrast between the white and gray matters compared to the SFD Mueller 

matrix at 𝑓 = 5 cm−1 [see Fig. 8(b)]. This difference in contrast is strongest between the 𝐹r,11 

elements of both spatial frequencies where the delineation between the two tissue types improves 

with greater spatial frequency.43 The outline of the white matter can be seen to various degrees in 

the other Mueller matrix elements at 𝑓 = 0 cm−1 but with less clarity compared to the higher SFD 

Mueller matrix elements. The gray matter in the real part of the SFD Mueller matrix at 𝑓 = 5 cm−1 

shows large magnitudes particularly along the matrix diagonal where the white matter maintains 

values close to zero.  
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Perhaps the most interesting feature for the cerebellum data is the imaginary component at 

𝑓 = 5 cm−1. While the white matter exhibits only real SFD Mueller matrix values (imaginary part 

close to zero), the gray matter shows a striking pattern in contrast. The SFD Mueller matrix 

becomes complex-valued when the scattering is directionally unbalanced. The striped patterns 

seen in the imaginary part of the SFD Mueller matrix data appear to wrap around the borders of 

the white matter and are believed to be related to anisotropic scattering from the highly reflective 

white matter towards the gray matter. As stated previously the white matter is comprised of nerve 

fibers wrapped in myelin sheathes, making the white matter much more anisotropic in structure 

compared to the gray matter.  The patterns observed in Fig. 8(c) show opposite signs above and 

below the white matter. For vertically oriented sinusoidal illumination, the pattern of opposite 

signs shows up left and right (not shown, but available in the online data). 

6.4 Bovine thalamus 

Figure 9 shows SFD Mueller matrix BRDF images from the excised bovine thalamus at 

𝑓 = 0 and 𝑓 = 5 cm−1. The change in texture seen at the bottom of the images is the white 

background beneath the Petri dish that the brain tissue is resting on. Similar to the caprine 

cerebellum, both white and gray matter are present in the image area. Structurally, the thalamus is 

a mass of gray matter at the center of the mammalian brain with myelinated axons branching 

internally and externally from it to reach the surrounding brain areas. In Fig. 9, the contrast 

between the white and gray matter is significantly greater at 𝑓 = 5 cm−1 compared to that at 𝑓 =
0 cm−1. As with the cerebellum data, the white matter maintains a mostly real-valued SFD Mueller 

matrix (imaginary part negligible) at 𝑓 = 5 cm−1. Interestingly, a marble pattern of white matter 

can be seen in the center of the gray matter of the 𝐹r,11 elements at 𝑓 = 5 cm−1 that is difficult to 

observe at 𝑓 = 0 cm−1. This white matter also maintains near-zero values in the SFD Mueller 

matrix element at 𝑓 = 5 cm−1. This is likely part of the external medullary laminae which are 

white matter structures that cover the lateral surface of the thalamus.44 Perhaps because the white 

matter is not so uniformly aligned in this sample, and because the spatial frequency is not high 

enough, there is not enough directional scattering to demonstrate as strong a pattern in the 

imaginary part of the SFD Mueller matrix compared to what was observed in the cerebellum data.  

em 

6.5 Bovine cerebrum 

Figure 10 shows SFD Mueller matrix images from the inner surface area of the excised bovine 

cerebrum at 𝑓 = 0 cm−1 and 𝑓 = 5 cm−1. Like the caprine cerebellum and the bovine thalamus, 

white matter and gray matter are distinguishable. At 𝑓 = 0 cm−1 the 𝐹r,11 image is dominated by 

white matter, except for the lower right section of the image. The SFD Mueller matrix at 𝑓 =
5 cm−1 shows areas of gray matter beneath the less dense sections of white matter that were not 

visible at 𝑓 = 0 cm−1.  The borders between the white and gray matter are stronger for this SFD 

Mueller matrix compared to the 𝑓 = 0 cm−1 Mueller matrix. This delineation is most apparent in 

the diagonal of the real part of the SFD Mueller matrix at 𝑓 = 5 cm−1, where the white matter 

retains a value close to zero and the gray matter makes up most of the imaginary component. 
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7 Discussion 

The SFD Mueller matrix images shown in Sec. 6 demonstrate contrast mechanisms that differ 

from those observed in either SFDI or regular Mueller matrix imaging. In most of our results, the 

SFD Mueller matrix has higher contrast as the spatial frequency is increased. This finding 

highlights how combining MMP with SFDI can facilitate measurements of the polarimetric 

properties of the surfaces of diffusively scattering materials, which is difficult to measure with 

MMP alone.  

There are other aspects of the results which we can point out and qualitatively understand. 

Scattering can be treated generally as the sum of contributions from single scatter, double scatter, 

and diffusive scatter (those paths that scatter three or more times). Single scatter should exhibit a 

flat SFD response, since the point spread function associated with it is highly localized. In addition, 

single scatter should yield a real-valued SFD Mueller matrix that obeys the realizability rules for 

regular Mueller matrices. We observe this in the PDMS-based scattering phantom in the region 

where the para-aramid fibers are only shallowly embedded (see Figs. 2 and 3).  

Diffusive scatter is expected to be highly depolarizing. Some polarizing behavior can arise 

from the polarization dependence of Fresnel transmission in and out of the material and the 

polarization dependence of the first and last scattering events.45  We can see this in the data, 

especially for the background materials (PDMS in Fig. 2 or ceramic in Figs. 4 and 5) in many of 

the images. Because the incident radiation is incident at a 20° angle and viewed from the surface 

normal, we observe diattenuation (as evident by negative values for 𝑀12) consistent with this 

geometry, where p-polarization has higher transmittance into the material. 

Double scatter involves the spatial separation between two scattering events. For horizontal 

sinusoidal irradiance, if the two scatter events are vertically displaced, there would be a phase 

imparted in the SFD image if there is more scattering upwards than downwards or vice versa. In 

unpolarized SFD imaging, it is impossible to separate phase shifts that occur due to topography 

from those that occur due to the directionality of the scatter. However, with SFD Mueller matrix 

imaging, when one polarization scatters more than another in a geometrically unbalanced fashion, 

these phase shifts can be distinguished. For example, consider the fiber bundle data shown in 

Fig. 5(c), where there is a strong imaginary component to the SFD Mueller matrix. From Fig. 6, 

the SFD Mueller matrix (as reduced to polarization purity indices) varies significantly with spatial 

frequency. This strong spatial frequency dependence results from the matching of the irradiance 

period with the dimensions of the fiber bundle and the multiple internal reflections in it. This effect 

does not occur as strongly when the sinusoidal irradiation is perpendicular to the fiber bundle 

(compare Fig. 6 to Fig. 7). Thus, SFD Mueller matrix imaging allows the directional scattering 

within a medium to be probed. 

These directional effects of the scattering can also be observed in the imaginary part of the 

SFD Mueller matrix measured from the various brain specimens, especially the caprine cerebellum 

shown in Fig. 8(c). While the imaginary part of the SFD Mueller matrix is weak in the regions 

containing white matter, it tends to have significant values in neighboring gray matter. For 

example, in Im 𝐹r,22, in areas immediately above the white matter, the values are negative, while 

in those below, the values are positive. The change in the sign above and below the white matter 

results from the displacement of the photon transfer being in opposite directions, with the 

polarization behavior otherwise being the same. These effects can be observed to a lesser extent 

in the bovine thalamus data in Fig. 9. However, because the length scales for the white matter 

features in the thalamus are smaller and the length associated with the spatial frequency is long, 

the effect is relatively weak.  
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At this time, the analysis is hampered by the lack of a framework for characterizing the 

resulting matrices. As mentioned in Sec. 2, the properties of a SFD Mueller matrix are not the 

same as a regular Mueller matrix, in that it does not express the relationship between a Stokes 

vector irradiance and a Stokes vector radiance. Because a SFD Stokes vector radiance does not 

follow Eq. (2) and because it is complex-valued, the SFD Mueller matrix does not have the same 

requirements as a regular Mueller matrix. Thus, it is not straightforward to apply decomposition 

methods, such as Eq. (19), to the results. It is expected that diattenuation angles and retardance 

angles could be extracted from data using these traditional methods, because rotation 

transformations are not expected to change in the SFD.  However, the current understanding of the 

mathematics of depolarization is intimately related to the requirement that the eigenvalues of the 

covariance matrix 𝐇 be positive. Thus, further work needs to go into developing the analysis 

infrastructure to fully interpret the results. 

 

 

8 Summary 

We demonstrate an imaging modality that combines MMP and SFDI. We demonstrate 

theoretically that the combined SFD Mueller matrix imaging at non-zero frequency is best 

described as a complex-valued matrix, having both phase and amplitude information and that this 

phase information can be differentiated from that caused by topography or shape. While this 

measurement method is very much in its infancy, we show that it has potential for distinguishing 

the polarization behavior for different photon path lengths and scattering directions in a material. 

This imaging modality may have applications in the field of biomedical imaging where thick and 

structurally complex tissues are commonplace. Depending on the tissue type, selecting for photon 

path length can potentially highlight different structures such as how the contrast between the 

white matter and gray matter improved with increased spatial frequency in the brain samples 

shown. Brain tissue has been the subject of recent interest in the field of Mueller matrix 

polarimetry.8 Mueller matrix imaging has been used to observe changes that occur during 

pregnancy or disease in cervical collagen anisotropy.46 One difficulty in imaging cervical collagen 

is that it is surrounded by other tissues of lesser interest. Imaging modalities that allow for selection 

criteria for what is imaged may have potential in similar settings. Complicating the analysis and 

interpretation is the finding that the SFD Mueller matrix is inherently complex-valued and does 

not represent a realizable regular Mueller matrix. However, it is observed that contrast to different 

features in the image can be enhanced and that single and multiply scattered paths can be 

distinguished. Future work will continue to explore the utility of this imaging method for 

biomedical applications.
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Figure 1 (a) SFD Mueller matrix imaging system: polarization state generator (PSG) with 

polarizer (P1) and two liquid crystal retarders (LC1 and LC2), digital light processing projector 

(DLP), polarization state analyzer (PSA) with polarizer (P2) and two liquid crystal retarders 

(LC3 and LC4), objective (OBJ), and sCMOS camera (CAMERA). (b) A representation of how 

the sinusoid pattern for 𝑓 = 5 cm−1 is displayed by the DLP projector pixels. (c) One of the 96 

images acquired of bovine thalamus for vertical sinusoidal illumination at 𝑓 = 5 cm−1. 

 

 

 

 

 
Figure 2 SFD Mueller matrix BRDFs from the para-aramid fiber embedded in a PDMS-based 

scattering and absorbing phantom: (a) the Mueller matrix BRDF at 𝑓 = 0 cm−1, (b) the real part 

of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1, and (c) the imaginary part of the SFD Mueller 

matrix BRDF at 𝑓 = 5 cm−1. The maximum value of the black and white scale used for 𝐹r,11 at 

𝑓 = 0 cm−1 is twice the maximum value for 𝐹r,11 of 𝑓 = 5 cm−1. The scale for the normalized 

SFD Mueller matrix elements is shown at the bottom of the figure. The spatial frequency 

sinusoidal pattern for 𝑓 = 5 cm−1 was oriented horizontally. The field of view of the images is 

1.1 cm × 1.1 cm.
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Figure 3 Diattenuation of the para-aramid fiber embedded in a PDMS-based scattering and 

absorbing phantom calculated using Lu-Chipman decomposition from the real part of the SFD 

Mueller matrix. Spatial frequency is listed above each image. Non-realizable Mueller matrix 

pixels are depicted as blue. The spatial frequency sinusoidal pattern was oriented horizontally. 

The field of view of the images is 1.1 cm × 1.1 cm. 

 

 

 

 

 

 
Figure 4 SFD Mueller matrix BRDFs from the optic fiber bundle: (a) the Mueller matrix BRDF 

at 𝑓 = 0 cm−1, (b) the real part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1, and (c) the 

imaginary part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1. The maximum value of the 

black and white scale used for 𝐹r,11 at 𝑓 = 0 cm−1 is 6 times the maximum value for 𝐹r,11 of 

𝑓 = 5 cm−1. The scale for the normalized SFD Mueller matrix elements is shown at the bottom 

of the figure. The spatial frequency sinusoidal pattern for 𝑓 = 5 cm−1 was oriented horizontally. 

The field of view of the images is 1.1 cm × 1.1 cm. 
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Figure 5 SFD Mueller matrix BRDFs from the optic fiber bundle: (a) the Mueller matrix BRDF 

at 𝑓 = 0 cm−1, (b) the real part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1, and (c) the 

imaginary part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1. The maximum value of the 

black and white scale used for 𝐹r,11 at 𝑓 = 0 cm−1 is 7 times the maximum value for 𝐹r,11 of 

𝑓 = 5 cm−1. The scale for the normalized SFD Mueller matrix elements is shown at the bottom 

of the figure. The spatial frequency sinusoidal pattern for 𝑓 = 5 cm−1 was oriented vertically. 

The field of view of the images is 1.1 cm × 1.1 cm. 

 

 

 
Figure 6 Polarimetric purity indices (rows) for each spatial frequency (columns) of an optic fiber 

bundle. The color scale is shown with a discontinuity at unity, differentiating those regions 

where the matrix is a valid regular Mueller matrix from those that are not. The spatial frequency 

sinusoidal patterns were oriented horizontally. The field of view of the images is 1.1 cm × 

1.1 cm. 
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Figure 7 Polarimetric purity indices (rows) for each spatial frequency (columns) of an optic fiber 

bundle. The color scale is shown with a discontinuity at unity, differentiating those regions 

where the matrix is a valid regular Mueller matrix from those that are not. The spatial frequency 

sinusoidal patterns were oriented vertically. The field of view of the images is 1.1 cm × 1.1 cm. 

 

 

 
Figure 8 SFD Mueller matrix BRDF images of a caprine cerebellum: (a) the Mueller matrix 

BRDF at 𝑓 = 0 cm−1, (b) the real part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1, and (c) 

the imaginary part of the SFD Mueller matrix BRDF multiplied by a factor of 5 at 𝑓 = 5 cm−1. 

The maximum value of the black and white scale used for 𝐹r,11 at 𝑓 = 0 cm−1 is 4 times the 

maximum value for 𝐹r,11 of 𝑓 = 5 cm−1. The scale for the normalized SFD Mueller matrix 

elements is shown at the bottom of the figure. The spatial frequency sinusoidal pattern for 𝑓 =
5 cm−1 was oriented horizontally. The field of view of the images is 1.1 cm × 1.1 cm. 
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Figure 9 SFD Mueller matrix BRDF images of a bovine thalamus: (a) the Mueller matrix BRDF 

at 𝑓 = 0 cm−1, (b) the real part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1, and (c) the 

imaginary part of the SFD Mueller matrix BRDF multiplied by a factor of 5 at 𝑓 = 5 cm−1. The 

maximum value of the black and white scale used for 𝐹r,11 at 𝑓 = 0 cm−1 is 3.5 times the 

maximum value for 𝐹r,11 of 𝑓 = 5 cm−1. The scale for the normalized SFD Mueller matrix 

elements is shown at the bottom of the figure. The spatial frequency sinusoidal pattern for 𝑓 =
5 cm−1 was oriented horizontally. The field of view of the images is 1.1 cm × 1.1 cm. 

 

 

 
Figure 10 SFD Mueller matrix BRDF images of a bovine cerebrum: (a) the Mueller matrix 

BRDF at 𝑓 = 0 cm−1, (b) the real part of the SFD Mueller matrix BRDF at 𝑓 = 5 cm−1, and (c) 

the imaginary part of the SFD Mueller matrix BRDF multiplied by a factor of 5 at 𝑓 = 5 cm−1. 

The maximum value of the black and white scale used for 𝐹r,11 at 𝑓 = 0 cm−1 is 3 times the 

maximum value for 𝐹r,11 of 𝑓 = 5 cm−1. The scale for the normalized SFD Mueller matrix 

elements is shown at the bottom of the figure. The spatial frequency sinusoidal pattern for 𝑓 =
5 cm−1 was oriented horizontally. The field of view of the images is 1.1 cm × 1.1 cm. 

 


