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Abstract

Superancillary equations are presented for the
PC-SAFT equation of state of Gross and Sad-
owski for nonpolar pure fluids. The equations
cover the range of number of segments from 1
to 64. These equations, formed as nested sets
of Chebyshev expansions, represent the densi-
ties for vapor-liquid equilibria better than can
be achieved by iterative calculations in double
precision arithmetic. Furthermore, the expres-
sions are more than 16 times faster to eval-
uate than the iterative calculations from the
fastest thermodynamic property library. By
their construction, the superancillary equations
are guaranteed to be reliable over the entire
temperature range. For user-friendliness, the
functions have been packaged into a Python
package available on PYPI.

1 Introduction

The PC-SAFT (Perturbed-chain statistical as-
sociating fluid theory) equation of state (EOS)1

has found a place in the canon of empirical ther-
modynamic models due to its good representa-
tion of some – although not all – thermody-
namic properties, even if this EOS is not with-
out defects.2–4 A challenge with this model (as
is the case for nearly all thermodynamic mod-
els) is to computationally efficiently and reli-

ably carry out vapor-liquid equilibria (VLE)
calculations. The most challenging part of the
calculation is to obtain initial guesses for the
co-existing densities that are sufficiently accu-
rate, and determining what constitutes suffi-
ciently accurate guesses is itself a non-trivial
task. A further challenge with the PC-SAFT
EOS is that it does not have a single van der
Waals loop at all temperatures, which makes
density rootfinding challenging.
In the publications associated with the recent

multiparameter equations of state used in NIST
REFPROP,5 CoolProp,6 simple mathematical
functions are provided that can be evaluated to
obtain reasonably accurate orthobaric densities
used as guess values for the VLE calculation.
A few examples would include those for water,7

carbon dioxide,8 or propane.9 These curves usu-
ally, but not always, allow VLE calculations to
converge properly.
Constructing a mathematical formulation of

the ancillaries that is accurate enough to re-
place the VLE calculations entirely is the fo-
cus of the development of superancillary equa-
tions.10,11 These superancillary equations use
the well-accepted approach of the approxima-
tion of continuous smooth functions by Cheby-
shev polynomials.12 Evaluation of the superan-
cillary functions is significantly faster than full
VLE calculations. By their non-iterative na-
ture, evaluation of these functions can be guar-
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anteed to not fail; failure of iterative routines is
relatively common in libraries that implement
the PC-SAFT equation of state, even for pure
fluids.
The structure of this work is as follows: the

model is described, some advanced numerical
analysis tools are described, critical points are
calculated, superancillaries are built, and the
speed and accuracy of the formulation is as-
sessed.

2 Model

In this work we use the complete equation
of state of Gross and Sadowski 1 for multi-
component mixtures, although only pure flu-
ids are considered in this work. There are a
few errata in the original publication, and while
an erratum has not been filed, a response to
a comment enumerates some of the errors.13

The association contribution is not included
and therefore a fluid is characterized by its val-
ues of ε/kB, σ, and m. In the case of a pure
fluid, PC-SAFT can be expressed in a sim-
pler form with the non-dimensional quantities
T̃ = T/(ε/kB) and ρ̃ = ρNσ

3 as the indepen-
dent variables. The PC-SAFT model for non-
polar pure fluids is summarized in Polishuk 3

. The units of temperature and number den-
sity ρN must match those of ε/kB and σ3 for
dimensional consistency. In the remainder of
this paper, we use the tilde-scaled variables,
and the parameters ε/kB and σ are taken as
arbitrary parameters that can be given any de-
sired value; the superancillaries are developed
in tilde-reduced form, and are therefore inde-
pendent of the variables ε/kB and σ3. The im-
plementation in teqp (a very new14 EOS evalu-
ation library that uses automatic differentiation
rather than analytic derivatives) uses molar-like
units by default, and internal conversions are
needed, for which the value of Avogadro’s con-
stant of 6.02214076×1023 was used.15 The value
of ε/kB can be set to any desired value, and 100
K was used with no loss in generality.

3 Numerics

This work makes heavy use of advanced numer-
ical analysis techniques, namely function ap-
proximation with Chebyshev expansions and
arbitrary precision calculations, so those con-
cepts are explained at a high-level here.

3.1 Chebyshev expansions

This section will cover the most salient parts
of function approximation theory relevant to
the problem at hand. Further exposition is
available in Boyd 12 . The theory of Cheby-
shev approximation relevant to this problem is
described in Bell and Alpert 16 . Further dis-
cussion related to superancillary construction
is available in Bell and Alpert 10 .
Chebyshev expansions, or the more general

approach of approximating smooth continu-
ous functions with orthogonal polynomials in
closed intervals, is by now a well accepted ap-
proach with practical implementations avail-
able for ChebTools17 for C++/Python, cheb-
fun18 in MATLAB, and ApproxFun19 for Julia.
Orthogonal polynomials allow for functions to
be approximated in a straightforward manner
to numerical precision (further discussed in the
next section). Approximation F (x) to the func-
tion f(x) in the domain [a, b] is obtained with
the summation form

F (x) =
n∑
i

ciTi(x̂) (1)

where x̂ ∈ [−1, 1] is the value of x linearly
mapped from [a, b] and Ti are the Chebyshev
basis functions of the first kind, which are de-
fined recursively from T0 = 1, T1 = x, and
Tn(x) = 2xTn(x)− Tn−1(x).
The Chebyshev-Lobatto nodes of an expan-

sion of degree n are at the values (in [-1,1])

xj = cos

(
jπ

n

)
(2)

for j between 0 and n, where the first and last
nodes are the values 1 and −1, respectively.
The transformation from nodal functional

values to coefficients uses the (n+ 1)× (n+ 1)
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matrix V multiplied by the vector of functional
values at the Chebyshev-Lobatto nodes

c = Vfn (3)

with elements vjk

vjk =
2

npn(j)pn(k)
cos

(
πjk

n

)
(4)

where pn(i) is 2 if i = 0 or i = n and pn(i) = 1
otherwise. The matrix V does not depend on
anything other than the degree of the expan-
sion and can therefore be constructed once and
cached for further re-use.
The approximation of smooth continuous

functions in a closed domain with Chebyshev
expansions follows a straightforward path. The
approximation will in general improve as the
degree of the expansion is increased, until the
last coefficients are approximately the epsilon of
the numerical precision relative to the first co-
efficients. In double precision, that would mean
that they are 1016 times smaller than those of
the leading coefficients.
An alternative approach to increasing the de-

gree of the expansion is to fix the degree of the
expansion but decrease the interval width, re-
cursively subdividing the overall interval into
smaller and smaller segments. This approach
has the advantage that bisection to find the
right interval and evaluation of a lower-degree
expansion is in general much faster than the
evaluation of a single higher-degree expansion.
This timing comparison becomes even more evi-
dent when using the expansions for rootfinding,
where eigenvalue solving is needed, for which
the number of operations scales likeO(n3), with
n the degree of the expansion in general (with
the Jacobi eigenvalue algorithm).

3.2 Numerical precision

Computing the addition 0.1 + 0.1 does not
(in general) give exactly 0.2 in a computer.
This is because 0.1 cannot be exactly expressed
in double precision arithmetic, and there is a
small error introduced by this approximation.
When the magnitudes of the numbers added to-
gether become greatly different in magnitude,

catastrophic cancellation can occur. In dou-
ble precision, the sum 1.0 + 1.0e-17 is equal
to 1.0 because the so-called epsilon of double
precision arithmetic is approximately equal to
2.2e-16. The epsilon is the smallest number
that can be added to 1.0 and obtain a number
greater than 1.0.
In the VLE calculations below, there are cases

where the densities of the co-existing phases
differ by more than a ratio of 1016 in magni-
tude. As a consequence, the double precision
numerical type (default for basically all compu-
tational environments due to its low-level sup-
port in processors) is not sufficient.
In software-emulated arbitrary precision li-

braries, rather than using the processor’s ex-
tended capabilities, software libraries imple-
ment all the necessary mathematical functions
while allowing the user to decide how many
digits of working precision they need. The
more digits of working precision, the slower the
code will be, and there is already a very sig-
nificant computational penalty to the calcula-
tions as soon as software emulation is enabled.
Slowdowns of factors of hundreds or thousands
(or more!) are not uncommon when switching
to software-emulated arbitrary precision arith-
metic. Extended precision arithmetic should
only be used when double precision arithmetic
has been fully exhausted.

4 Critical Points

The critical points have a number of uses in this
work. For one, the limiting values of the criti-
cal curves for infinite values of m are interest-
ing for polymer physics, and the critical point
represents the end of vapor-liquid-equilibria for
a given value of m. The particular nature of
the PC-SAFT EOS also allows the VLE to be
traced by extrapolation from the critical point,
so the critical curve is used as a starting point
of sorts for the VLE calculation. Finally, the
normalized VLE curves use the critical point as
a portion of the scaling.
The conditions for a critical point for a

pure fluid are (∂p/∂ρ)T = (∂2p/∂ρ2)T = 0.
The solve pure critical method in teqp14
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is used to solve these two conditions given a
starting value for temperature and density with
Newton iterations based upon an analytical Ja-
cobian matrix. If the initial guess is good
enough, the solver reliably converges to the crit-
ical point. Numerical danger-zones are avoided
in this calculation, so it is acceptable to carry
out the calculation in double precision arith-
metic.
The set of critical points is obtained by start-

ing at m = 1 and increasing m in very small
increments. The initial values at m = 1 are
T̃ = 1.2757... and ρ̃ = 0.28239..., obtained
manually (the values are close to those of the
Lennard-Jones fluid20). At every step, the crit-
ical point solver is initiated with the tempera-
ture and density from the previous value of m.
As a result, we are well within the radius of
convergence of the solver, and the critical point
is reliably obtained. The values of the tempera-
ture and density are shown in Fig. 1. Although
the PC-SAFT equation demonstrates spurious
critical points,2,4 that concern is avoided in this
case because the approach taken for tracing the
critical points safely follows the main branch of
critical points. At m = 108 (not shown) the

critical temperature is T̃ = 5.3376 and the den-
sity approaches a power-law relationship with
m for large values of m (linear in double loga-
rithmic coordinates).
The critical points are represented as a col-

lection of 1-dimensional Chebyshev expansions
for each of T̃ and ρ̃ as a function of m in the
closed domain [1, 100]. The dyadic splitting

method of ChebTools is used to do the inter-
val subdivision. At each functional evaluation
in expansion construction, linearly interpolated
values of T̃ and ρ̃ are obtained from the step-
ping method, which ensures a reliable expan-
sion construction. The obtained set of expan-
sions is available in the supporting information.
Conceptually, the Chebyshev collection curves
in this work are like those of the polynomial
curves of Moine et al. 21 , though the curves in
this work are many orders of magnitude more
accurate.
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Figure 1: Critical point temperature and den-
sity and deviations δY = (Ỹcrit,tab/Ỹcrit,fit − 1)
for a range of values of 1/m

5 VLE Superancillary Equa-

tions

The definition of VLE for a pure fluid is hav-
ing the same pressure and Gibbs energy in
both phases, and the densities of the co-existing
phases are the independent variables of the it-
eration. As above, there is a method in teqp

for carrying out this calculation given guess val-
ues for the densities: pure VLE T. In the case
of VLE, the calculations are carried out in ex-
tended precision, with 200 digits of working
precision (to be contrasted with the 16 digits
of working precision in double precision arith-
metic). This extended precision is needed to
be able to carry out vapor-liquid equilibria at
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low reduced temperatures at which the density
ratio between phases is well above 1040 (quan-
tified later on). The use of software-emulated
variable precision introduces an exceptionally
severe computational speed penalty, but that
price is only paid at the time of expansion con-
struction, which happens once.
The problem with the VLE calculations is

that they often represent a computational bot-
tleneck in process simulation codes and that
they can fail. Failures are usually caused by
insufficient working precision in the iterations
themselves as well as insufficiently accurate ini-
tial guesses for the orthobaric densities. The su-
perancillary equation solves both problems. It
is a mathematical formulation (one could think
of it as a supercharged polynomial function be-
cause Chebyshev functions themselves can be
expressed in terms of the monomial bases x0,
x1, etc.). First a method is obtained for getting
very reliable guess values based on extrapola-
tion from the critical point, followed by the use
of these very accurate guess values to obtain
orthobaric densities in VLE calculations in ex-
tended precision.

5.1 Tabulation of Initial Guesses

In order to obtain initial guesses for the more
accurate calculations to follow, for a given
value of m, the VLE curve is traced as far
down in temperature as possible. The trac-
ing is initiated at the critical point obtained
by the method described above, at an accuracy
equal to numerical precision in double precision
arithmetic. A small step away from the crit-
ical point is taken towards lower temperature
equal to T̃crit/1000 with the critical extrapo-
lation method extrapolate from critical in
teqp. This method applies the extrapolation
formula of

ρα = ρcrit ±

√√√√√6Tcrit

(
∂2p

∂ρ ∂T

)
(

∂3p
∂ρ3

)
T

(
Tcrit − T

Tcrit

)1/2

(5)
to yield the orthobaric (liquid and vapor) den-
sities for the phases α for a given temperature
T . The derivation of this approach is in the

supporting information. This scheme yields es-
timated values for the co-existing phase den-
sities for near-critical temperatures which are
subsequently polished in extended precision.
Once the first good step has been obtained

at a subcritical temperature and the densities
stored in their extended precision values, the
temperature is decreased by a small decrement
and the process repeats; the starting densities
for the iteration are those of the previous tem-
perature. By the use of such small steps in
temperature, the densities can be assured to
be “good enough” starting points for the iter-
ation such that convergence to the appropriate
solution in extended precision arithmetic can
be practically guaranteed. The VLE stepping
process is terminated when an invalid solution
for the densities is obtained or when the ratio
of liquid to vapor density exceeds 1040, or when
the liquid density decreases upon further reduc-
ing in temperature. Failure usually occurs be-
cause of the limitations of finite precision arith-
metic rather than non-convergence of the VLE
rootfinding. The final result is a pair of tab-
ulated values of the orthobaric densities, ρ̃′(T̃ )
and ρ̃′′(T̃ ), for discrete values of m. Examples
of such curves are shown in Fig. 2. To re-iterate,
these tabulated VLE data points are used only
as starting points for the VLE calculations in
extended precision.
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Figure 2: VLE curves reduced by the critical
point values for values ofm at the interval edges
of the final fit. The interval edges are labeled
at the bottom at their value of m with color
matching the respective curve.

5.2 Minimum Temperature

100 106 1012 1018 1024 1030 1036

′/ ′′

0.0

0.2

0.4

0.6

0.8

1.0

T/
T c

ri
t m=64

Figure 3: Reduced temperature as a function of
density ratio (liquid/vapor) for values of m at
the interval edges of the final fit. Color scheme
matches Fig. 2.

In order to make the functional form for fitting
better behaved, it was necessary to determine a
simple functional form to scale the VLE data.

This was done by interpolating to find the tem-
perature which yielded the density ratio of 1020.
The values are plotted in Fig. 3. This density
ratio is extremely far beyond what is possible
to achieve with iterative calculations in double
precision arithmetic so this bound is very con-
servative and will cover all possible VLE cal-
culations in double precision arithmetic. The
PC-SAFT EOS is simply no longer meaning-
ful below this temperature in double precision
arithmetic. The shape of the VLE curves for
longer chains is no longer smooth in the critical
region, there is a kink in the orthobaric density
curves for T/Tcrit > 0.9 for m > 32. This is
a non-physical artifact of the PC-SAFT EOS,
and is practically the reason why the superan-
cillary stopped at m = 64 because it proved
necessary to avoid this problematic region.
The interpolated values are shown in Fig. 4

as a function of m. The curve to fit the data
was fit by a best-fit curve in the form

ln(T̃red,min) = c0 ln(m) + c1 (6)

with the polyfit function of numpy, for which
the functional form reads:

T̃red,min = exp(c1)m
c0 (7)

with [c0, c1] = [0.37627892,−2.20078778]. To
reiterate, the function in Eq. (7) is only used as
a reasonable lower bound in temperature, and
it is not accurate to numerical precision.
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Figure 4: Minimum temperatures obtained for
each value of m at an interval edge. The mini-
mum temperature corresponds to a density ra-
tio (liquid/vapor) of approximately 1020
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Combining the minimum temperature curve
from Eq. (7) and the critical temperature ob-
tained from the Chebyshev expansion, the nor-
malized VLE curves are plotted in Fig. 5 for
some values of m. Normalization by defining
the normalized variable

Θ = (T̃ − T̃min)/(T̃crit − T̃min) (8)

has the effect of creating a regularized set of
smooth curves as a function of m.
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Figure 5: Normalized VLE curves, further re-
duced by the critical point values for values of
m at the interval edges of the final fit. Min-
imum temperature for a given value of m is
evaluated from Eq. (7). The density of the va-
por curve is on a logarithmic scale. The color
scheme matches Fig. 2

5.3 Superancillary

In general, construction of a Chebyshev expan-
sion to approximate a function f follows the
approach described above in Section 3.1. The
function is evaluated at the n + 1 Chebyshev-
Lobatto nodes for a degree of n, and the co-
efficients of the Chebsyhev expansion are ob-
tained. This initial approximation function is
not accurate enough to reproduce the function
to numerical precision over the entire interval,
so the degree of the expansion is fixed and in-
terval bisection is used to recursively refine the
Chebyshev expansion in each half.

The superancillary is the set of Chebyshev ex-
pansions required to span the range of temper-
ature. For a given value of m, interval subdivi-
sion is used to construct a superancillary equa-
tion for the orthobaric densities as a function of
Θ. The superancillary equations are therefore
of the form ρ̃′(Θ) and ρ̃′′(Θ). At each function
evaluation, the guess values for the orthobaric
densities are obtained and a complete VLE cal-
culation is carried out in extended precision.
This process follows the same approach as in

the dyadic splitting function of ChebTools,
except that interval subdivision happens if ei-
ther the liquid or vapor density expansion has
not reached its convergence tolerance. The
specification of the approach is defined in Ta-
ble 1. Thus the Θ intervals are different for
each value of m in general. As described above,
the goal is to represent the orthobaric densities
better than can be achieved in double precision
VLE iterative calculations.

Table 1: Specification for interval subdivision
in Θ for a given value of m

Parameter Spec

Degree 16
Norm 3-element norm (ratio of

norms of last three to first
three coefficients)

Tolerance Norm < 10−12

Refine passes 13

The dyadic (interval bisection) splitting ap-
proach is applied, where the degree of the ex-
pansion in Θ is fixed and the interval is split into
sub-intervals as needed at its midpoint. This
process is described in some detail in Bell and
Alpert 10 . The initial densities for the iterative
calculation are obtained by one of two options:

• If T̃ > 0.999T̃crit, then critical extrapola-
tion is used (following Eq. (5))

• Otherwise, the VLE values obtained from
the tabulated values of T̃ (see Section 5)
are linearly interpolated within to get the
orthobaric density guess values
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The mix VLE Tx method of teqp is used to do
the polishing of the solution in extended preci-
sion with 100 digits of working precision.

6 Nested Superancillaries

To complete the full set of nested expansions,
dyadic splitting is also applied to w = 1/m.
The overall interval of [1/mmax, 1/mmin] is used
initially, and a Chebyshev expansion of degree
Nm is used to span the entire interval. This im-
plies that superancillary curves are built at the
Nm+1 Chebyshev-Lobatto nodes in w with val-
ues of m = 1/w in the set [1.0, 1.00954754,. . . ,
39.86883981, 64.0] if Nm = 16 and the range
of m is 1 to 64. Note how the values of m are
not linearly spaced. The specification used for
interval splitting in m is defined in Table 2.

Table 2: Splitting specification for interval sub-
division in w

Parameter Spec

Degree 16
Norm 3-element (ratio of norms of

last three to first three coef-
ficients)

Tolerance Norm < 10−12

Refine passes 10

Assessing convergence for the expansions in
w is more challenging than for Θ. Expansions
are built for values of Θ ∈ {0.1, 0.5, 0.9} for
each phase. The convergence check is done for
the expansions each phase and each value of Θ.
If any do not meet the convergence criterion,
the interval in w is subdivided at its midpoint.
The process of recursive subdivision repeats un-
til either all the intervals in w are converged
or the maximum number of refinement passes
is reached. At completion, there are a num-
ber of intervals in w, and in each one, there
is a superancillary equation at the Chebyshev-
Lobatto nodes in w. This is illustrated in Fig. 6.
The entire process from start to finish takes a
few hours, a consequence of the overhead intro-
duced by the use of extended precision arith-
metic.

10 2 10 1 100
w=1/m

0.0

0.2

0.4

0.6

0.8

1.0 m=64 m=1

Figure 6: Locations of the edges of the intervals
in Θ and w. The small dots are the locations
of the edges in the Θ direction for each node in
w for one selected interval.

6.1 Evaluation

Once the set of expansions have been built,
evaluation of the superancillary equation for a
set of m and T̃ proceeds as follows:

• The Chebyshev expansions for the critical
curve and Eq. (7) are used in concert to
obtain Θ

• Interval bisection in w is used to obtain
the interval containing the value of w.

• Values of ρ̃α(Θ) are calculated for each
phase for each value of w at a Chebyshev-
Lobatto node in the interval. This
yields functional values at the Chebyshev-
Lobatto nodes in w for each phase.

• With the given functional values at the
nodes, discrete cosine transform (DCT) is
used to build the Chebyshev expansions
in the form ρ̃α(w)12

• The expansions are evaluated as a func-
tion of w, and the final values for the den-
sities are obtained

This process, though it may seem convo-
luted, can be concisely applied with the use
of the ChebTools library. A complete exam-
ple of evaluating the nested superancillaries in
the C++ programming language is presented
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in Fig. 7. The coefficients and other data struc-
tures are in the referenced headers which are
auto-populated based on the method described
above. This code is precisely the implementa-
tion used in the Python package.
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B7 UK I KKBMV&

i?`Qr bi/,,BMp�HB/n�`;mK2MiU]S`QpB/2/ p�Hm2 Q7 K Q7 ] Y bi/,,iQnbi`BM;UKV
Y ] Bb H2bb i?�M KBM Q7 ]Y bi/,,iQnbi`BM;UKKBMVVc

'
B7 UK = KK�tV&

i?`Qr bi/,,BMp�HB/n�`;mK2MiU]S`QpB/2/ p�Hm2 Q7 K Q7 ] Y bi/,,iQnbi`BM;UKV
Y ] Bb ;`2�i2` i?�M K�t Q7 ]Y bi/,,iQnbi`BM;UKK�tVVc

'
�miQ hiBH/2n+`Bi 4 ++nhiBH/2URfKVc
�miQ hiBH/2nKBM 4 2tTU@kXkyyd3dd3V TQrUK- yXjdekd3NkV hiBH/2n+`Bic
`2im`M bi/,,K�F2nimTH2UhiBH/2n+`Bi- hiBH/2nKBMVc

'

�miQ S*a�6hbmT2`�M+n`?QGoU/Qm#H2 hiBH/2- /Qm#H2 KV&
�miQ (hiBH/2n+`Bi- hiBH/2nKBM) 4 ;2inhiBH/2n+`BinKBMUKVc
�miQ h?2i� 4 UhiBH/2 @ hiBH/2nKBMV f UhiBH/2n+`Bi @ hiBH/2nKBMVc
B7 UhiBH/2 I hiBH/2nKBMV&

i?`Qr bi/,,BMp�HB/n�`;mK2MiU]S`QpB/2/ p�Hm2 Q7 hiBH/2 Q7 ] Y bi/,,iQnbi`BM;UhiBH/2V
Y ] Bb H2bb i?�M KBM Q7 ]Y bi/,,iQnbi`BM;UhiBH/2nKBMVVc

'
B7 UhiBH/2 = hiBH/2n+`BiV&

i?`Qr bi/,,BMp�HB/n�`;mK2MiU]S`QpB/2/ p�Hm2 Q7 hiBH/2 Q7 ] Y bi/,,iQnbi`BM;UhiBH/2V
Y ] Bb ;`2�i2` i?�M K�t Q7 ]Y bi/,,iQnbi`BM;UhiBH/2n+`BiVVc

'

ff "Bb2+iBQM iQ 7BM/ i?2 `B;?i BMi2`p�H BM r4RfK
+QMbi �miQ� BMi2`p�H 4 ;2inBMi2`p�HURfKVc
/Qm#H2 rKBM 4 BMi2`p�HXrKBMUVc
/Qm#H2 rK�t 4 BMi2`p�HXrK�tUVc
ff h?2M 2p�Hm�i2 i?2 p�Hm2b �i i?2 MQ/2b Q7 r 7Q` 2�+? T?�b2 BM i?Bb BMi2`p�H
�miQ (`?QGp�Hb- `?Qop�Hb) 4 ;2in7mM+p�HbUh?2i�- BMi2`p�HVc
ff .*h iQ ;2i i?2 2tT�MbBQMb BM RfK 7Q` 2�+? T?�b2
�miQ 2tTG 4 ;2in2tT�MbBQMU`?QGp�Hb- rKBM- rK�tVc
�miQ 2tTo 4 ;2in2tT�MbBQMU`?Qop�Hb- rKBM- rK�tVc
ff 1p�Hm�i2 i?2 R. 2tT�MbBQMb
`2im`M bi/,,K�F2nimTH2U2tTGXvURfKV- 2tToXvURfKVVc

'

Figure 7: C++ implementation of the nested
superancillary approach

9



Figure 8: Worst-case absolute relative error in density (on a logarithmic scale) at the fitted w
nodes at the double-sampled nodes for Θ . The subscript of mp is for the multi-precision VLE
calculations, the SA subscript corresponds to values from the superancillary function.
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7 Results

The speed and accuracy of the superancillary
equations are assessed in this section. We seek
to answer the question: Can the approximation
functions completely replace the full phase equi-
librium calculation?

7.1 Accuracy

The use of C++ and standard mathematics
libraries ensures that the same numerical re-
sults are obtained on all machines that follow
IEEE754 arithmetic rules. The accuracy results
in this section should be reproduced on all plat-
forms.
For an expansion of degree N , if the degree

is doubled to 2N , the odd Chebyshev-Lobatto
nodes of the degree N expansion are repre-
sented to numerical precision, while the even
nodes are the locations of the worst-case error.
Therefore, the odd nodes of the 2N degree ex-
pansion are a straightforward and reliable test
of the accuracy of the expansion.
In order to test the accuracy of the expan-

sions in the Θ direction, the error in density
from the expansion sets at the values of m for
which superancillary functions were developed
are presented in Fig. 8. The absolute relative
error is on a logarithmic scale, highlighting that
with the exception of the points in the near
critical region, all points are approximated to
within a tolerance of approximately part in 1012

which is only a few orders of magnitude worse
than the epsilon of double precision arithmetic
of ≈ 2.2 × 10−16. As a demonstration of the
critical region, Fig. 9 shows the error for the in-
tervals nearest the critical point as a function of
normalized temperature. Both figures demon-
strate that the errors are very small, and worst
nearest the critical point. The errors were cal-
culated at each odd node for each interval in
Θ for doubled degree of expansion in each in-
terval (the worst-case error). For values of Θ
below 1 − 10−4 the error is less than a part in
1012. It is only in the very near critical region
that serious problems can be found, this is a
consequence of trying to resolve the singularity
at Θ = 1 (the derivative dρα/dΘ goes to infin-

ity at the critical point; see for instance Fig. 2).
Further interval subdivision in the critical re-
gion would allow these points to be better rep-
resented, but the benefits are diminishing. In
any case, most iterative calculations will fail for
such near-critical inputs, and these curves are
already in that sense infinitely better than the
existing approaches.

Figure 9: Worst-case absolute relative error in
density at the fitted w nodes at the double-
sampled nodes for Θ in the near-critical region
for Θ > 0.99. The subscript of mp is for the
multi-precision VLE calculations, the SA sub-
script corresponds to values from the superan-
cillary function.

The worst-case mid-point nodes in w test
the interpolation in the w (or 1/m) direction.
The notion of doubled nodes in temperature no
longer applies in between the expansions, but
the results in Fig. 10 show that the additional
interpolation in w does not dramatically alter
the error, and the densities are still represented
to close to numerical precision. The worst of the
worst-case error is still less than a part in 1012.
The critical region could again be expected to
be somewhat worse, but not much worse than
the results in Fig. 9
The deviation in density for iterative cal-

culations in double precision arithmetic de-
pends on the selected convergence tolerance in
the software implementation. For instance in
Clapeyron.jl22 (an equation of state library
analogous to teqp14 written in Julia) the de-
fault convergence tolerance is a part in 1012 in

11



pressure, but that convergence tolerance is not
met for low temperature state points. Making a
conclusive statement about the accuracy of the
best deviations in density possible in iterative
VLE calculations in double precision arithmetic
is therefore difficult, if not impossible. Suffice to
say that the superancillary equation approach is
on par with, if not better than (particularly at
low temperature and commensurately low pres-
sure) the double precision iterations.

Figure 10: Worst-case absolute relative error
in density (on a logarithmic scale) at double-
sampled w nodes for Θ linearly spaced in (0, 1)
and therefore missing the near-critical region.
The subscript of mp is for the multi-precision
VLE calculations, the SA subscript corresponds
to values from the superancillary function.

7.2 Python Implementation

The C++ code was wrapped into a
Python module with pybind1123 and up-
loaded to the Python package inventory
(PYPI). The working code is available at
https://github.com/usnistgov/SAFTsuperanc.
The calling overhead from the Python
→ C++ → Python round trip is small
(roughly 0.2 µs/call). A high-level function
PCSAFTsuperanc rhoLV is exposed from the
library which takes T̃ and m as positional in-
put arguments and the following timing results
were obtained in an IPython instance:

In [1]: import PCSAFTsuperanc as P

In [2]: P.__version__

Out[2]: ’0.0.7’

In [3]: %timeit P.PCSAFTsuperanc_rhoLV(1.1, 5.0)

1.62 µs ± 7.98 ns per loop

7.3 Speed

Neglecting the bisection to find the relevant
expansion in Θ and in w, 17 × 2 expansions
need to be evaluated; if one evaluation of de-
gree 16 Chebyshev expansion takes 40 ns, this
should take 1.4 µs in serial. Evaluation of a
(17×17)×(17×1) matrix-vector product takes
1.2 µs. Construction of a Chebyshev expansion
takes 200 ns per expansion. So in total the cost
is roughly 2 µs. In total, the computational cost
is roughly 100 times higher than the evaluation
of a single expansion of degree 16. This high-
lights the curse of dimensionality – the more
dimensions one wants to cover with adaptive
subdivision, the more computational cost will
have to be paid.
Timing results were carried out on an Apple

MacBook Air with an M1 processor. Among
the open-source computational libraries sup-
porting calculation of phase equilibria for PC-
SAFT, Clapeyron.jl, is the fastest. With
Clapeyron.jl, a single evaluation of a satu-
ration pressure takes on the order of 16 µs and
no explicit guess values for the orthobaric den-
sities are required. The evaluation of a com-
plete superancillary call for orthobaric densities
in C++ takes 1.5 µs/call. So the speedup is on
the order of 10×, without sacrificing accuracy
and while also improving the reliability of the
calculations (making them practically guaran-
teed to succeed).

7.4 Validation

Three PC-SAFT implementations were tested
for their consistency:

1. CoolProp, version 6.4.2.dev0 1

2. Clapeyon.jl, version 0.3.6

3. teqp, version 0.9.2

1at the commit with SHA1
a2a4040912dd12a134e9f987867b55c31fe85057

12



For all three implementations, the calculated
value of the pressure for methane (m = 1.0,
σ = 3.7039 Å, ε/kB = 150.03 K, values for
methane taken from Gross and Sadowski 1 ) at
a temperature and density of 200 K and 300
mol/m3 is 482824.756294445 Pa.
In order to ensure that the calculated values

are properly being evaluated, selected results
were obtained in extended precision iterative
calculations, and the calculated values from the
superancillaries. The values are shown in Ta-
ble 3.

8 Conclusions

In this work a nested set of data structures
were developed in the Chebyshev formulation
for the PC-SAFT equation of state1 covering
the temperature range from the critical point
to the lowest temperature that can be achieved
in double precision arithmetic. The formula-
tion is valid for the range of m from 1 to 64
(which is more than 8 times greater than the
largest value of m considered for a pure fluid
in the work of Gross and Sadowski 1 ). To an-
swer the rhetorical question posed at the begin-
ning of the results section, iterative VLE calcu-
lations for pure fluids from the canonical PC-
SAFT equation of state without association for
the range of m in this work are now obsolete;
they have been replaced by the superancillary
approach developed in this work.
The advent of these superancillary equations

should make many thermodynamic calculations
for pure fluids much faster. For instance the
I-PC-SAFT EOS21 could use these curves for
the VLE calculations for pure fluids, which
would simultaneously improve the reliability
and speed of the library. The calculations with
the PC-SAFT equation of state in CoolProp

could be similarly improved. Although the su-
perancillaries are for pure fluids, they are also
useful for mixtures as they are used to ob-
tain the starting point for tracing isothermal
phase equilibria in binary mixtures.14,24 Such a
method has been used to fit interaction param-
eters for fuel-air mixtures that could be used
for sustainable aviation fuels.25 Inclusion of

the contributions for dipoles26 or quadrupoles27

should be considered, and also the association
term, but those may not be possible to include
in a general superancillary structure due to the
curse of dimensionality. A feasible option could
be to develop a superancillary equation for a
given model (for instance a fixed association en-
ergy) that includes dipole and/or quadrupolar
contributions, as that would have all the up-
sides of the superancillaries, but it would not
be generic in the same way that the superancil-
laries are in this work.

9 Supplementary Material

The supplementary information includes a
derivation of the critical extrapolation ap-
proach. Additional information, deposited at
https://doi.org/10.18434/mds2-2713 includes:

• The C++ code used to build all the ex-
pansions and test the implementations

• The implementation in C++, as a C++
header and implementation file

• The data files for the expansions and the
critical curves, scripts used to construct
the Python module
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