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With the National Synchrotron Light Source II (NSLS-II) coming 

online in 2015 as the brightest source in the world, the imminent up-

grades at the Advanced Photon Source, Advanced Light Source, and 

Linear Coherent Light Source, and advances in detector technology, the 

data generation rates at the U.S. Department of Energy (DOE) Basic En-

ergy Sciences’ X-ray light sources are skyrocketing. At NSLS-II, over 1 

petabyte of raw data was produced last year, and that rate is expected to 

increase as the facility matures [1]. Despite such huge data generation 

rates, approaches to both experimental control and data analysis have 

not kept pace. Consequently, data collected in seconds to minutes may 

take weeks to months of analysis to understand. Due to such limita-

tions, knowledge extraction is often divorced from the measurement 

process. The lack of real-time feedback forces users into flying blind at 

the beamline, leading to missed opportunities, mistakes, and inefficient 

use of beamtime as a resource—as all beamlines are oversubscribed. 

This is a challenge facing nearly all users of light sources. One promis-

ing path forward to solve this challenge—both during data collection 

and post-experiment analysis—is the use of artificial intelligence (AI) 

and machine learning (ML) methods [1, 2].

In this contribution, we review recent developments employing 

AI/ML methods at the NSLS-II, tackling the outlined challenges. 

These innovations have covered the whole life cycle of an experi-

ment, from improving daily beamline operation, accelerating the pace 

of data analysis, and even automating experimentation with advanced 

AI-driven feedback loops. Here, we describe several developments 

in each of these areas that have been pioneered by scientists at the 

NSLS-II.

Improved operations
Foundational infrastructure for data access and artificial intelligence

One foundational cornerstone to these developments is the common 

underlying Bluesky control system [3] that spans NSLS-II beamlines, 

allowing development and deployment of AI/ML methods for both 

beamline control and data analysis in a streamlined and extensible 

fashion. Of note are recent developments of the Bluesky Queueserver 

and Tiled data access system. These developments are charting a new 

course for the Bluesky and Data Broker projects, respectively, where 

client-server architectures are now being developed to enable greater 

flexibility, extensibility, and reliability at beamlines. The Queueserver 

project offers a queue-based API for acquisition planning that closely 

maps to how many scientists plan their experiments, with the ability 

for both human and autonomous agents to edit the queue as the experi-

ment is in progress. Tiled enables distributed remote access to the data, 

both raw and processed, promptly as it is acquired and reduced. Both 

projects expose programming language agnostic interfaces that fully 

encapsulate these services. This offers far greater freedom for research-

ers to try new things, such as AI/ML agent-directed data acquisition and 

streaming data analysis.

Automated data guidance for XAFS
One of the places AI/ML is finding use at the NSLS-II is streamlined 

operations, where the methods act like digital assistants to the human 

researchers by automating tedious or repetitive tasks. At NSLS-II’s 

Beamline for Materials Measurement (BMM), a supervised learning 

model is used to make an initial evaluation of every X-ray Absorp-

tion Fine Structure (XAFS) spectrum as it is measured. The purpose 

of this evaluation is to distinguish measurements that look like XAFS 

spectra from failed measurements. A failed measurement might be due 

to network error, failure of a detector, or even something as prosaic as 

a poorly mounted sample falling from the beam. To build this tool, a 

dataset of over 800 hundred spectra has been tagged by beamline staff 

as either successful or failed measurements. Using this corpus, a clas-

sifier was trained to evaluate newly measured data. Multi-layer Percep-

tron and Random Forest classifiers have proven highly successful, with 

no false positive results and less than 2% rates of false negatives [4]. 

This evaluation tool is now incorporated into all XAFS measurements 

at the beamline. Measurements recognized as successful are subjected 

to further data reduction before being presented to the user. A negative 

evaluation triggers an alert to staff for potential operational problems at 

the beamline. Failed measurements are also logged for later evaluation 

by beamline staff and may be used to improve upon the training corpus.

Enhanced XRF imaging and tomography
At the Submicron Resolution X-ray Spectroscopy (SRX) beamline, 

pre-trained 3D convolutional neural networks (CNN) are being used to 

improve reconstruction methods and provide autonomous data acqui-

sition for X-ray fluorescence (XRF) imaging and mapping. XRF is a 
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powerful way to spatially resolve the elemental distributions in materi-

als. The fluoresced X-rays are collected to generate a hyper-spectral im-

age, where individual element fluorescent lines can be identified simul-

taneously. Unlike full-field imaging techniques, in order to build up an 

image, the sample is rastered through a focused X-ray beam. This tech-

nique is sufficient for 2D imaging; however, it is difficult to compete 

with the speed of full-field X-ray detectors for 3D imaging and tomog-

raphy. For tomographic reconstructions, where 2D images are collected 

at many different angles, this is a lengthy process that can consume an 

entire beamtime. In order to improve this imaging technique, advanced 

algorithms use AI/ML methods to improve the reconstruction quality 

and data collection efficiency. In this project, called HyperCT, NSLS-

II is employing super voxel model-based tomographic reconstruction 

(svMBIR) algorithms that require fewer projections to resolve the sam-

ple reconstruction quality. Combining this with artificial intelligence 

and adaptive scans that can identify future projections that will have the 

greatest impact on improving reconstruction quality will decrease time 

necessary to collect hyperspectral, multi-element volumes of new and 

exciting materials and samples. The integration requirements for this 

project are met by Bluesky and Queueserver projects described earlier.

Streaming analysis
Phase transition detection in PDF data

ML methods can automate many of the specialized analysis meth-

ods, often at speeds on par with the data generation rates. Unsupervised 

learning approaches are of particular interest, as they can grant model-free 

Figure 1: Examples of “good” and “bad” spectra used to train the classifier at the BMM beamline (shown in photograph). Note that data measured on 
any element are transformed onto a common, unit-less abscissa as required for classification by the machine learning model. The examples show the 
transformed data. [4]
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insights to researchers regardless of a priori knowledge. Non-negative 

matrix factorization (NMF) is an appealing class of methods for per-

forming unsupervised learning on streaming spectral data. However, 

canonical NMF methods have no underlying requirement that the re-

construction uses components or weights that are representative of the 

true physical processes. By constraining a subset of the NMF weights 

or components as rigid priors, provided as known or assumed values, 

we can provide significant improvement in revealing true underlying 

phenomena in a method we refer to as Constrained Matrix Factorization 

(CMF) [5]. An example of CMF being applied to degradation of MOF 

materials is shown in Figure 2.

Classifying powder diffraction spectra
Another example of AI for analysis developed at NSLS-II is the 

crystallography companion agent (XCA). This is an open-source 

package initially developed for the feed forward classification of 

diffraction experiments [6]. The classification approach is pseudo-

unsupervised, in that it does not require labeled data to be trained. 

Instead, XCA simulates a realistic dataset that encompasses the 

perturbations and physics of the measurement. Starting only from 

proposed crystalline phases, XCA overcomes the challenge of de-

generate solutions by training an ensemble of Convulutional Neural 

Network (CNN) agents that can accurately predict phase existence 

Figure 2: Metal organic frameworks (MOFs) are an important class of materials in gas storage and purification, heterogeneous catalysis, and as nega-
tive thermal expansion materials. However, characterizing their atomic-level structure can be difficult due to the co-existence of crystalline features, 
amorphized framework, weakly correlated pore guest molecules, and other defects. Researchers performed in-situ PDF studies of ZIF-8 to understand 
the origins of lost pore accessibility in the MOF during acid gas streams (e.g., flu gas, NOx) and the associated structural degradation mechanisms in a 
specialized sample enviornment on the PDF beamline (shown in photograph). However, the characteristic scattering signal of the degradation products 
was unknown a priori, making real-time analysis difficult. Constrained Matrix Factorization was used to monitor the state of the reaction, extracting 
components and weights in real time, ensuring all critical information obtained prior to completion of the study.
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and uncertainty. The approach has been applied in searching organic 

porous materials for predicted phases, mapping a ternary alloy’s 

phase diagram, and identifying the subtle phase changes in a fer-

roelectric material. To accompany the predictive model, XCA can 

also train a variational autoencoder (VAE), which provides insight-

ful visualization of the experimental measurement [7]. The latent 

space of a VAE and the reconstruction error can be monitored as 

proxies for distributional drift, alerting the user when an experiment 

is beyond the scope of the simulated data used to train an agent. The 

combination of the Shannon entropy of the output prediction from 

the CNN ensemble and the reconstruction error of a VAE trained 

with the same data serves as an explainable AI for identifying outli-

ers and distributional drift.

Automating XCPS analysis
X-ray photon correlation spectroscopy (XPCS) performed at the 

Coherent Soft X-ray Scattering (CSX) beamline is used to quantita-

tively characterize sample dynamics. This method is based on X-ray 

speckle intensity correlations within a timeseries of coherent X-ray 

scattering images, typically using an ensemble approach (Figure 4a) 

[9]. Robust, reliable real-time analysis is required to ensure maximal 

data and beamtime usage in both high-throughput and long duration ex-

periments. Typical XPCS algorithms [1, 10] cannot distinguish sample 

dynamics and intensity changes induced by instrumental effects, ad-

versely impacting result accuracy. AI/ML methods are ideally suited to 

aid users in real-time analysis of XPCS data because artifact-induced 

dynamics have recognizable patterns or signatures [1]. At NSLS-II, we 

Figure 4: The CSX beamline with examples of AI/ML for XPCS analysis. (A) XPCS workflow with deep learning. (B) Application of semi-supervised 
outlier models (IFT, LOD, EE) from derived 1D timeseries (average intensity) to streamline review of automated C2 results [4]. (C) Identifying truly 
anomalous data with unsupervised clustering on latent space coordinates from CNN-ED for C2 denoising [8]. (D) Unsupervised clustering of derived 
1D timeseries data (dataset 2) to dynamically mask/unmask pre-computed C2 results.

Figure 3: Phase transitions in BaTiO3 involve symmetry breaking from a Ti translation (left). Plotting the diffraction patterns of the material over vari-
able temperature measurement (center) shows the subtlety of the differences between the four phases. XCA rapidly produces a probabilistic temperature-
dependent phase mapping of BaTiO3 that is more accurate than current refinement techniques. Dotted lines show the expected transition temperatures, 
and each colored line corresponds to the probability of a given phase existing [6].
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have developed models that are time, sample, and instrument agnostic 

using derived data and novel normalization schemes to detect artifacts, 

remove noise, and extract quantitative results with improved resolution 

for non-equilibrium dynamics [8].

The C2 calculation, one typical XPCS algorithm, is the most in-

formative, but it is computationally expensive. AI/ML real-time moni-

toring of data quality (e.g., “good” or “bad”) can be supported with 

limited computational power by operating on reduced 1D times series 

representations of the data. Recently developed semi-supervised outlier 

detection for normal XPCS data sets are being tested at NSLS-II, with 

the binary characterization tuned to potentially label good data as an 

“anomaly” [4]. Figure 4b illustrates usage of these outlier models on 3 

XPCS datasets. These light and easy-to-use models are integrable into 

a variety of data collection and results reporting schemes, like immedi-

ate notification of potentially suspect data. However, human evaluation 

of data quality is more nuanced. Encoding rich information from C2s 

in a low-dimensional space using CNN-based denoising models opens 

new opportunities (Figure 4a). We plan to exploit the encoded repre-

sentation of C2s for improved anomaly detection, classification, and 

other applications. Figure 4c corroborates that low-dimensional space 

representations of C2s align with an expert interpretation of each C2, 

which are a fully salvaged dataset 2 and far less reliable dataset 3 [10].

Finally, we show how one may employ unsupervised clustering of 

frames using the 1D time series. Grouping in this way leads to more 

efficient C2 computation, but it increases the number of datasets to in-

vestigate and makes integration with other AI/ML models more chal-

lenging since training data is often derived from “good” data with no 

missing values. However, unsupervised grouping methods remain part 

of the essential toolbox since data masking may be applied to the full 

C2 result (Figure 4d).

Adaptive and autonomous measurements
Axis of control requirements

A promising application of AI/ML methods at large user research 

facilities is in enabling autonomous, or “self-driving,” experiments. 

Discovery and optimization of modern materials require an ability to 

efficiently probe vast, multi-dimensional material and processing pa-

rameter spaces, going beyond intuitive or exhaustive high-throughput 

approaches. Efficient design of adaptive feedback systems can be con-

sidered along three axes: coordination motif, source of signal, and re-

quired timescale of the loop. The coordination motif describes how the 

experiment and the algorithm interact. In some applications, the algo-

rithm needs to be synchronous "in-the-loop" of the experiment, while in 

other applications we may need to asynchronously couple the algorithm 

to the experiment. An example of synchronous control is optimizing the 

plan of a 2D mapping experiment. Examples of asynchronous coupling 

include watching data quality, tuning a temperature ramp rate, suspend-

ing and resuming data acquisition based on beam conditions, or using 

multiple agents to collect and analyze data.

Source of signal describes the nature of the data being used in the 

feedback system. Often, the information that we want to feedback on can 

be classified as either engineering values or scientific values. Engineer-

ing values are raw machine measurements, such as motor positions or 

Figure 5: A complete suite of tools and capabilities in data infrastructure and computing needs to be created and developed in order to achieve our vision. 
In addition to experimental control and data acquisition, these tools and capabilities include algorithms and AI/ML, scalable software libraries, workflow 
and orchestration tools, seamless real-time on-demand computing, network improvements, and discoverable data repositories [14].



6 Vol. 0, No. 0, 2022, Synchrotron radiation newS

Technical RepoRT

shutter states, and do not require any knowledge of the sample under 

study to interpret and act upon. Science signals are very tightly coupled to 

the current experiment and their interpretation is often context dependent.

The final dimension of adaptive experiments is the required times-

cale for the feedback. For example, a control loop to maintain hardware 

alignment may need to run at sub-ms timescales whereas an algorithm 

to select the next sample to synthesize in a day-long reaction has a 

much larger time budget.

Each combination of communication motif, signal class, and times-

cale places considerations and restrictions and constraints on the sort of 

approaches that can be used for adaptive feedback. Selecting the right 

tools for a given task can be a critical consideration for successful de-

ployment of such methods. Medium-speed, synchronous “in the loop” 

feedback on scientific values is the combination of these axes that is of 

the most interests to beamline operations, and we will now discuss two 

examples of this type.

Autonomous X-ray scattering experiments
At the Complex Materials Scattering (CMS) and Soft Matter In-

terfaces (SMI) beamlines at NSLS-II, a collaborative effort to enable 

intelligent material exploration during autonomous X-ray scattering 

experiments has been developed [11]. The developed system consists 

of three key elements: automated sample handling and data acquisi-

tion, based on Bluesky; real-time data processing; and decision-making 

algorithms, which take processed data as input and select the next ex-

perimental point to be measured. The algorithms, based on gpCAM, 

utilize Gaussian process regression in a Bayesian optimization frame-

work, generating surrogate models and uncertainly distributions, using 

them to define an acquisition function for the given experimental objec-

tive, and locating its maximum to make the decision. This approach has 

been successfully applied to imaging heterogeneous materials and to 

materials parameter space exploration based on combinatorial sample 

libraries, combined with a robotic sample exchanger where appropriate 

to further expand the size of parameter space that can be explored in a 

given experiment.

Reinforcement learning driven high-throughput PDF measurements
An additional area of AI/ML being explored at the NSLS-II is the 

use of reinforcement learning (RL) being used to automate and optimize 

high-throughput data collection. Unlike supervised learning methods, 

where a very large, labeled set of data is employed to train, RL is trained 

via a dynamic interaction loop whereby the AI can learn “on-the-fly” 

as it is interacting with an environment. AI are trained with simulated 

experiments that recreate raw and processed data streams. It is impor-

tant that the simulated environment encountered by the AI is sufficiently 

similar to the real-world data streams encountered at the beamline. Thus, 

in the initial deployment of the so-called “BadSeed” agent [12], trained 

to run high-throughput diffraction experiments on the PDF beamline, a 

data quality metric is employed, which is calculated independently from 

the AI. Thus, the decision-making logic learned by the RL agent is more 

broadly generalized to any scenario, which can output a similar formatted 

data quality metric [13]. By using this RL agent, the beamline was shown 

to be 100% more efficient at measuring critical structural information 

than standard iterative data collection plans.

Outlook and conclusions
Today, scientists at NSLS-II are using AI/ML methods to improve 

operations, expedite analysis, and facilitate discovery. Whether acting 

as digital beamline assistants or automating data processing, these tools 

are now in use on several beamlines around the facility. However, it is 

clear that we are only scratching the surface of what is possible, and 

additional investment is need.

To further these developments, NSLS-II has been working closely 

with the other four DOE light source facilities, coordinated through 

the 5-way Light Source Data and Computing Steering Committee. 

Our vision in this area is to establish a transformative computational 

fabric that covers the full lifecycle of the data generated at the DOE 

light sources, including theory, simulation, experiment design, data 

generation, data analysis, and publication. This will also connect 200+ 

instruments at light sources with a multi-tiered computing landscape, 

including edge computing, high-performance computing centers, data 

repositories, and cloud computing. This will best serve the 10,000+ 

DOE light source users per year.
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