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Abstract
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive
three-dimensional (3D) Bose–Einstein condensates by quantitatively comparing theoretical
analysis and associated numerical computations with our experimental results. Motivated by
numerous experimental efforts, including our own herein, we use fully 3D numerical
simulations to explore the existence, stability, and evolution dynamics of planar dark solitons.
This also allows us to examine their instability-induced decay products including solitonic
vortices and vortex rings. In the trapped case and with no adjustable parameters, our numerical
findings are in correspondence with experimentally observed coherent structures. Without a
longitudinal trap, we identify numerically exact traveling solutions and quantify how their
transverse destabilization threshold changes as a function of the solitary wave speed.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Introduction

Dark solitonic structures emerge ubiquitously in systems
that combine dispersion with a self-defocusing nonlinear-
ity. Numerous physical examples encompassing these prop-
erties prominently include atomic Bose–Einstein condens-
ates (BECs) [1, 2], and nonlinear Kerr (and generalized
non-Kerr) media [3]. More broadly, solitonic structures also
arise in mechanical lattices of coupled pendula [4], electrical
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transmission lines [5], microwave magnetic thin films [6, 7],
acoustic waveguides of Helmholtz resonators [8], surface
water waves [9], nematic liquid crystals [10], and BECs with
dissipation [11] among others [12, 13]. Outside of these closed
systems, solitonic waves are even present in media balan-
cing gain and loss, such as polariton fluids in semiconductor
microcavities [14]. The presence of solitary waves in such dis-
parate contexts attests to the breadth of their relevance and the
generality of the central mechanisms leading to their creation.
In particular, atomic BECs hold a central role amongst these
systems owing to their highly tunable interaction Hamiltoni-
ans, the control of dimensionality and potential landscapes, as
well as the diverse available mechanisms for creating excita-
tions [1, 15, 16].

There are different ways BECs are used to create
solitonic states. For example, dragging a laser beam through
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a BEC [17], phase-imprinting [18–20], and matter-wave
interference [21, 22]. More recent experiments showed con-
trol of both the position and velocity of soliton [23], with con-
temporary theoretical studies exploring two-dimensional (2D)
and three-dimensional (3D) solitary waves in detail [24, 25].
The intriguing dynamics of the resulting structures, including
their breakup into vortical patterns [26, 27] (even in super-
fluid Fermi gases [28]) and their analogues in relativistic sys-
tems [29] is a subject of wide investigation and has a wide
variety of potential applications ranging from atomic matter-
wave interferometers [30] to producing two-level qubit sys-
tems [31]. Much of this experimental and theoretical effort
is summarized in references [1, 2]. Relevant recent work has
also touched upon issues of dark soliton instabilities [32], the
inclusion of the effects of localized dissipation [33], or of the
dynamics in relativistic BEC settings [34].

In the present work, we revisit dark solitary waves in 3D
repulsively interacting BECs highly elongated along the lon-
gitudinal axes ez. These waves are associated with a reduction
in the local atomic density accompanied by a modification of
the condensate phase. In elongated systems, vortex rings have
a similar density distribution but with a ring-shaped phase sin-
gularity [1, 35]. The simplest example is a planar (or kink)
soliton where the density is reduced to be two dimensional on
a plane normal to the soliton’s direction of propagation. By
contrast, a solitonic vortex is a highly anisotropic vortex with
a linear phase-singularity [1]. The potential conversion of kink
solitons into these excitations is of wide interest [36–41].

We begin by comparing experimentally observed solitary
waves with 3D numerical simulations [42] computed with no
adjustable parameters. Motivated by this comparison, we the-
oretically explore the related 3D case of a longitudinally trav-
eling solitonic wave. This approach is limited to the case of a
system that is transversely confined but longitudinally infin-
ite. Then, we compute the relevant Bogolyubov-de Gennes
(BdG) modes to identify the onset of transverse instability and
to quantify the growth rate of the unstable mode. This process
confirms the prediction of reference [43] that the interval of
stability of kink solitons increases as their speed approaches
the local speed of sound c. Finally in the unstable regime,
we numerically follow the exponential growth of the unstable
mode to its ultimate conversion to vortex structures.

2. Experimental motivation: phase engineering and
in-trap motion

In the present work, we model the experimental proced-
ure in [23] which describes a new wavefunction engineering
approach for launching solitons in atomic BECs and show
that dark planar solitons are first created and then relax into
solitonic vortices.

The experiments started with N= 2.4× 105 87Rb BECs
confined in an optical dipole trap with frequencies (ωx,ωy,
ωz) = 2π× (94.73,153.23,9.1) Hz and chemical potential
µ= h× 1.1 kHz. We created solitonic excitations by combin-
ing conventional phase imprinting with density engineering,

i.e. wavefunction engineering, yielding solitonic excitations
with a wide range of initial velocities [23].

We consider the fully 3D Gross-Pitaveskii model (GPE),
describing these experiments [15, 16]

iℏ
∂ψ

∂t
=

[
− ℏ2

2m
∇2 +V(r)+ g|ψ|2

]
ψ. (1)

Here, ψ is normalized to the total atom number N3D, interac-
tion constant and potential are defined as g= 4 πℏ2as/m and
V(r) = m(ω2

xx
2 +ω2

yy
2 +ω2

z z
2)/2+Vstep(t)H(z), respect-

ively, where H(z) represents the Heaviside function. We fix
the magnitude of the step potential Vstep(t) to be 0 except
during the phase-imprinting pulse when it is h× 5.5 kHz.

We simulate the experiments using the parameters
described above and create solitons via the phase imprinting
method: applying a potential generated with an infinitely sharp
edge (smaller than the BEC healing length) to half of the BEC.
We note that the density engineering method is implemented
in the experiment to circumvent technical limitations, given
that the BEC healing length is typically much smaller than
the optical resolution of the imaging systems used for phase
imprinting, which is not the case in numerical simulations.
We found that the idealization of a step potential centered at
z= 0 and amplitude Vstep, is sufficient to reproduce the exper-
imental results. This indirectly demonstrates the efficacy of
the experimental approach.

Figure 1 shows the 3D density projected onto the ex− ez
and ey− ez planes, i.e. |ψ(x,z)|2 and |ψ(y,z)|2, and the associ-
ated planar phase cuts, immediately following the application
of Vstep for a phase imprinting time tp = 140 µs. The phase-
imprinted planar dark soliton subsequently evolves into a vor-
tex ring as shown in [44]. This ring eventually decays [45]
into a pair of solitonic vortices aligned along the direction of
stronger transverse confinement and exhibits a large amplitude
oscillation [44]. The weak interaction of the resulting struc-
tures with the background of excited phonons leads to effective
(apparent) dissipative longitudinal dynamics and to the selec-
tion of two separate trajectories, one for each solitonic vortex
as shown in figures 2 and 3. In the experimental results, over
long times, the amplitude of oscillation appears to be grow-
ing, possibly reflecting the (weak) anti-damping effect due
to the thermal fraction [46]. Both the numerical and exper-
imental results (black crosses) find an oscillation frequency
ωs far from the ‘canonical’ result of ωs = ωz/

√
2 for planar

solitons [2, 47]. Instead, the solitonic vortex oscillation fre-
quency is significantly reduced [23, 24], e.g. by a factor of
about 3 in comparison to ωz, as shown in the bottom panel of
figure 3. More generally, in line with [24], we find that the
relevant reduction is a function of the chemical potential, and
the general agreement between the experimental data and the
numerical simulations supports solitonic vortex pair forma-
tion from the method of phase imprinting. This experiment-
theory correspondence prompts us to further explore the sta-
bility of planar solitons and their transformation into other
structures.
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Figure 1. Integrated GPE wavefunction density (top) and phase cross-section (bottom) evaluated immediately after a tp = 140 µs phase
imprint. (a) and (b) plot |ψ(x,z)|2 and |ψ(y,z)|2 respectively.

Figure 2. Integrated GPE wavefunction density (top) along with phase (bottom) cross-sections evaluated 400 ms after a tp = 140 µs phase
imprint. (a) Plots the |ψ|2 projection and associated cross-sections in the ex− ez plane and (b) plots ey− ez quantities.

Figure 3. Oscillation of the solitonic vortices (a) and oscillation frequencies (b). The black symbols on the grey scale integrated GPE
wavefunction density in ez− t plane of (a) represent experimental data. Every set of experimental parameters was repeated three times, and
a symbol is present for each clearly identified solitonic excitation. In cases in which more than one solitonic excitation was found in a single
image we chose the position of the deepest depletion. The simulations use tp = 140 µs. The symbols, red squares and black circles, in
(b) represent GPE and experimental calculations, respectively, where the error bar represents the single-σ uncertainty obtained from the
sinusoidal fits.

3. Stability of planar dark solitons

In this section we study the stability of dark solitary waves
using a dimensionless version of equation (1)

i
∂ψ ′

∂t ′
=

[
−1
2
(∇ ′)2 +V ′(r ′)+ g ′|ψ ′|2

]
ψ ′, (2)

in terms of the dimensionless quantities t ′ = ω⊥t, r ′ = r/a⊥,
ψ ′ = a3/2⊥ ψ, V(r ′) = [l2x(x

′)2 + l2y(y
′)2 + l2z (z

′)2]/2, g ′ =
4 πas/a⊥, and µ ′ = µ/(ℏω⊥). Here, we use the transverse
degrees of freedom to define the natural units of frequency
ω⊥ =

√
ωxωy and length a⊥ =

√
ℏ/(mω⊥). In addition, we

introduce anisotropy parameters lx = ωx/ω⊥, ly = ωy/ω⊥ and
lz = ωz/ω⊥.
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Figure 4. Condensate GPE density of the equation (5) (top) and phase cross-section (bottom) show the stationary 3D dark soliton solution
for ω⊥/(2π) = 100 Hz, where ωx = ωy and v= 0. The lower panel shows the soliton phase jump from π (dark) to 0 (light). (a) and (b) plot
|ψ ′(x ′,0,z ′)|2 and |ψ ′(0,y ′,z ′)|2 respectively.

In line with the last section, we use a chemical potential
µ= h× 1.1 kHz, longitudinal frequency ωz/(2π) = 10 Hz,
and transverse frequency ranging from ω⊥/(2π) = 100 Hz to
1 kHz. In what follows, we take ωx = ωy for simplicity.

The 1D counterpart of equation (1) with V = 0 supports the
dark soliton solution [1]

ψ ′
k(z

′, t ′) =
√
n0 [B tanh(ζ)+ iA]ei(kz

′−ωt ′). (3)

Here, n0 = µ ′, ζ =
√
n0B[z ′ − z0(t ′)], z0 = vt ′ +Z0, v=

A
√
n0 + k, ω = k2/2+ n0 and A2 +B2 = 1, and restrict

ourselves to k= 0 solutions (of a stationary background). The
remaining properties have the standard meaning, i.e. v is the
soliton speed, n0 the background density, z0 marks the center
of mass (and Z0 is its initial value), while B is associated with
the inverse solitonic width [1].

3.1. Stationary solutions

In the presence of a trap, the wavefunction for a 3D stationary
solution is approximately

ψ ′(r ′, t ′) = ψds(z
′)Φ(r ′)e−iµ ′t ′ , (4)

where Φ(r ′) represents the ground state Thomas-Fermi (TF)
wavefunction [15, 16] and ψds represents the stationary dark
soliton from equation (3), associated with A= v= 0. Using
equation (4) as an initial guess for a root finding algorithm,
we obtain numerically exact solutions by solving

F(ψ ′) =

[
−1
2
∇2 +V(r ′)+ g ′|ψ ′|2 −µ ′

]
ψ ′ = 0. (5)

Figure 4 shows the solution of equation (5) for ω⊥/(2π) =
100 Hz. We now explore both the stable and unstable modes
of ψ ′ by identifying the eigenvalues associated with the BdG
equations [1, 15, 16] for the parameter range of ω⊥. For rel-
evant details, see the appendix A. An eigenvalue λ has a real
part denoted by λr and an imaginary part denoted by λi. It is
important to recall that a non-vanishing λr, given the Hamilto-
nian nature of our GPE (2), is tantamount to the presence of a
dynamical instability.

There exist two limiting cases for the stability problem
of the dark solitary waves in a trapped condensate, more

specifically, the TF limit at large chemical potential µ ′ and
the linear limit at small µ ′. As is well-known [1] in the 1D
limit of the GPE model, the anomalous mode (ω0), corres-
ponding to negative energy is associated with the oscillation
of the single dark soliton with a frequency of ≈ lz/

√
2 [47].

The other modes ωn (associated with the vibration modes of
the background cloud) are expected to approach the frequen-
cies of lz

√
n(n+ 1)/2 [16]. On the other hand, in the linear

limit of vanishing density |ψ ′|2 → 0, the eigenvalue prob-
lem of equation (1) reduces to that of a linear quantum har-
monic oscillator with corresponding energies of eigenmodes
|k, l,m⟩

Ek,l,m =

(
k+

1
2

)
lx+

(
l+

1
2

)
ly+

(
m+

1
2

)
lz. (6)

A single dark soliton at z ′ = 0 (pertaining to the |0,0,1⟩
in the linear limit) has energy E0,0,1 = (lx+ ly+ 3 lz)/2. To
explore the validity of these predictions, we rescale the ima-
ginary eigenvalues by lz and show the corresponding results in
figure 5. Indeed, our numerically calculated imaginary eigen-
values confirm the expectations on the basis of the 1D pre-
dictions, as our numerical continuation results approach pro-
gressively the 1D TF limit as ω⊥ increases. We note that the
chemical potential controls the approach to the TF limit for the
present setting. The mode responsible for the instability of the
planar dark soliton appears as a nearly vertical dashed black
line in figure 5.

The analysis of real eigenvalues displayed in figure 6 shows
that, as ω⊥ decreases (going away from the above mentioned
quasi-1D limit), there exists an instability window for smaller
values of the relevant parameter. The critical ω⊥, namely ωc⊥,
at which λr crosses zero is at 2π× 418 Hz. Figure 7 shows
the eigenvector corresponding to the largest real eigenvalue
of equation (A3) for the parameter ω⊥/(2π) = 415 Hz and
ωx = ωy. Indeed, on the basis of the relevant unstable eigen-
mode, we expect the planar dark solitary wave structure to
break its axial symmetry and reshape itself in the form of a
vortex ring as a result of the relevant growing mode, recalling
that the latter only breaks up toward a pair of solitonic vortices
considerably later in the dynamical evolution. It is interesting
to highlight that the above instability manifestation appears to
be a natural 3D generalization of the destabilization of a 2D
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Figure 5. Imaginary eigenvalues λi obtained from the BdG analysis
plotted as a function of ω⊥ for ωx = ωy. The vertical dashed black
line represents the mode responsible for instability of the planar
dark soliton, while blue lines represent stable modes. In the limit of
large ω⊥, the 1D analytically available results, indicated by the red
short lines, are retrieved (see text for further details).

Figure 6. The largest real eigenvalue λr, associated with the
instability of the stationary, planar dark soliton, as a function of ω⊥
for ωx = ωy. The red circles are obtained from GPE dynamics and
the blue line represents BdG analysis.

planar dark soliton toward the formation of a vortex dipole,
explored from a bifurcation theory perspective, e.g. in [48, 49].

The most unstable eigenvalue (the one bearing the largest
real part) can be computed from the GPE dynamics starting
from the perturbed steady state solutions of equation (5) [50].
We evolve such waveforms starting with a small perturba-
tion δψ [≈ 10−10 relative to the max(|ψ ′|)]. As expected

from the linear stability analysis, we find that this perturbation
grows exponentially as ψ ′ = ψ ′

0 exp(λrt
′) with an instability

growth time τ =− log(|δψ|)/λr. The computed growth rateλr
via this ‘direct integration’ approach, indicated by circles on
figure 6, matches well with the largest eigenvalues obtained
from the spectral analysis of the BdG equations, thus con-
firming the robustness of our numerical findings. The GPE
dynamics for differentω⊥ shows that the strength of transverse
confinement determines the resulting wave structures induced
by the transverse instability of dark solitary waves. We gen-
erally find that tighter confinement favors the formation of a
solitonic vortex, while looser traps result in a long-lived vortex
ring. Figures 8 and 9 show the vortex ring and solitonic vortex
generated during the GPE dynamics with ω⊥/(2π) = 100 Hz
and ω⊥/(2π) = 250 Hz. Their existence can be further con-
firmed from the 3D condensate densities shown in figure 10.
The single solitonic vortex formation from the imprinted dark
soliton for higher ω⊥ is due to the asymmetric flow (see
figure 7) arising from the transverse instability that leads to
the bending of density on the ey− ez plane [41].

3.2. Traveling solutions

We now consider the case of traveling solitary waves. In this
case, we find the steady solution of the 3D-GPE equation in
the so-called co-traveling frame variant of equation (5) for
which

F(ψ′) =

[
−1
2
∇2 + iv

∂

∂z′
+V(r′)+ g′|ψ′|2 −µ′

]
ψ′ = 0

and v represents the soliton velocity i.e. by seeking a numer-
ically exact stationary solution in the co-traveling frame along
ez, we obtain a traveling solution of the original frame. In this
case, we fix the longitudinal length Lz = 120a⊥ and remove
the trap along the z-direction, so that genuine traveling can be
feasible along this direction. Figure 11 shows the steady state
solution for v= 0.1cs, where cs =

√
µ ′ is the sound velocity,

and ω⊥/(2π) = 400 Hz. This shows a phase jump which cor-
responds to the gray soliton [2] at the r ′ = 0 plane. The addi-
tional phase jump at the boundary is due to the implemented
periodic boundary condition.

Importantly, the computation of the traveling planar dark
solitary wave solution is accompanied by the solution of the
BdG equations to identify the spectral stability of the relev-
ant state. The largest real eigenvalues leading to the unstable
dynamics of moving solitons are shown in figure 12 as a func-
tion of ω⊥. As the velocity increases, the λr/lz decreases and,
in this way, leads to the increase in the critical transverse fre-
quency ωc, which is representing the transition point of stable
to unstable dynamics. The corresponding chemical potential
µc = µ/(ℏωc⊥) is shown in the inset of figure 12 as a func-
tion of v/cs. This corroborates, through detailed 3D computa-
tions, the earlier dynamical results of [43]. On the other hand,
we find from the GPE dynamics that the transverse instability
leads to the formation of solitonic vortices as in the case of

5
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Figure 7. (a) The eigenvector |φ|2 corresponds to the largest real eigenvalue of equation (A3) and its phase profile for the parameter
ω⊥/(2π) = 415 Hz and ωx = ωy. (b) The density |ψ ′ + ϵφ|2, where ψ ′ is the steady state wavefunction and ε= 20. Lower panels in (a) and
(b) show the phase cross-section.

Figure 8. Condensate densities (top) and phase cross-section (bottom) show the existence of a vortex ring at t ′ = 15 after evolving the
steady state dark soliton solution. Here, ω⊥/(2π) = 100 Hz and ωx = ωy. (a) and (b) plot |ψ(x ′,0,z ′)|2 and |ψ(0,y ′,z ′)|2 respectively.

Figure 9. Condensate densities (top) and phase cross-section (bottom) show a solitonic vortex at t ′ = 50 after evolving the steady state dark
soliton solution. Here, ω⊥/(2π) = 250 Hz and ωx = ωy. (a) and (b) plot |ψ ′(x ′,0,z ′)|2 and |ψ ′(0,y ′,z ′)|2 respectively.

Figure 10. The three dimensional view of the snapshots shown in figures 8 (left) and 9 (right). The red and blue colors represent cuts of
constant density and vorticity.

6
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Figure 11. Condensate densities (top) and phase cross-section (bottom) of numerically exact traveling planar dark soliton solution for
ω⊥/(2π) = 400 Hz, where ωx = ωy and v= 0.1cs. (a) and (b) plot |ψ(x ′,0,z ′)|2 and |ψ(0,y ′,z ′)|2 respectively.

Figure 12. The largest real eigenvalues leading to the unstable
dynamics of moving solitons as a function of ω⊥. The lines of the
main figure (top to bottom) represent the cases,
v= (0,0.1,0.2,0.25,0.3)× cs obtained from the eigenvalue
problem, while circles represent the growth rate obtained from the
GPE dynamics. The inset shows the critical chemical potential µc as
a function of v/cs.

Figure 13. The three dimensional view of condensate density |ψ ′|2
at t ′ = 80 for v= 0.2cs. The red and blue colors represent cuts of
constant density and vorticity.

v= 0. Figure 13 shows the solitonic vortex at t ′ = 80 formed
during the dynamical evolution of the condensate density for
v= 0.2cs.

4. Conclusions and outlook

In summary, motivated by experimental observations in 3D
BECs indicative of the dynamical instability of planar dark
solitons, we analyzed the stability of both stationary and trav-
eling planar dark solitons. We first illustrated the comparison
of our 3D time-dependent numerical computations with the
experimentally observed time-evolution. This indicated that,
for the experimental parameters, the phase imprinting of a
planar dark soliton gave rise to a vortex ring that subsequently
decayed into a solitonic vortex. This finding motivated us
to explore the stability of planar dark solitons as a function
of the transverse confinement, thereby quantifying the trans-
ition from the 3D to the 1D regime. Indeed, for sufficiently
strong transverse confinement, our BdG analysis identified the
quasi-1D limiting values of the corresponding excitation fre-
quencies. This analysis further captured the destabilization of
planar dark solitons in the 3D regime. We identified the most
rapidly growing unstablemode in two distinct ways; one by the
GPE direct simulation and another by the BdG analysis, and
monitored the resulting dynamics leading to the formation of
solitonic vortices or vortex rings (depending on the transverse
confinement).

Although this problem has been studied from a range of
perspectives, there are still numerous open questions. Our
primary focus here is on the implications of the transverse
confinement. However, these structures are not exact solutions
for non-zero longitudinal confinement, therefore their stability
and properties as a function of longitudinal confinement mer-
its further study. Moreover, a careful inspection of the movie
in [44] raises intriguing questions on the scattering interactions
between and overall dynamics of solitonic vortices in confined
geometries. In the same vein, the behavior of solitonic struc-
tures in box potentials [51], as well as more general (i.e. bey-
ond parabolic) potentials is of considerable current interest. In
this case, one can study how structures that are near-exact solu-
tions in the bulk abruptly impinge on the system’s edge. Fur-
ther possibilities could involve localized barriers [52] or even
random potentials [53] where the soliton’s fate and trajectory
are unknown.

Data availability statement
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upon reasonable request from the authors.
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Appendix A. Linearized GP equation

The adimensionalized GPE can be written as

i
∂ψ ′

∂t ′
=

[
−1
2
∇2 +V(r ′)−µ ′ + g ′n

]
ψ, (A1)

with n= |ψ ′|2. The linearized evolutionψ ′ = ψ ′
0 + εδψ about

the steady state ψ ′
0 is described by

i
∂δψ

∂t ′
= KR δψ+KI δψ

∗, (A2)

with

KR =−1
2
∇2 +V(r′)−µ′ + 2 g|ψ′|2 and KI = g′ψ′2.

Finally, for the perturbation δψ = Peλt
′
+Q∗eλ

∗t ′ , the linear-
ized problem

iλ

(
P
Q

)
=

(
KR KI
−K∗

I −K∗
R

)(
P
Q

)
(A3)

takes on the familiar BdG structure.
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