
Data Type Bugs Taxonomy: Integer Overflow,
Juggling, and Pointer Arithmetics in Spotlight

Irena Bojanova
SSD, ITL

NIST
Gaithersburg, MD, USA
irena.bojanova@nist.gov

Carlos Eduardo Galhardo
Dimel, Disme

INMETRO
Duque de Caxias, RJ, Brazil
cegalhardo@inmetro.gov.br

Sara Moshtari
GCCIS, GCI

RIT
Rochester, NY, USA

sm2481@rit.edu

Abstract—In this work, we present an orthogonal classifica-
tion of data type bugs, allowing precise structured descriptions
of related software vulnerabilities. We utilize the Bugs Frame-
work (BF) approach to define four language-independent classes
that cover all possible kinds of data type bugs. In BF each class
is a taxonomic category of a weakness type defined by sets of
operations, cause−→consequence relations, and attributes. A BF
description of a bug or a weakness is an instance of a taxonomic
BF class with one operation, one cause, one consequence, and
their attributes. Any vulnerability then can be described as a
chain of such instances and their consequence–cause transitions.
With our newly developed classes Declaration Bugs, Name
Resolution Bugs, Type Conversion Bugs, and Type Computation
Bugs, we confirm that BF is a classification system that extends
the Common Weakness Enumeration (CWE). The proposed
classes allow clear communication about software bugs that
relate to misuse of data types, and provide a structured way
to precisely describe data type related vulnerabilities.

Keywords—Bug classification, bug taxonomy, software vul-
nerability, software weakness, type conversion, integer overflow,
pointer scaling, juggling.

I. INTRODUCTION

Data types and the operations they define are an abstrac-
tion for real-world modeling problems. The purpose of data
types is to mitigate bugs, which is achieved by compilers and
interpreters enforcing specific data type rules.

Unfortunately, misunderstanding data type peculiarities
could create severe software weaknesses and lead to vul-
nerabilities, such as the recently discovered Type Confusion
vulnerability on Chromium [1]. This work aims to classify all
data type bugs and to define the kinds of related errors that
would allow us to precisely communicate and teach about
them, as well as to identify them in code and avoid related
security failures.

Secure software development is critical for securing
cyberspace and critical infrastructure. However, writing se-
cure code is hard, time consuming, and thus often omitted.
Many software bugs/weaknesses get introduced by unaware
developers and possibly left undetected by testers and code
review tools. As a result, software security vulnerabilities are
still a huge part of the attack surface used by threat agents.

A largely used repository of known vulnerabilities is the
NIST National Vulnerability Database (NVD) [2]. It links the

Disclaimer: Certain trade names and company products are mentioned in the
text or identified. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology
(NIST), nor that they are necessarily the best available for the purpose.

Common Vulnerabilities and Exposures (CVE) [3] entries to
Common Weaknesses Enumeration (CWE) [4] entries. The
CISA Known Exploited Vulnerabilities Catalog (KEV) [5]
is also based on the CVE. It identifies publicly exploited
vulnerabilities with top priority for remediation. However,
CVE has proven to be difficult to use in research, as many
CWEs and CVEs have imprecise descriptions with unclear
causality and lack explainability [6]. Being an enumeration,
the CWE also has gaps and overlaps in coverage.

The Bugs Framework (BF) [7] aims to address all these
CWE and CVE problems and to further benefit NVD and
KEV, as well as to facilitate code review tools and vulnerabil-
ity research. It is being developed as a structured, complete,
orthogonal, and language-independent classification system
of software bugs and weaknesses. Structured means a weak-
ness is described via one cause, one operation, one conse-
quence, and one value per attribute from the appropriate lists
defining a BF class. This ensures precise causal descriptions.
Complete means BF has the expressiveness power to describe
any software bug or weakness. This ensures there are no
gaps in coverage. Orthogonal means the sets of operations
of any two BF classes do not overlap. This ensures there
are no overlaps in coverage. BF is also applicable for source
code in any programming language. The cause−→consequence
relation is a key aspect of BF’s methodology that sets it
apart from any other bugs/weaknesses classification effort. It
allows describing and chaining the bug and the weaknesses
underlining a vulnerability, as well as identifying a bug by
going backwards from a final error or a failure, and what is
required to fix that bug.

We utilize the BF approach to define four language-
independent, orthogonal classes that cover all possible kinds
of data type bugs and weaknesses: Declaration Bugs (DCL),
Name Resolution Bugs (NRS), Type Conversion Bugs (TCV),
and Type Computation Bugs (TCM). The BF Data Type
Bugs taxonomy can be viewed as a structured extension to
the conversion, calculation (incl. comparison), wrap-around
(incl. integer overflow), pointer scaling, coercion (juggling),
and other data type related CWEs, allowing bug reporting
tools to produce more detailed, precise, and unambiguous
descriptions of identified data type bugs.

The main contributions of this work are: i) we create a
model of data type bugs; ii) we create a taxonomy that has
the expressiveness power to clearly describe any data type
bug or weakness; iii) we confirm our taxonomy covers all
data type related CWEs; iv) we showcase the use of our data
type bugs taxonomy.

We achieve these contributions respectively via: i) iden-

1

tifying the operations, where run-time errors may happen
despite the compiler or interpreter checks; ii) developing
four new structured, orthogonal BF classes: DCL, NRS,
TCV, and TCM; iii) generating digraphs of CWEs related to
data type weaknesses, as well as to data type consequences
and mapping these CWEs to BF DCL, NRS, TCV, and
TCM by operation and by consequence; iv) describing real-
world vulnerabilities using BF DCL, NRS, TCV, and TCM:
CVE-2021-21834 and the Bad Allocation Chain, CWE-468,
Example 1 – Incorrect Pointer Scaling, and CVE-2021-23440
and Type Mismatch bypassing Input Validation.

The rest of the paper is organized as follows: In
Section II, we recall BF’s approach and methodology. In
Section III, we discuss the role of type systems. In Section IV,
we define the BF Data Type Bugs model. In Section V, we
present our new BF DCL, BF NRS, BF TCV, and BF TCM
classes. In Section VI, we analyze the correspondence of
the conversion, calculation (incl. comparison), and other data
type related CWEs to the new BF classes. In Section VII,
we use the BF Data Type Bugs taxonomy to provide better,
structured descriptions of two real-world vulnerabilities (CVE
entries [3]) and an example from a CWE [4] entry. Finally,
in Section VIII, we discuss related works and in Section IX
we summarize our contributions and propose future works.

II. BF APPROACH AND METHODOLOGY

The Bugs Framework (BF) is being developed with the
goals of: (1) Classifying software bugs and weaknesses to
allow precise descriptions of vulnerabilities that exploit them.
(2) Identifying secure coding principles, such as type safety,
memory safety, and input/output safety.

In this paper, we use the terms software bug, weak-
ness, and vulnerability as they are defined by Bojanova
and Galhardo in [7]. We utilize the latest BF approach and
methodology, as described in [8] and present here updates on
the main ideas.

BF describes a bug or a weakness as an improper state
and its transition. The transition is to another weakness
or to a failure. An improper state is defined by the tuple
(operation, operand1, · · · , operandn), where at least one
element is improper. The initial state is always caused by a
bug – a coding error within the operation, which, if fixed,
will resolve the vulnerability. An intermediate state is caused
by ill-formed data; it has at least one improper operand. The
final state, the failure, is caused by a final error – undefined or
exploitable system behavior – that usually relates to a CWE.
A transition is the result of the operation over the operands.

BF describes a vulnerability as a chain of improper
states and their transitions. Each improper state is an instance
of a BF class. The transition from the initial state is by
improper operation over proper operands. The transitions
from intermediate states are by proper operations with at least
one improper operand.

Operation or operand improperness defines the causes.
A consequence is the result of an operation over its operands.
It either becomes the cause for a next weakness or is a final
error.

A BF class is a taxonomic category of a weakness type,
defined by a set of operations, all valid cause→consequence
relations, and a set of attributes. The taxonomy of a particular
bug or weakness is based on one BF class. Its description

is an instance of a taxonomic BF class with one cause,
one operation, one consequence, and their attributes. The
operation binds the cause→consequence relation – e.g., a
large value of an argument to an addition arithmetic operator
leads to integer overflow.

CWEs coverage by newly developed BF classes can be
visualized via digraphs, based on CWEs parent-child rela-
tionships. Once analyzed, these digraphs can help understand
the CWE structure and how the CWE entries translate to BF.

The taxonomies of newly developed BF classes can be
demonstrated by providing structured BF descriptions of data
type related CVEs.

The methodology for developing a BF class comprises
identifying/defining: (1) the phase specific for a kind of bugs;
(2) the operations for that phase; (3) the BF Bugs model
with operations flow; (4) all causes; (5) all consequences that
propagate as a cause to a next weakness; (6) all consequences
that are final errors; (7) attributes useful to describe such
a bug/weakness; (8) the possible sites in code; (9) CWE
digraphs by class and consequence; (10) CVE showcases.

BF is a taxonomy for clearly describing bugs and
weaknesses that leverages secure coding education and train-
ing. Secure coding is a software development technique
introducing awareness of well-known weaknesses to avoid
vulnerabilities. This paper introduces the BF Data Type Bugs
classes, which cover bugs related to type safety. Previous
works focused on memory safety [9] and input/output safety
[8], both critical steps of secure coding development [10].

III. TYPE SYSTEMS

Type safety of programs is ensured by programming
languages’ Type Systems [11]. A Type System checks ex-
plicit typing rules and applies built-in implicit typing rules
to eliminate run-time errors. Explicit typing rules are on
name resolution or any predetermined behavior, (e.g. allowing
multiplication only for numeric data types). Implicit typing
rules are such as on type inference, argument coercion, or
polymorphic call resolution.

Each data type bug or weakness involves one data
type related operation. Each of these operations is over an
entity: object, function, data type, or namespace. An entity is
referred in source code via its declared name. Names may be
organized in namespaces (or modules, or packages) to avoid
name collisions. This eliminates ambiguity, allowing the same
name to be declared in different scopes. A scope is a block
of code (e.g. { }) where a name is valid, i.e., associated with
exactly one entity. Scopes provide the Type System with a
context for names lookup, i.e., what namespaces and in which
order should be referred to resolve the name.

A data type defines a set or a range of values (e.g. char
is within [-128, 127]) and the operations allowed over
them (e.g. +, *, mod). A data type can be primitive (e.g.
int, float, double, string, boolean) or structured (e.g. array,
record, union, class, interface). Primitive data types mimic
the hardware units; they are only language defined. Structured
data types are built from other data types; they have primitive
or structured members. The Type System checks if data types
have been declared and used properly.

An object is defined by Bojanova and Galhardo in [9] as
“a piece of memory with well-defined size”, which ”address
should be held by at least one pointer or determined as an

2

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cwe.mitre.org/data/definitions/468.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23440

offset on the stack”. This piece of memory is used to store
the value of a primitive data or a data structure. An object
is declared via a name and a data type. It may be a member
of a data structure (e.g. an attribute of a class). An object
is referred in source code via its name. If a data type is not
specified, the Type System may infer it from the object’s data
value. An object is defined by the data it stores.

A function is an organized block of code that when
called takes in data, processes it, and produces a result(s).
Functions also get stored in memory. A function is declared
via a return data type, a name, and a list of parameters. It
may be a member of a data structure (e.g. a method of a
class). If a return data type is not specified, the Type System
may infer it from the returned data value. A function may
be anonymous, t.e. it may have no name – e.g. a lambda
expression. A function is defined by its block of code – the
function implementation. A function is referred in source
code via its name and called via its signature (name and
arguments – number, order, and data types matter). A function
call may be an argument to another function – e.g. to an
operator in an arithmetic expression1.

The declaration of an entity may be prefixed by a
modifier that enforces required restrictions. For example,
access modifiers restrict whether and how a data type, an
object, or a function can be used outside its declaration scope.

Object Oriented Programming (OOP) languages extend
to Polymorphic Type Systems, allowing use (a) of same code
for different data structures or (b) of different code via same
function name. They introduce the notions of type parameters,
subtyping (via inheritance), dynamic typing and overriding
[12], and the concept of overloading.

Type Parameters allow encoding of a generic data type,
parameterized by the data types of its member objects and
its member functions. A generic member function essentially
works the same way on different types of data structures. An
example of parametric polymorphism (generics) would be a
generic sort function that works the same way over a list of
integers as over a list of strings.

Subtyping is the ability to define new data types based
on previously defined data types. Via such inheritance, two
structurally different data types may share members. Dynamic
Typing is the ability for objects to change their data types at
run time – e.g. the data type of a base class object may be any
of its class subclasses. An example of subtype polymorphism
(overriding) would be a dynamically typed element of an
array of Shape objects invoking the proper draw() method
depending on the element’s actual subtype.

Both overriding and overloading are about the ability
to use the same function name for different implementations:
overriding is across subtypes in the same hierarchy; overload-
ing is in the same declaration scope. An example of compile-
time polymorphism (overloading) would be using the proper
integer or double addition operator (int +(int x, int
y); or double +(double x, double y);) depending on
the call arguments data types.

1Operators are implemented as functions (e.g. int +(int x; int y);),
although, their names are special characters instead of alpha-numeric and
they are referred via mathematical notations (e.g. a+b instead of +(a,b)).
Note that the assignment operator (=) is also a function – the value being
assigned is passed in as an argument.

The Type System resolves the declaration scopes of the
referred entity names; then binds the appropriate declared (or
inferred) data types and the defined objects data and called
functions implementations.

An entity name referred out of its scope gets resolved ac-
cording to specific scoping rules. Names in nested scopes get
resolved through declarations from inner to outer scopes. This
may involve resolving one or more namespaces, then – a class
name to a context, and then – the member name within that
context. A fully qualified name lists all these scoping names
– e.g., via a dot notation (java.lang.Math.sin(x);). It
unambiguously specifies which object, function, or data type
is being referred even when out of its declaration scope.
The listed names play the role of name qualifiers. The Type
System applies the proper qualifiers when a using (import/
include) statement is specified.

After an entity name is resolved, it gets bound appropri-
ately: for an object – its data type and its data are bound; for a
function – its return type and its parameters’ types are bound.
A function is called with resolved and bound arguments
(actual parameters); then its implementation is bound.

An object or a function must be completely resolved
before it is used. In the case of a polymorphic object,
the Type System resolves it also among the corresponding
hierarchical structure. In the case of a polymorphic function,
the Type System resolves it based on its type arguments
(generics), its invoking object data type (overriding), or its
signature (overloading). The type argument, the dynamic
object data type, or the arguments or function declarations,
may correspondingly be a problem. In most programming
languages, generics and function/operator overloading are
resolved at compile-time (early binding and ad-hoc binding,
correspondingly) and virtual methods overriding is resolved
at run-time (late binding).

A resolved and bound object may be converted to an-
other data type and used in computations. Conversions could
be explicit – casting, or implicit – coercion2. Computations
could be calculation of arithmetic expressions or evaluation
of boolean expressions. Arithmetic expressions are used to
calculate for example how much memory to allocate, the size
of a structured object, or the position of an index. Pointer
arithmetics and pointer scaling may be used to calculate
position of pointer or memory address. Boolean expressions
are used to evaluate conditions.

IV. DATA TYPE BUGS MODEL

Data Type bugs could be introduced at any of the dec-
laration, name resolution, data type conversion, or data type
related computation phases. Each data type related bug or
weakness involves one data type operation: Declare, Define,
Refer, Call, Cast, Coerce, Calculate, or Evaluate.

The BF Data Type Bugs model (Fig. 1) helped us
identify the phases and the operations where such bugs could
occur. The phases correspond to the BF Data Type Bugs
classes: Declaration Bugs (DCL), Name Resolution (NRS),
Type Conversion Bugs (TCV), and Type Computation Bugs
(TCM). All data type operations are grouped by phase.

The operations under DCL (Fig. 1) are on declaring
entities names and on defining objects data and functions

2Type Coercion is known also as Type Juggling.

3

DCL (entity)

Declare

Define

NRS (entity name)

Refer

Call

TCV (object)

Cast

Coerce

TCM (object)

Calculate

Evaluate

object

function

argument / return /
(.) object

subtype
object

argument

Type System Timeline

argument / return/
(.) object

type/
namespace

Fig. 1: The BF Data Type Bugs model. Comprises phases
corresponding to the BF classes DCL, NRS, TCV, and TCM.
Shows the data type operations flow.

implementations: Declare and Define. See definitions of DCL
operations in Table Ia.

The operations under NRS (Fig. 1) are on resolving
referred entities names and on binding their data types and the
objects data, and on resolving called functions and binding
their implementations: Refer and Call. See definitions of
NRS operations in Table Ib. The NRS operations are tied
to the name resolution and binding that the Type System
performs. Fig. 2 shows the corresponding sub-model. Note
that the object data value is bound via the Initialize and Write
operations of the BF Memory Use Bugs (MUS) class [9].

The operations under TCV (Fig. 1) are on explicit
conversion and on implicit conversion into a different data
type of a passed data value in/out of a function: Cast and
Coerce. See definitions of TCV operations in Table Ic.

The operations under TCM (Fig. 1) are on calculating an
arithmetic operation (part of an algebraic expression) and on
evaluating a boolean operation (part of a condition): Calculate
and Evaluate. See definitions of TCM operations in Table Id.

Overriden Func�on
Late Binding

Subtype Object

Overloaded Func�on
Ad-hoc Binding

Parameter

Object

ReturnGeneric Type

Bind TypeResolve Type Resolve and Bind
Implementa�on:

Namespace

Data Type

Object

Func�on

Resolve Name

Infer

Subtype Generic Func�on
Early Binding

Object

NRS Refer NRS Refer NRS Refer NRS Call

MUS Ini�alize
or MUS Write

Bind Data

Func�on

Fig. 2: Name Resolution and Biding.

The possible flow between operations from different
phases is depicted in Fig. 1 with arrows. A declared and
defined entity is referred in source code via its name. Names,
referred to in remote scopes, get resolved via resolved names-
paces; resolved data types get bound to objects, functions, or
generic data types according to their declarations (see the
purple arrow flow). A resolved and bound object may be
converted to another data type and used in computations as
an argument or as a return of a called function, or to call
a member function. A passed in argument is expected to
be of the declared parameter data type and the passed out
result is expected to be of the return data type. Otherwise,
casting (explicit conversion) is expected before or at the end
of the call (see the blue arrows flow), or the value will get
coerced (implicitly converted) to the parameter data type or
the return data type, correspondingly (see the green arrows
flow). Note that the green arrows flow is only about coerced
passed in/out objects – it starts only from NRS Call, it never
starts from DCL Declare. The presented operations flow helps
in identifying possible chains of bugs and weaknesses.

V. DATA TYPE BUGS CLASSES

We define the BF Data Type Bugs classes as follows:
• Declaration Bugs (DCL) – An object, a function, a data

type, or a namespace is declared or defined improperly.

• Name Resolution Bugs (NRS) – The name of an object, a
function, or a data type is resolved improperly or bound
to an improper data type or implementation.

• Type Conversion Bugs (TCV) – A data value is cast or
coerced into another data type improperly.

• Type Computation Bugs (TCM) – An arithmetic expression
(over numbers, strings, or pointers) is calculated improp-
erly, or a boolean condition is evaluated improperly.

Each of these classes represents a phase, aligned with
the Data Type Bugs model (Fig. 1), and is comprised of sets
of operations, cause−→consequence relations, and attributes,
allowing precise causal descriptions of bugs/weaknesses in
the declaration or definition of an object, a function, or a
data type, the resolution of their names, the binding of their
types or implementations, or of any type related conversions
and computations.

Fig. 3, Fig. 4, Fig. 5, and Fig. 6 show the specific sets
for declaration, name resolution, computation, and conversion
bugs, respectively. Only the values listed on the corresponding
figure should be used to describe that kind of bugs or
weaknesses.

A. Operations

All BF classes are being designed to be orthogonal; their
sets of operations do not overlap. The operations in which
data type bugs could happen (defined in Table I) correspond
to the operations in the BF Data Type Bugs model (Fig. 1).

The DCL operations are Declare and Define. They reflect
the improper declaration or definition of an object, a function,
a data type, or a namespace. The NRS operations are Refer
and Call. They reflect the improper name resolution, and data
type, data, or implementation binding. The TCV operations

4

Improper Opera�on:
• Missing
• Wrong
• Erroneous

• Declare
• Define

ConsequencesCauses

A�ributes

DCL Opera�ons

Mechanism:
• Simple
• Generics
• Overriding
• Overloading

Source Code:
• Codebase
• Third Party
• Standard Library
• Compiler/Interpreter

En�ty:
• Object
• Func�on
• Data Type
• Namespace

Data Type Kind:
• Primi�ve
• Structured

Improper Scope:
• Anonymous Scope
• Wrong Scope

Improper Modifier:
• Missing Modifier
• Wrong Modifier

Improper Data Type:
• Wrong Type
• Incomplete Type
• Wrong Generic Type
• Confused Subtype
• Wrong Argument Type

Improper Func�on:
• Missing Overridden Func�on
• Missing Overloaded Func�on

Access Error:
• Wrong Access Object
• Wrong Access Type
• Wrong Access Func�on

Improper DataType:
• Wrong Type Resolved

Fig. 3: The Declaration Bugs (DCL) class.

A�ributes

Improper Opera�on:
• Erroneous

• Refer
• Call

ConsequencesCauses NRS Opera�ons

Improper DataValue :
• Wrong Object Resolved Value

Improper DataType:
• Wrong Object Resolved Type
• Wrong Type Resolved

Improper DataType:
• Incomplete Type
• Wrong Generic Type
• Confused Subtype
• Wrong Argument Type

Improper Func�on:
• Missing Overridden Func�on
• Missing Overloaded Func�on

Mechanism:
• Resolve
• Bind
• Early Bind
• Late Bind
• Ad-hoc Bind

Source Code:
• Codebase
• Third Party
• Standard Library
• Compiler/Interpreter

En�ty:
• Object
• Func�on
• Data Type
• Namespace

Data Type Kind:
• Primi�ve
• Structured

Improper Scope:
• Missing Qualifier
• Wrong Qualifier

Improper Func�on:
• Wrong Func�on Resolved
• Wrong Generic Func�on Bound
• Wrong Overridden Func�on Bound
• Wrong Overloaded Func�on Bound

Fig. 4: The Name Resolution Bugs (NRS) class.

are Cast3 and Coerce. They reflect the improper use of data
types in object data value conversion to another data type. The
TCM operations are Calculate4 and Evaluate5. They reflect
the improper use of data types in arithmetic calculations and
condition evaluations.

3Cast operators: (int) x; in C, int(x) in Python, x as int; in Rust.
4Calculate involves: Arithmetics (+, ++, unary+, −, −−,

unary−, *, /, =+, =−, =∗, =/, rem, div/mod), Bitwise Shift:
(<<, >>, &, |, ∧ , ∼), Pointer Arithmetics and Pointer Scaling
(=+, +, ++; =−, −, −−; and use of SizeOf), Concatenation
(+), and Math/String Functions (max(), sin(), log(), strlen(),
memchr(), etc.).

5Evaluate involves: Comparison (<, >, <=, >=, !=, !==, ==,
===, strcmp(), memcmp()) and Boolean Logic (&&, ||, !).

B. Causes

A cause is either an improper operation or an improper
operand. If a BF class instance is the first in a chain,
describing a vulnerability, it is always caused by an improper
operation or an improper operation rule. The values for
improper data type related operations are Missing, Wrong,
and Erroneous. The possible operation rules are Improper
Modifier and Improper Scope. The values for these are
correspondingly: Missing Modifier and Wrong Modifier; and
Anonymous Scope, Wrong Scope, Missing Qualifier, and
Wrong Qualifier. See definitions and examples in Table II.

The possible operands of a Data Type operation are:
Data Value, Data Type, and Function. See definitions in

5

A�ributes

Improper DataValue:
• Under Range
• Over Range
• Flipped Sign
• Wrong Object Resolved Value

Improper Opera�on:
• Missing
• Wrong

• Cast
• Coerce

ConsequencesCauses TCV Opera�ons

Improper Data Value:
• Wrong Result
• Truncated Value
• Distorted Value
• Rounded Value

Improper DataType:
• Wrong Type

Improper DataType:
• Wrong Type
• Wrong Object Resolved Type
• MismatchedArgument Type

Improper Func�on:
• Missing Overloaded Func�on

Mechanism:
• Pass In
• Pass Out

Source Code:
• Codebase
• Third Party
• Standard Library
• Compiler/Interpreter

Data Value Kind:
• Numeric
• Text
• Pointer
• Boolean

Data Type Kind:
• Primi�ve
• Structured

Fig. 5: The Type Conversion Bugs (TCV) class.

A�ributes

Improper Opera�on:
• Wrong
• Erroneous

• Calculate
• Evaluate

ConsequencesCauses TCM Opera�ons

Improper Data Value:
• Under Range
• Over Range
• Flipped Sign
• Wrong Result
• Wrap Around

Improper DataType:
• Wrong Type
• Wrong Object Resolved Type

Mechanism:
• Func�on
• Operator
• Method
• Lambda Expression
• Procedure

Source Code:
• Codebase
• Third Party
• Standard Library
• Compiler/ Interpreter

Data Value Kind:
• Numeric
• Text
• Pointer
• Boolean

Data Type Kind:
• Primi�ve
• Structured

Improper Func�on:
• Wrong Func�on Resolved
• Wrong Generic Func�on Bound
• Wrong Overridden Func�on Bound
• Wrong Overloaded Func�on Bound

Type Computa�on Error:
• Undefined

Improper Data Value:
• Wrong Argument Value
• Wrong Object Resolved Value
• Reference vs. Object

Fig. 6: The Type Computation Bugs (TCM) class.

Table III. All values for an improper operand of a data type
operation are defined in Table IV.

All possible causes for data type bugs are defined in
Table II and Table IV. However, refer Fig. 3, Fig. 4, Fig. 5,
and Fig. 6 for causes applicable to each class.

C. Consequences
A consequence is either a final error or a wrong result

from the operation that propagates as an improper operand

for a next weakness.

The possible improper operands as consequences from
data type bugs classes are Improper Data Value, Improper
Data Type, and Improper Function. All their possible values
are defined in Table IV. As a consequence, they would
become causes for operations of next weaknesses. These
consequence–cause transitions explain why some appear both
as causes and as consequences.

6

TABLE I: Operations

(a) DCL (Declaration)

Operation
Value

Definition

Declare Specify name and data type of an object; name, return
data type, and parameters of a function; or name and type
parameters of a data type. May specify modifiers for required
behaviour restrictions.

Define Specify data of an object; implementation of a function; or
member objects and functions of a type.

(b) NRS (Name Resolution)

Operation
Value

Definition

Refer Use a name in local or remote scopes of source code. The
Type System resolves the name and binds a data type to it.

Call Invoke a function implementation. The Type System binds
the implementation to the resolved function name. A poly-
morphic implementation is first resolved and then bound.

(c) TCV (Conversion)

Operation
Value

Definition

Cast Explicitly convert the value of an object to another data type.
Coerce Implicitly (forced by the Type System) convert the value of

a passed in/out argument or the return into the corresponding
parameter or return data type. (Type Coercion is known also
as Type Juggling.)

(d) TCM (Computation)

Operation
Value

Definition

Calculate Find the result of a numeric, pointer, or string operation.

Evaluate Find the result of a boolean condition (incl. comparison).

The possible data type final errors are: Access Error and
Type Computation Error. Their possible values are defined in
Table V.

All possible consequences for data type bugs are defined
in Table IV and Table V. However, refer Fig. 3, Fig. 4, Fig. 5
and Fig. 6 for consequences applicable to each class.

D. Attributes
An attribute provides additional useful information about

the operation or its operands. All possible attributes for data
type bugs are defined in Table VI. The operation attribute
Source Code explains where the bug is in the program.
The operand attribute Data Type Kind explains the data
type structure. See definitions of these attributes values in
Table VIa.

Each of DCL, NRS, TCV, and TCM also have the
operation attribute Mechanism but with different possible
values, specific to the particular data type operations. See
definitions of this attribute values in Table VIb, Table VIc,
Table VId, and Table VIe.

DCL and NRS also have the operand attribute Entity,
which explains what is being declared or resolved. See the
definition of this attribute value in Table VIf.

TCV and TCM also have the operand attribute Data
Value Kind, which explains the actual data value. See its
definition in Table VIg.

E. Sites
A site for data type bugs is any part of the code for

which the Type System checks explicit typing rules or applies

TABLE II: Improper Operation

Value Definition Examples
Missing The operation is absent. Missing:

• constructor
• +(int,double) overload
• function override in subtype.

Wrong An inappropriate data
type is specified; or
an inappropriate func-
tion/operator is used.

• An object is declared int,
while it should be float.

• A class implements a clone-
able or a serializable interface.

• Comparison via = vs. ==.
Erroneous The Type System or a

compute function im-
plementation has a bug.

• Incorrect data type inference.
• Wrong order or number of ar-

guments to a function call.
• Incorrect deep objects compar-

ison implementation.
Missing
Modifier

A required behavioral
restriction is absent.

• Access: public, private,
protected, internal

• Type: long, long long,
short,unsigned,signed

Wrong
Modifier

A wrong behavioral re-
striction is specified.

• Use of private instead of
protected modifier.

Anonymous
Scope

The declaration is in an
unnamed scope.

• An inner class.

Wrong
Scope

The declaration should
be in another scope.

• Object declared as local, while
it should be global.

Missing
Quali-
fier

A namespace include is
absent; or a scope is
not specified in a fully
qualified name.

• A user defined method with
same name is invoked instead
of a needed library one.

Wrong
Quali-
fier

A wrong namespace is
included, or a wrong
scope is specified in a
fully qualified name.

• Use of math.log instead of
numpy.log when the second
one is needed.

TABLE III: Operands

Concept Definition
Data
Value

A numeric, text, pointer/address, or boolean value stored in
an object’s memory.

Data
Type

A set of allowed values and the operations allowed over
them.

Function An organized block of code that when called takes in data,
processes it, and produces a result(s).

implicit typing rules.
DCL sites are the entities declarations and definitions.

NRS sites are the entities references and the function calls.
TCV sites are the cast operators and the in/out argument
passing and return statements. TCM sites are the arithmetic,
bitwise shift, concatenation, pointer arithmetics, pointer scal-
ing, relational, and boolean operators.

VI. BF DATA TYPE BUGS TAXONOMY AS
CWE EXTENSION

In this section, we analyze the correspondence of the
data type related CWEs [4], such as Numeric Errors [13],
Type Errors [14], and String Errors [15], to the four newly
developed BF Data Type Bugs classes. We show that DCL,
NRS, TCV, and TCM cover all data type related CWEs, and
potentially beyond, while (as demonstrated in Section VII)
providing a better structured way for describing these kinds
of bugs/weaknesses.

We identified data type related CWEs in three steps: 1)
CWE Filtering: Since different types of bugs/weaknesses are

7

TABLE IV: Improper Operand

(a) Improper Data Value

Concept Definition
Under Range Data value is smaller than type’s lower range.
Over Range Data value is larger than type’s upper range.
Flipped Sign Sign bit is overwritten from type related calculation.
Wrong
Argument
Value

Inaccurate input data value; i.e., non-verified for
harmed semantics.

Wrong Object
Resolved Value

Object is resolved from wrong scope.

Reference
vs. Object

Object’s address instead of object’s data value.

Wrong Result Incorrect value from type conversion or computation.
Wrap Around A moved around-the-clock value over its data type

upper or lower range, as it exceeds that range.
(Integer Over-/Under-flow is a wrapped-around the
upper/lower range integer value; may become very
small/large and change to the opposite sign.)

Truncated
Value

Rightmost bits of value that won’t fit type size are
cut off.

Distorted Value Incorrect value (although fits type size) due to sign
flip or signed/unsigned and vice versa conversions.

Rounded Value Real number value precision loss.

(b) Improper Data Type

Wrong Type Data type range or structure is not correct.

Wrong Type
Resolved

Data type is resolved from wrong scope.

Wrong Object
Resolved Type

Object is resolved from wrong scope,so it’s data type
might be wrong.

Wrong
Sign Type

Unsigned instead of signed data type is specified or
vise versa.

Wrong
Precision Type

Higher precision data type is needed (e.g. double
instead of float).

Incomplete
Type

Specific constructor, method, or overloaded function
is missing.

Mismatched
Argument Type

Argument’s data type is different from function’s
parameter data type.

Wrong
Generic Type

Generic object instantiated via wrong type argument.

Confused
Subtype

Object invoking an overriden function is of wrong
subtype data type.

Wrong
Argument
Type

Argument to an overloaded function is of wrong data
type.

(c) Improper Function

Missing Over-
ridden Function

Function implementation in a particular subclass is
absent.

Missing
Overloaded
Function

Implementation for particular function parameters’
data types is absent.

Wrong
Function
Resolved

Function is resolved from wrong scope.

Wrong Generic
Function
Bound

Implementation for a wrong data type is bound due
to wrong generic type arguments.

Wrong
Overridden
Function
Bound

Implementation from wrong subtype is bound due to
a wrong invoking subtype object.

Wrong
Overloaded
Function
Bound

Wrong overloaded implementation is bound due to
wrong function arguments.

TABLE V: Data Type Errors

(a) Access Errors – as DCL Consequences

Value Definition
Wrong Access
Object

Unauthorized access to an object exposes sensitive
data or allows access to member functions.

Wrong Access
Type

Unauthorized access to a data type allows access
to member objects and functions.

Wrong Access
Function

Unauthorized access to a function.

(b) Type Compute Errors – as TCM Consequences

Value Definition
Undefined The Type System cannon represent the computa-

tion result (e.g. division by 0).

TABLE VI: Attributes

(a) DCL, NRS, TCM, and TCV Attributes

Name Value Definition

So
ur

ce
C

od
e Codebase The operation is in the programmer’s code – in

the application itself.
Third Party The operation is in a third-party library.
Standard
Library

The operation is in the standard library for a
particular programming language.

Compiler/
Interpreter

The operation is in the language processor that
allows execution or creates executables (com-
piler, assembler, interpreter).

D
at

a
Ty

pe
K

in
d

Primitive Mimics the hardware units and is not built from
other data types – e.g. int (long, short, signed),
float, double, string, boolean.

Structured Builds of other data types; have members of
primitive and/or structured data types – e.g.
array, record, struct, union, class, interface.

(b) DCL Attribute

Name Value Definition

M
ec

ha
ni

sm

Simple A non-polymorphic entity.
Generics An entity parameterized by type.
Overriding Functions with the same name as one in the base

type, but implemented in different subtypes.
Overloading Functions with the same name in the same dec-

laration scope, but implemented with different
signature.

(c) NRS Attribute

Name Value Definition

M
ec

ha
ni

sm

Resolve Look up entity name and if needed determine
data type (infer from value, through hierarchy,
via generic type attribute).

Bind Connect object data type, function return type,
parameter data type, or simple function imple-
mentation.

Early Bind Resolve subtype and set generic function imple-
mentation.

Late Bind Resolve overriden function via subtype object
and set implementation.

Ad-hoc
Bind

Resolve overloaded function via signature and
set implementation.

(d) TCV Attribute

Name Value Definition

M
ec

ha
ni

sm

Pass In Supply ”in” arguments’ data values to a func-
tion/ operator.

Pass Out Supply ”out” or ”in/out” arguments’ data values
or a return value to a function/ operator.

8

(e) TCM Attribute
Name Value Definition

M
ec

ha
ni

sm

Function An organized block of code that when called
takes in data, processes it, and returns a result.

Operator A function with a symbolic name that imple-
ments a mathematical, relational or logical op-
eration.

Method A member function of an OOP class.
Lambda
Expression An anonymous function, implemented within

another function.
Procedure A function with a void return type.

(f) DCL and NRS Attributes
Name Value Definition

E
nt

ity Object A memory region used to store data.
Function An organized block of code that when called

takes in data, processes it, and returns a result.
Data Type A set or a range of values and the operations

allowed over them.
Namespace An organization of entities’ names, utilized to

avoid names collision.

(g) TCV and TCM Attribute
Name Value Definition

D
at

a
V

al
ue

K
in

d

Numeric A number stored in an object’s memory.
Text A string stored in an object’s memory.
Pointer A holder of the memory address of an object.
Boolean A truth value (true or false; 1 or 0), stored

in an object’s memory.

described in CWE [4], we filtered a set of CWEs which de-
scriptions contain keywords such as ”type”, ”string”, ”class”,
”cast”, and ”compare”. 2) Automated Extraction: Starting
from the filtered CWEs and following their parent-child
relationships, we extracted all the clusters of potentially data
type related CWEs. 3) Manual Review: All the authors, who
are a team of professional security researchers, performed
iterative rounds of manual CWE reviews, identifying the type
related CWEs among the extracted CWE clusters. Finally, we
could collect 84 CWEs, 78 of which are data type related.
The additional six CWEs: 573, 664, 668, 710, 758, and 1076
(shown with gray outline) were included only for parent-child
completeness. We peer-reviewed their detailed descriptions,
examples, and listed CVEs, as well as the corresponding
literature; and performed weekly discussions brainstorming
to confirm each of these CWEs is covered by the operations,
causes, and/or consequences defining the BF Data Type Bugs
classes.

We mapped each of the identified CWEs to a BF Data
Type Bugs class based on the operations that are defined
in DCL, NRS, TCV, and TCM and identified an operation
for the CWE. Then, we generated digraphs of all data type
related CWEs to show their correspondence to the BF Data
Type Bugs classes by operation (Fig. 7) and by consequence
(Fig. 8). In the digraphs, each node is a CWE weakness,
shown by its CWE ID, and the edges show the parent/child
relationship. The outline style of a CWE node indicates the
abstraction level: pillar, class, base, or variant.

In Fig. 7, the outline color of a CWE node indicates
the BF class(es) and operation(s) associated with that CWE:
DCL Declare, DCL Define, NRS Refer, NRS Call, TCV Cast,
TCV Coerce, TCM Calculate, and TCM Evaluate.

Most of the CWEs, visualized on the digraph, are
covered by the DCL class. They relate to improper declaration

and definition of structured data and are under the pillars
CWE-664 (Improper Control of a Resource Through its Life-
time) and CWE-668 (Exposure of Resource), and CWE-710
(Improper Adherence to Coding Standards), correspondingly.

Two other large clusters of data type related CWEs
are covered by TCM. They relate to improper calculation
and evaluation and are descendants of the pillars CWE-
682 (Incorrect Calculation) and CWE-697 (Incorrect Com-
parison), correspondingly. Two of the CWE-628 (Function
Call with Incorrectly Specified Arguments) descendants are
also covered by TCM Calculate and Evaluate. In addition,
CWE-351 (Insufficient Type Distinction) is covered by TCM
Evaluate.

The CWEs covered by TCV are under CWE-704 (In-
correct Type Conversion or Cast). They mostly relate to
improper coercion – CWE-843 (Access of Resource Using
Incompatible Type (’Type Confusion’)) and the children of
CWE-681 (Incorrect Conversion between Numeric Types).
Only one CWE was identified as improper casting – CWE-
588 (Attempt to Access Child of a Non-structure Pointer).

Only a few CWEs are partly related to the NRS class,
which is surprising as bugs related to polymorphic calls
are not rare [16]. Our explanation is that CWE considers
improper name referring/resolving and improper function
calling/binding to be part of a computation weakness. For in-
stance, CWE-468 is under CWE-682 (Incorrect Calculation),
but it lists an example that starts with a TCV bug leading to
an NRS weakness, and is actually a five weaknesses chain
(see the BF description in section VII-B).

Fig. 9 shows the percentages of data type related CWEs
by BF class operation. It shows that most of these CWEs
are about weaknesses that occur at declaration and definition
(50% combined) of objects, types, and functions. Next are
weaknesses related to performing data type related calcula-
tions or evaluations (33.3% combined). The least represented
are the name resolution (at refer and call) and type conversion
(at cast and coerce) weaknesses.

While the CWEs only enumerate weaknesses, the Data
Type Bugs classes ensure precise descriptions, as a weak-
ness is described via one cause, one operation, and one
consequence. The CWEs exhaustive list is prone to gaps
in coverage and some weakness types may be missing. For
example, in the type related categorization the CWEs are
mainly focused on primitive data type errors, such as Nu-
meric Errors [13] and String Errors [15], while our developed
BF classes consider both primitive and structured data types.
Besides that, the data type related CWEs focus mostly on
types of errors that happen during arithmetic calculations and
comparison evaluations [13], while the BF Data Type Bugs
classes define type related bugs based on different stages of
the data types development: from declaration and definition
to resolution and usage.

The BF Data Type Bugs classes present a taxonomy
with structured cause→consequence relations that is complete
and orthogonal. It could be viewed as a structured extension
over the CWEs related to Wrong Result, Rounded Value,
Truncated Value, Wrap Around (incl. Integer Overflow),
Under Range, Over Range Flipped Sign, Wrong Access, and
Undefined Behaviour (see Fig. 8). It is a taxonomy that
explains the causal relationships between weaknesses and
would be easier to use than the nested hierarchical CWEs.

9

https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/668.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/1076.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/668.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/697.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/351.html
https://cwe.mitre.org/data/definitions/CWE-704.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/588.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/682.html

351

664

682

697

710

471495
496

668

704

706

749

128
131

1335
1339

135
190

191

193

369

467

468
469

1023

1024

1025

1077

1061

1076

1093

573

758

374
375

491

492

493

498

499
582 583

608

767

681

843

386

486

595

1054

1057

1062
10831090

766

1045

1079
1082 1087

1097
1098

1043

1055

1074

1086

580

581

628

694

1102 1105
588

500

192
194195196

597

683

685

686

687
688

188

CWEs by DTC, NRS, TCV, and TCM operation:

DCL Declare

DCL Define

NRS Refer

NRS Call

TCV Cast

TCV Coerce

TCM Calculate

TCM Evaluate

CWEs by Abstraction:

Pillar

Class

Base

Variant

Fig. 7: A digraph of the data type related CWEs, mapped by DCL, NRS, TCV, and TCM operations. Each node represents a
CWE ID. Each arrow represents a parent-child relationship. −→ Click on an ID to open the CWE entry.

Many bug reporting tools use the CWE [4] to describe
detected bugs/weaknesses [17]. As a structured extension
over the data type related CWEs, the BF Data Type Bugs
taxonomy can be used to report identified data type related
bugs/weaknesses (including those leading to integers over-
flow, juggling, and pointer arithmetic errors). Fig. 7 shows
how data type related CWEs translate to BF DCL, NRS,
TCV, TCM by operation; Fig. 8 shows how they translate
by consequences.

VII. SHOWCASES

In this section, we use the new BF Data Type Bugs
classes for precise descriptions of software vulnerabilities.
We also provide the fixes of each bug.

A. CVE-2021-21834 and the Bad Allocation Chain
Our first example is an instance of a BF Chain that de-

fines a pattern (“BadAlloc”) observed by CISA and reported
in its Industrial Control Systems Advisorys, ICSA-21-119-
04 [18]. The advisory lists 25 similar vulnerabilities found in
multiple real-time operating systems.

Using the BF classification, we describe BadAlloc as a
DVR −→ TCM −→ MAL −→ MAD −→ MUS chain. That is, due
to improper verification (DVR), an attacker can craft an input
that creates an integer overflow (TCM), leading to allocation

(or reallocation) of an undersized buffer (MAL). Therefore,
a pointer can be moved overbounds (MAD), leading to a
buffer overflow error (MUS). This vulnerability could lead to
a failure, such as denial of service or, even worse, (remote)
code execution.

To clearly illustrate how this pattern happens, we de-
scribe in detail CVE-2021-21834 that occurs in an open
source project. It was identified by the Cisco Talos team [19].
The vulnerable code can be found in [20].

1) Brief Description: The GPAC Project on Advanced
Content is a C language implementation of the MPEG-
4 audio/video compression standard. In version 1.0.1, the
library is vulnerable to decoding a specially crafted MPEG-4
input file.

2) Analysis: The library code reads the “number of
entries” value from a file into the 32-bit integer object
(ptr−→nb_entries) and checks if it is not larger than the 64-
bits input size (ptr−→size/8). Then, the size of memory that
should be allocated is calculated by multiplying the “number
of entries” by the size of a u64 object (sizeof(u64)), which
can result in an integer overflow on a 32-bit platform. When
such an overflowed integer is used, the allocation routine will
create an undersized buffer, which will be populated based
on its larger actual size, leading to a buffer overflow. Fig.10
presents the BF taxonomy for this vulnerability.

10

https://cwe.mitre.org/data/definitions/351.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/697.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/496.html
https://cwe.mitre.org/data/definitions/668.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/706.html
https://cwe.mitre.org/data/definitions/749.html
https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/1335.html
https://cwe.mitre.org/data/definitions/1339.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/1023.html
https://cwe.mitre.org/data/definitions/1024.html
https://cwe.mitre.org/data/definitions/1025.html
https://cwe.mitre.org/data/definitions/1077.html
https://cwe.mitre.org/data/definitions/1061.html
https://cwe.mitre.org/data/definitions/1076.html
https://cwe.mitre.org/data/definitions/1093.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/374.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/491.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/493.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/582.html
https://cwe.mitre.org/data/definitions/583.html
https://cwe.mitre.org/data/definitions/608.html
https://cwe.mitre.org/data/definitions/767.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/386.html
https://cwe.mitre.org/data/definitions/486.html
https://cwe.mitre.org/data/definitions/595.html
https://cwe.mitre.org/data/definitions/1054.html
https://cwe.mitre.org/data/definitions/1057.html
https://cwe.mitre.org/data/definitions/1062.html
https://cwe.mitre.org/data/definitions/1083.html
https://cwe.mitre.org/data/definitions/1090.html
https://cwe.mitre.org/data/definitions/766.html
https://cwe.mitre.org/data/definitions/1045.html
https://cwe.mitre.org/data/definitions/1079.html
https://cwe.mitre.org/data/definitions/1082.html
https://cwe.mitre.org/data/definitions/1087.html
https://cwe.mitre.org/data/definitions/1097.html
https://cwe.mitre.org/data/definitions/1098.html
https://cwe.mitre.org/data/definitions/1043.html
https://cwe.mitre.org/data/definitions/1055.html
https://cwe.mitre.org/data/definitions/1074.html
https://cwe.mitre.org/data/definitions/1086.html
https://cwe.mitre.org/data/definitions/580.html
https://cwe.mitre.org/data/definitions/581.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/694.html
https://cwe.mitre.org/data/definitions/1102.html
https://cwe.mitre.org/data/definitions/1105.html
https://cwe.mitre.org/data/definitions/588.html
https://cwe.mitre.org/data/definitions/500.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/597.html
https://cwe.mitre.org/data/definitions/683.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/688.html
https://cwe.mitre.org/data/definitions/188.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834

351

664

682

697

710

471495
496

668

704

706

749

128
131

1335
1339

135
190

191

193

369

467

468
469

1023

1024

1025

1077

1061

1076

1093

573

758

374
375

491

492

493

498

499
582 583

608

767

681

843

386

486

595

1054

1057

1062
10831090

766

1045

1079
1082 1087

1097
1098

1043

1055

1074

1086

580

581

628

694

1102 1105
588

500

192
194195196

597

683

685

686

687
688

188

CWEs by DCL Access Error:

Wrong Access Object

Wrong Access Function

CWEs by TCM Type Compute Error:

Undefined

Improper Data Type:

Wrong Type

Incomplete Type

Improper Function:

Function Bound

CWEs by TCV and TCM Improper Data Value:

Wrong Result

Rounded Value

Truncated Value

Wrap Around

Under Range

Over Range

Flipped Sign

(only Cause listed)

CWEs by Abstraction:

Pillar

Class

Base

Variant

Compound

CWEs by DCL and NRS

CWEs by NRS

Wrong Overloaded

No Consequence

Fig. 8: A digraph of the data type related CWEs, mapped by BF DCL, NRS, TCV, and TCM consequences. Each node represents
a CWE ID. Each arrow represents a parent-child relationship. −→ Click on an ID to open the CWE entry.

16.7

33.3

6.4

1.32.6

9

19.2

14.1

DCL Declare DCL Define NRS Call NRS Refer

TCV Cast TCV Coerce TCM Calculate TCM Evaluate

Fig. 9: A diagram of the percentages of data type related
CWEs by the operations of the BF Data Type Bugs classes.

3) The Fix: To fix the bug, the GPAC team checked
the maximum integer size ((u64)ptr−→nb_entries >
(u64)SIZE_MAX/sizeof(u64)), fixing the DVR bug and
resolving the entire vulnerability [21].

B. CWE-468, Example 1 – Incorrect Pointer Scaling
Our second example is a pointer scaling bug, illustrating

how a simple piece of code could have a bug and several
weaknesses behind it. This is a common C/C++ pointer
bug; it happens when a programmer miscalculates a pointer
increment (or decrement) by a fraction of its type size (e.g.,
attempting to move an int pointer one byte to the right).

CWE-468 provides an excellent two lines of code
example: int *p = x; char * second_char = (char

*)(p + 1); .
1) Analysis: The chain starts with an improper casting

of the pointer p to char * that leads to invocation of a
wrong addition operator6 int* + 1 instead of char* + 1.
Therefore, the pointer moves 4 bytes instead of 1 byte (3
bytes off), reading the wrong value, outside the object x
(buffer overflow). Fig.11 presents the BF taxonomy for this
weakness.

2) The Fix: To fix the bug, the programmer should first
cast and then add: int *p = x; char * second_char =
(char *)p + 1; .

6The C standard does not explicitly talk about “overloading”, but the
required properties and equalities are met for overloaded operators.

11

https://cwe.mitre.org/data/definitions/351.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/697.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/496.html
https://cwe.mitre.org/data/definitions/668.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/706.html
https://cwe.mitre.org/data/definitions/749.html
https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/1335.html
https://cwe.mitre.org/data/definitions/1339.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/1023.html
https://cwe.mitre.org/data/definitions/1024.html
https://cwe.mitre.org/data/definitions/1025.html
https://cwe.mitre.org/data/definitions/1077.html
https://cwe.mitre.org/data/definitions/1061.html
https://cwe.mitre.org/data/definitions/1076.html
https://cwe.mitre.org/data/definitions/1093.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/374.html
https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/491.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/493.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/582.html
https://cwe.mitre.org/data/definitions/583.html
https://cwe.mitre.org/data/definitions/608.html
https://cwe.mitre.org/data/definitions/767.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/386.html
https://cwe.mitre.org/data/definitions/486.html
https://cwe.mitre.org/data/definitions/595.html
https://cwe.mitre.org/data/definitions/1054.html
https://cwe.mitre.org/data/definitions/1057.html
https://cwe.mitre.org/data/definitions/1062.html
https://cwe.mitre.org/data/definitions/1083.html
https://cwe.mitre.org/data/definitions/1090.html
https://cwe.mitre.org/data/definitions/766.html
https://cwe.mitre.org/data/definitions/1045.html
https://cwe.mitre.org/data/definitions/1079.html
https://cwe.mitre.org/data/definitions/1082.html
https://cwe.mitre.org/data/definitions/1087.html
https://cwe.mitre.org/data/definitions/1097.html
https://cwe.mitre.org/data/definitions/1098.html
https://cwe.mitre.org/data/definitions/1043.html
https://cwe.mitre.org/data/definitions/1055.html
https://cwe.mitre.org/data/definitions/1074.html
https://cwe.mitre.org/data/definitions/1086.html
https://cwe.mitre.org/data/definitions/580.html
https://cwe.mitre.org/data/definitions/581.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/694.html
https://cwe.mitre.org/data/definitions/1102.html
https://cwe.mitre.org/data/definitions/1105.html
https://cwe.mitre.org/data/definitions/588.html
https://cwe.mitre.org/data/definitions/500.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/597.html
https://cwe.mitre.org/data/definitions/683.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/688.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/468.html
https://cwe.mitre.org/data/definitions/468.html

A�ributes

Mechanism:
• Range

Source Code:
• Third Party (Library

box_code_base.c)

Execu�on Space:
• Local

Data State:
• Stored (“number of

entries” read from file)

ConsequenceCause

Improper Opera�on:
Missing

Improper Data Value:
Inconsistent Value

(> max 64-bit int)

DVR Opera�on

Verify
((u64)ptr->nb_entries >

(u64)SIZE_MAX/sizeof(u64))

Mechanism:
• Operator

(Arithme�c:‘*’)

Source Code:
• Third Party (Library

box_code_base.c)

Data Value Kind:
• Numeric

Data Type Kind:
• Structured

ConsequenceCause

Improper Data Value:
Wrong Argument Value

Improper Data Value:
Wrap Around

TCM Opera�on

Calculate
(ptr->nb_entries*sizeof(u64))

A�ributes

A�ributes

Mechanism:
• Explicit

Source Code:
• Third Party (Library

box_code_base.c)

Execu�on Space:
• Userland

Ownership:
• Single

Loca�on:
• Heap

ConsequenceCause

Improper Data Value:
Wrong Size Used

(size of memory to allocate)

Improper Object Size:
Not Enough Memory Allocated

MAL Opera�on

Allocate
(gf_malloc())

A�ributes
Mechanism:
• Sequen�al

Source Code:
• Third Party (Library

box_code_base.c)

Execu�on Space:
• Userland

Loca�on:
• Heap

ConsequenceCause

Improper Object Size:
Not EnoughMemory Allocated

Improper Data Value:
Over Bounds Pointer

MAD Opera�on

Reposi�on

A�ributes
Mechanism:
• Sequen�al

Source Code:
• Third Party (Library

box_code_base.c)

Execu�on Space:
• Userland

Span:
• Huge

Loca�on:
• Heap

ConsequenceCause

Improper Data Value:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Opera�on

Write

Fig. 10: BF for CVE-2021-21834.

C. CVE-2021-23440 and Type Mismatch bypassing Input
Validation

Our third example illustrates again a pattern of weak-
nesses that appears in different vulnerabilities. This pattern
is described by the same BF chain. Type mismatch bugs are
common in languages that have different operators for loose
comparison and strict comparison, such as JavaScript and
PHP. In this bug, the programmer uses a loose comparison
when it should be a strict comparison, leading to input
validation bypass [22].

Using the BF classification, we describe this pattern of
vulnerabilities via two BF chains. The first is an one-class
chain, TCM (improper comparison: loose instead of strict).
The second is a two-classes chain, TCV −→ DVL. That is,
due to missing type conversion an improper validation (DVL)
happens, allowing an attacker to create an injection error. This
vulnerability could lead to a failure, such as denial of service
or, even worse, (remote) code execution.

One concrete example is CVE-2021-23440. It was dis-
covered by the Snyk Team with several other loose compar-
ison bugs.

1) Brief Description: The package set-value for
JavaScript is vulnerable to prototype pollution in versions

Mechanism:
• Ad-hoc Bind

Source Code:
• Codebase

En�ty:
• Func�on

Data Type Kind:
• Primi�ve

ConsequenceCause

Improper Data Type:
Wrong Argument Type

Improper Func�on:
Wrong Overloaded Func�on Bound

(+(int*,int) instead of +(char*,int))

NRS Opera�on

Call
(+ operator)

A�ributes

A�ributes

ConsequenceCause

Improper Func�on:
Wrong Overloaded Func�on

Improper Data Value:
Wrong Result

(Pointer posi�on)

TCM Opera�on

Calculate

A�ributes

Mechanism:
• Direct

Source Code:
• Codebase

Execu�on Space:
• Userland

Loca�on:
• Stack

ConsequenceCause

Improper Data Value:
Wrong Index

Improper Object Address:
Over Bounds Pointer

MAD Opera�on

Reposi�on

A�ributes
Mechanism:
• Direct

Source Code:
• Codebase

Execu�on Space:
• Userland

Span:
• Li�le

Loca�on:
• Stack

ConsequenceCause

Improper Object Address:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Opera�on

Read

Mechanism:
• Pass In

Source Code:
• Codebase

Data Value Kind:
• Pointer

Data Type Kind:
• Primi�ve

ConsequenceCause

Improper Opera�on:
Wrong

Improper Data Type:
Wrong Type

(int instead ofchar)

TCV Opera�on

Cast
((char *)(p + 1) instead of

(char *)p + 1)

A�ributes

Mechanism:
• Operator

Source Code:
• Codebase

Data Value Kind:
• Pointer

Data Type Kind:
• Primi�ve

Fig. 11: BF for CWE-468, Example 1.

<2.0.1, >=3.0.0, <4.0.1. It happens due to a type mismatch
in the prototype pollution verification.

2) Analysis: This vulnerability has two possible BF
chains. The first chain is: the loose comparison operator is
misused. The second chain is: a type conversion is missing
before using the loose comparison, leading to improper
input validation and prototype pollution, a kind of command
injection in JavaScript [23]. Fig. 12 presents the BF taxonomy
for this vulnerability.

3) The Fix: There are two ways of fixing this vulner-
ability: the developers could use strict comparison, solving
the TCM bug, or they could do a type conversion before the
loose comparison. They chose the latter [24].

VIII. RELATED WORKS

The Bugs Framework (BF) is concerned with security-
related bugs, i.e., bugs that open doors for exploitation. The
work of Sun et al. [25] is the only one we found to establish
a taxonomy classifying Data Type related security bugs. The
classes in their taxonomy are called Fix Patterns. Although
their paper is succinct, we understand that at least two Fix
Patterns relate to the BF Data Type Bugs classes: COP
(changing the type of an object to its parent class) and COS
(changing the type of an object to its subclass) are related
to TCV. Several other authors attempted to create successful
taxonomies of bugs/weaknesses that lead to security failures.

12

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23440
https://cwe.mitre.org/data/definitions/468.html

A�ributes

ConsequenceCause

Improper Opera�on:
Wrong

Improper Data Value:
Wrong Result

TCM Opera�on

Evaluate
(!= instead of!== operator)

Mechanism:
• Operator

Source Code:
• Codebase

Data Value Kind:
• Boolean

Data Type Kind:
• Structured

(a) First BF chain: Loose comparison misuse.

Mechanism:
• Pass In

Source Code:
• Codebase

Data Value Kind:
• Text

Data Type Kind:
• Structured

ConsequenceCause

Improper Opera�on:
Missing

Improper Data Type:
Wrong Type (nested list with

[‘_proto_’’] instead ofstring value)

TCV Opera�on

Cast

A�ributes

A�ributes

Mechanism:
• Safelist

Source Code:
• Codebase

Execu�on Space:
• Local

Data State:
• Entered

ConsequenceCause

Improper Data:
Tampered Data

(nested list with[‘_proto_’’])

Injec�on Error:
Command Injec�on

DVL Opera�on

Validate

(b) Second BF chain: Conversion missing before loose comparison.

Fig. 12: BF for CVE-2021-23440.

Hui et al. reviewed them in [26]. Unfortunately, none of those
taxonomies tackle the specific problem of data type bugs.
However, we identified several publications that discuss some
of the underlying weaknesses of type-related vulnerabilities,
such as type confusion, loose comparison, integer overflow,
and type mismatch.

Type confusion vulnerabilities happen when a pointer
is converted from a subclass pointer to a base class pointer.
Their BF descriptions usually contain a NRS or a TCV class.
Haller et al. [27] studied this kind of bugs and developed
TypeSan, a practical type confusion detector for C++ lan-
guage.

Loose comparison vulnerabilities happen when the de-
veloper wrongly uses the loose comparison feature of dy-
namically typed languages such as PHP and JavaScript. Their
BF descriptions could be related to all BF Data Type Bugs
classes. Li et al. [28] studied loose comparison bugs in PHP
and proposed LChecker to detect this kind of bugs in PHP
code.

Type mismatch vulnerabilities happen when an in argu-
ment or a return variable has an unexpected type. They also
happen due to improper declarations. Their BF descriptions
could be related to all BF Data Type Bugs classes. Gao et
al. [29] have discussed type mismatch bugs and performed a
detailed quantification of static type systems for JavaScript.
Pradel et al. [30] also studied type mismatches in JavaScript
and proposed a tool (TypeDevil) to detect it. Pascarella et al.
[31] investigate how inconsistent documentation can lead to
type mismatch bugs in Python.

Integer overflow vulnerabilities happen when a congru-
ent arithmetic operation (modulo 2n, for a n-bit integer)
wraps around. Their BF descriptions relate to the TCM
class. Dietz et al. [32] reviewed integer overflow in C/C++
language. Their work gives a good picture of the issue.

Although, the aforementioned papers have studied the
bugs and weaknesses discussed in this paper, our work is

considerably different. The current literature focuses on tools
and procedures to detect a particular bug/weakness, while
we are focusing on the theoretical side of all this. We are
developing a classification system for all possible kinds of
data type bugs/weaknesses and a methodology to describe
the interrelationship between those kinds of weaknesses and
other ones, such as memory corruption bugs and improperly
checked input bugs. We believe that such a structured model
for software bugs will allow the development of better
automatic tools in the future.

In addition to CWE, to the best of our knowledge, there
is no attempt to describe data type bugs/weaknesses. The
relationship between the data type related CWEs and the BF
classes are presented in section VI.

IX. CONCLUSION

In this paper, we introduce four new BF classes: Declara-
tion Bugs (DCL), Name Resolution Bugs (NRS), Type Con-
version Bugs (TCV), and Type Computation Bugs (TCM).
We present their operations, possible causes, consequences,
attributes, and sites. We show how they cover all CWEs
related to conversion, calculation (incl. comparison), wrap-
around (incl. integer overflow), pointer scaling, coercion (jug-
gling), and other data type related weaknesses. We analyze
particular data type vulnerabilities and provide their precise
BF descriptions. The BF structured taxonomies show the ini-
tial error in code (the bug), providing a quite concise and still
far more clear description than the unstructured explanations
in current repositories, advisories, and publications. The BF
Data Type Bugs taxonomy can be used by bug reporting
tools, as it is a structured extension over the data type-
related CWEs [4]. To our knowledge there is no other bug
taxonomy that allows precise causal descriptions of data type
related declaration, resolution, conversion, and computation
bugs/weaknesses.

Future work should identify and describe more CVEs
related to data type related declaration, resolution, conversion,
and computation bugs/weaknesses, evaluating the BF Data
Type Bugs taxonomy for usability. In such an evaluation,
a machine learning algorithm or multiple analysts would
classify and describe newly reported bugs [33], while helping
improve BF’s taxonomy by fine-tuning the classes.

BF has the expressiveness power to clearly describe
any software bug or weakness, underlying any vulnerability.
Precise BF descriptions of software vulnerabilities as chains
of bug-weaknesses-failure will allow clear communication
among software developers, testers, IT professionals, and IT
managers. The vulnerability databases, such as NIST NVD
and CISA KEV, will have CVE entries in machine readable
formats that cybersecurity researchers can use for building
code review tools and for a broad spectrum of ML and AI
systems for detection of software vulnerabilities and explor-
ing complex malicious attacks. This will aid better software
development/coding practices, mitigation designs, automated
cybertesting capabilities, and will greatly advance our way
of securing the cyberspace and the critical infrastructure.
The BF taxonomy will allow clear explanations of what
happens in a vulnerability to IT professionals and non-IT
executives, as well as researchers, developers, and students.
It will support development of precise software testing tools
with unambiguous reports.

13

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23440

BF aims to provide more than a classification system.
It is a model of the underlying weaknesses, describing a
sequence of causes and consequences, starting with the bug
(the defect) to the final failure (the exploit). Although the
entire framework is not ready yet, we believe that providing
a model of the underlying weaknesses helps to clarify if
a bug has been fixed or just mitigated, allowing correct
risk assessment of vulnerabilities and minimizing incomplete
fixes. A taxonomy providing cause−→consequence relations
should improve bug reports of security-related bugs, reducing
developers’ time to understand bug reports [34].

The CWE digraphs by BF class consequences should be
deeply analyzed. Generation of digraphs with CWEs related
to particular software errors (e.g., wrap-around), detecting
corresponding clusters, and understanding their relationships
would create a comprehensive view of the CWE model
for researchers and practitioners. In turn, comparing and
contrasting the CWE’s exhaustive list of weaknesses with all
the possible consequence-cause transitions to other BF classes
would improve BF as a tool for describing CVEs.

We will continue developing orthogonal BF classes that
cover and extend the CWE weakness types. The ultimate goal
for BF is to help IT professionals understand how software
vulnerabilities originate from bugs, propagate through weak-
nesses, and end as failures. The gain would be fewer bugs,
fewer vulnerabilities, less time to fix/patch code, and better
tools for bugs detection.

REFERENCES

[1] CVE-2022-1096, Accessed: 2022-06-30, 2022. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1096.

[2] NVD, National Vulnerability Database (NVD), Accessed: 2022-09-08,
2022. [Online]. Available: https://nvd.nist.gov.

[3] MITRE, Common Vulnerabilities and Exposures (CVE), Accessed:
2022-09-08, 2022. [Online]. Available: https://cve.mitre.org/.

[4] MITRE, Common Weakness Enumeration (CWE), Accessed: 2022-09-
08, 2022. [Online]. Available: https://cwe.mitre.org.

[5] CISA, Known Exploited Vulnerabilities Catalog, Accessed: 2022-09-
08, 2022. [Online]. Available: https://www.cisa.gov/known-exploited-
vulnerabilities-catalog.

[6] D. Malzahn, Z. Birnbaum, and C. Wright-Hamor, “Automated vulnera-
bility testing via executable attack graphs,” in 2020 International Con-
ference on Cyber Security and Protection of Digital Services (Cyber
Security), IEEE, 2020, pp. 1–10. DOI: 10.1109/CyberSecurity49315.
2020.9138852.

[7] NIST, The Bugs Framework, Accessed: 2022-09-08, 2022. [Online].
Available: https://samate.nist.gov/BF/.

[8] I. Bojanova, C. E. Galhardo, and S. Moshtari, “Input/output check bugs
taxonomy: Injection errors in spotlight,” in 2021 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
2021, pp. 111–120. DOI: 10.1109/ISSREW53611.2021.00052.

[9] I. Bojanova and C. E. Galhardo, “Classifying Memory Bugs Using
Bugs Framework Approach,” in 2021 IEEE 45th Annual Computer,
Software, and Applications Conf. (COMPSAC), 2021, pp. 1157–1164.
DOI: 10.1109/COMPSAC51774.2021.00159.

[10] M. Graff and K. R. Van Wyk, Secure coding: principles and practices.
O’Reilly Media, Inc., 2003.

[11] B. C. Pierce, Types and programming languages. MIT press, 2002.
[12] C. Munoz, “Type theory and its applications to computer science,”

Quarterly News Letter of Institute for Computer Application in Science
and Engineering (ICASE), vol. 8, no. 4, 2007. [Online]. Available:
https://shemesh.larc.nasa.gov/fm/papers/ICASE1999-QNews.pdf.

[13] MITRE, CWE CATEGORY: Numeric Errors, Accessed: 2022-09-08,
2022. [Online]. Available: https://cwe.mitre.org/data/definitions/189.
html.

[14] MITRE, CWE CATEGORY: Type Errors, Accessed: 2022-09-08, 2022.
[Online]. Available: https://cwe.mitre.org/data/definitions/136.html.

[15] MITRE, CWE CATEGORY: String Errors, Accessed: 2022-09-08,
2022. [Online]. Available: https://cwe.mitre.org/data/definitions/133.
html.

[16] S. Chaliasos, T. Sotiropoulos, G.-P. Drosos, C. Mitropoulos, D.
Mitropoulos, and D. Spinellis, “Well-typed programs can go wrong:
A study of typing-related bugs in jvm compilers,” Proceedings of the
ACM on Programming Languages, vol. 5, no. OOPSLA, pp. 1–30,
2021. DOI: 10.1145/3485500.

[17] Static Analysis Tool Exposition (SATE), Accessed: 2022-09-08, 2021.
[Online]. Available: https : / /www.nist .gov/ itl / ssd /software- quality -
group/samate/static-analysis-tool-exposition-sate.

[18] CISA, ICS Advisory (ICSA-21-119-04), Multiple RTOS (Update E),
Accessed: 2022-09-08, 2022. [Online]. Available: https: / /www.cisa.
gov/uscert/ics/advisories/icsa-21-119-04.

[19] Cisco Talos, Talos Vulnerability Report, TALOS-2021-1297 GPAC
Project on Advanced Content library MPEG-4 Decoding multiple
multiplication integer overflow vulnerabilities, Accessed: 2022-09-08,
2021. [Online]. Available: https://talosintelligence.com/vulnerability
reports/TALOS-2021-1297.

[20] GPAC, Accessed: 2022-09-08, 2021. [Online]. Available: https://github.
com/gpac/gpac/blob/v1.0.1/src/isomedia/box code base.c.

[21] A. David, Fixes for talos report TALOS-2021-1297, Accessed: 2022-
09-08, 2021. [Online]. Available: https://github.com/gpac/gpac/commit/
b515fd04f5f00f4a99df741042f1efb31ad56351.

[22] A. Della Libera, JavaScript type confusion: Bypassed input valida-
tion (and how to remediate), Accessed: 2022-09-08, 2021. [Online].
Available: https://snyk.io/blog/remediate- javascript- type- confusion-
bypassed-input-validation/.

[23] A. Sharma, From Prototype Pollution to Full-on Remote Code Exe-
cution, How Can Adversaries Exploit npm Modules? Accessed: 2022-
09-08, 2020. [Online]. Available: https://blog.sonatype.com/how-can-
adversaries-exploit-npm-modules.

[24] J. Schlinkert, Security Fix for Prototype Pollution, Accessed:
2022-09-08, 2021. [Online]. Available: https : / / github .
com / jonschlinkert / set - value / pull / 33 / files # diff -
e727e4bdf3657fd1d798edcd6b099d6e092f8573cba266154583a746bba0f346.

[25] X. Sun, X. Peng, K. Zhang, Y. Liu, and Y. Cai, “How security bugs are
fixed and what can be improved: An empirical study with mozilla,” Sci-
ence China Information Sciences, vol. 62, no. 1, 019102:1–019102:3,
2019. DOI: 10.1007/s11432-017-9459-5.

[26] Z. Hui, S. Huang, Z. Ren, and Y. Yao, “Review of Software Security
Defects Taxonomy,” in Rough Sets and Knowledge Technology, 2010,
pp. 310–321. DOI: 10.1007/978-3-642-16248-0 46.

[27] I. Haller, Y. Jeon, H. Peng, et al., “Typesan: Practical type confusion
detection,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 517–528. DOI: 10.
1145/2976749.2978405.

[28] P. Li and W. Meng, “Lchecker: Detecting loose comparison bugs in
php,” in Proceedings of the Web Conference 2021, 2021, pp. 2721–
2732. DOI: 10.1145/3442381.3449826.

[29] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: Quantifying
detectable bugs in javascript,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), 2017, pp. 758–769. DOI:
10.1109/ICSE.2017.75.

[30] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type inconsis-
tency analysis for javascript,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1, 2015, pp. 314–324.
DOI: 10.1109/ICSE.2015.51.

[31] L. Pascarella, A. Ram, A. Nadeem, D. Bisesser, N. Knyazev, and A.
Bacchelli, “Investigating type declaration mismatches in python,” in
2018 IEEE Workshop on Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE), IEEE, 2018, pp. 43–48. DOI: 10.
1109/MALTESQUE.2018.8368458.

[32] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in c/c++,” ACM Trans. Softw. Eng. Methodol. (TOSEM),
vol. 25, no. 1, pp. 1–29, 2015. DOI: 10.1145/2743019.

[33] T. M. Adhikari and Y. Wu, “Classifying software vulnerabilities by
using the bugs framework,” in 8th Inter. Symp. Digital Forensics and
Security (ISDFS), 2020, pp. 1–6. DOI: 10 .1109 / ISDFS49300 .2020 .
9116209.

[34] S. Kim and E. J. Whitehead, “How long did it take to fix bugs?” In
Proceedings of the 2006 International Workshop on Mining Software
Repositories, 2006, pp. 173–174. DOI: 10.1145/1137983.1138027.

14

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1096
https://nvd.nist.gov
https://cve.mitre.org/
https://cwe.mitre.org
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://doi.org/10.1109/CyberSecurity49315.2020.9138852
https://doi.org/10.1109/CyberSecurity49315.2020.9138852
https://samate.nist.gov/BF/
https://doi.org/10.1109/ISSREW53611.2021.00052
https://doi.org/10.1109/COMPSAC51774.2021.00159
https://shemesh.larc.nasa.gov/fm/papers/ICASE1999-QNews.pdf
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/136.html
https://cwe.mitre.org/data/definitions/133.html
https://cwe.mitre.org/data/definitions/133.html
https://doi.org/10.1145/3485500
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://talosintelligence.com/vulnerability_reports/TALOS-2021-1297
https://talosintelligence.com/vulnerability_reports/TALOS-2021-1297
https://github.com/gpac/gpac/blob/v1.0.1/src/isomedia/box_code_base.c
https://github.com/gpac/gpac/blob/v1.0.1/src/isomedia/box_code_base.c
https://github.com/gpac/gpac/commit/b515fd04f5f00f4a99df741042f1efb31ad56351
https://github.com/gpac/gpac/commit/b515fd04f5f00f4a99df741042f1efb31ad56351
https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-validation/
https://snyk.io/blog/remediate-javascript-type-confusion-bypassed-input-validation/
https://blog.sonatype.com/how-can-adversaries-exploit-npm-modules
https://blog.sonatype.com/how-can-adversaries-exploit-npm-modules
https://github.com/jonschlinkert/set-value/pull/33/files#diff-e727e4bdf3657fd1d798edcd6b099d6e092f8573cba266154583a746bba0f346
https://github.com/jonschlinkert/set-value/pull/33/files#diff-e727e4bdf3657fd1d798edcd6b099d6e092f8573cba266154583a746bba0f346
https://github.com/jonschlinkert/set-value/pull/33/files#diff-e727e4bdf3657fd1d798edcd6b099d6e092f8573cba266154583a746bba0f346
https://doi.org/10.1007/s11432-017-9459-5
https://doi.org/10.1007/978-3-642-16248-0_46
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/3442381.3449826
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/ICSE.2015.51
https://doi.org/10.1109/MALTESQUE.2018.8368458
https://doi.org/10.1109/MALTESQUE.2018.8368458
https://doi.org/10.1145/2743019
https://doi.org/10.1109/ISDFS49300.2020.9116209
https://doi.org/10.1109/ISDFS49300.2020.9116209
https://doi.org/10.1145/1137983.1138027

	Introduction
	BF Approach and Methodology
	Type Systems
	Data Type Bugs Model
	 Data Type Bugs Classes
	Operations
	Causes
	Consequences
	Attributes
	Sites

	BF Data Type Bugs Taxonomy as CWE Extension
	Showcases
	CVE-2021-21834 and the Bad Allocation Chain
	Brief Description
	Analysis
	The Fix

	CWE-468, Example 1 – Incorrect Pointer Scaling
	Analysis
	The Fix

	CVE-2021-23440 and Type Mismatch bypassing Input Validation
	Brief Description
	Analysis
	The Fix

	Related Works
	Conclusion

