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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities 
with industry, government, and academic organizations. 

Abstract 

This Recommendation specifies techniques for the derivation of additional keying material from 
a secret key – either established through a key-establishment scheme or shared through some 
other manner – using pseudorandom functions: HMAC, CMAC, and KMAC. 

Keywords 

CMAC; HMAC; key derivation; KMAC; pseudorandom function. 
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 Introduction   

When a party obtains a cryptographic key, additional keys will often be needed. There are 
numerous methods for obtaining the keying material required by approved cryptographic 
algorithms (see SP 800-133, Rev. 2 [1] for a discussion of the recommended techniques). The 
requisite keying material is often obtained from the output of a key-derivation function (KDF) 
that takes a preexisting cryptographic key (and other data) as input. Key-derivation functions are 
used to derive additional keys from a cryptographic key. 
The key-derivation functions specified in the original edition (2008) of NIST Special Publication 
(SP) 800-1081 used HMAC and CMAC as pseudorandom functions. In Revision 1, a KDF using 
KMAC is added in Section 4.4. 
 
  

 
1 Chen L (2008) Recommendation for Key Derivation Using Pseudorandom Functions. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) 800-108. 
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 Scope and Purpose 

This Recommendation specifies several families of key-derivation functions that use 
pseudorandom functions. These key-derivation functions can be used to derive additional keys 
from an existing cryptographic key that was previously established through an automated key-
establishment scheme (e.g., as defined in SP 800-56A [2] and SP 800-56B [3]), previously 
generated (e.g., using a pseudorandom bit generator as specified in SP 800-90A [4] or a previous 
instance of key derivation as specified in this Recommendation), and/or previously shared in 
some other way (e.g., by manual distribution). 
Effectively, the key-derivation functions specified in this Recommendation provide the key 
expansion functionality described in SP 800-56C [5], where key derivation is portrayed as a 
process that potentially requires two separate steps: 1) randomness extraction (to obtain an initial 
key) and 2) key expansion (to produce additional keys from that initial key and other data). 
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 Pseudorandom Function (PRF) 

A pseudorandom function (PRF) is the basic building block for constructing a key-derivation 
function in this Recommendation. Generally, a PRF family {PRF(s, x) | s ∈ S} consists of 
polynomial-time computable functions with an index (also called a seed) s and input x, such that 
when s is randomly selected from S and not known to observers, PRF(s, x) is computationally 
indistinguishable from a random function defined on the same domain with output to the same 
range as PRF(s, x). For a formal definition of a pseudorandom function, refer to [9]. 
When a cryptographic key KIN is regarded as the seed, that is, s = KIN, the output of the 
pseudorandom function can be used as keying material. In Section 4, several families of PRF-
based key-derivation functions are defined without describing the internal structure of the PRF. 
For key derivation, this Recommendation approves the use of the keyed-Hash Message 
Authentication Code (HMAC) specified in [7], the Cipher-based Message Authentication Code 
(CMAC) specified in [6], and the Keccak-based Message Authentication Code (KMAC) 
specified in [8] as pseudorandom functions. For a given KDF using HMAC, CMAC, or KMAC, 
the key KIN is assumed to be computationally indistinguishable from one that has been selected 
uniformly at random from the set of all the bit strings with a length of |KIN|. 
When selecting the PRF to be used by a key-derivation function, consider using HMAC or 
KMAC rather than CMAC, unless, for example, AES is the only primitive implemented in the 
platform or using CMAC has a resource benefit. When CMAC is used as the PRF, a party with 
knowledge of the key-derivation key and the freedom to choose a sufficient number of input bits 
may be able to force one or more derived blocks of keying material to predetermined values. 
Mitigations are provided to guard against this type of key control in cases where CMAC is used 
as the PRF when implementing a KDF as specified in this Recommendation (see Sections 4.1, 
4.2, 4.3, and 6.7). 
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 Key-Derivation Function (KDF) 

This section defines several families of key-derivation functions (KDFs) that use PRFs. For the 
purposes of this Recommendation, a KDF is a function that – given input consisting of a (secret) 
key and other data – is used to generate (i.e., derive) keying material that can be employed by 
cryptographic algorithms. In other words, the KDFs specified here provide a key-expansion 
capability (as noted in Section 2). 
Depending on the intended length of the keying material to be derived, the KDF may require 
multiple invocations of the PRF used in its construction. A method for iterating the multiple 
invocations is called a mode of iteration. In this Recommendation, a counter mode, a feedback 
mode, and a double-pipeline mode are specified in Sections 4.1, 4.2, and 4.3, respectively, as 
iteration modes. 
In addition to these iteration modes, this Recommendation specifies a KDF using KMAC in 
Section 4.4. KMAC can output keying material that has the required length without iteration. 
The key that is input to a key-derivation function is called a key-derivation key (KDK). To 
comply with this Recommendation, a KDK shall be a cryptographic key (see Appendix D). The 
KDK used as an input to one of the key-derivation functions specified in this Recommendation 
can, for example, be generated by an approved cryptographic random bit generator (e.g., by a 
deterministic random bit generator of the type specified in [4]) and manually distributed, or it 
could be obtained from the output of an approved automated key-establishment scheme (e.g., as 
defined in [2] and [3]). The KDK can be a portion of the keying material derived from another 
KDK. 
Note that the key-derivation methods employed as components of key-agreement schemes (as 
described in [2], [3], and [5]) include two-step methods in which the first step consists of 
extracting a KDK from a shared secret precursor. These extracted KDKs are not part of the 
output of a key-agreement scheme. They are only used to derive output keying material during a 
single execution of a scheme and then destroyed (along with all other sensitive, locally stored 
data associated with that particular execution). 
In keeping with the usual terminology, the output of a key-derivation function is called the 
derived keying material and may subsequently be segmented into multiple keys. Any disjoint 
segments of the derived keying material (with the required lengths) can be used as cryptographic 
keys for the intended algorithms. Two different key-establishment scenarios may use the KDF: 
one in which multiple parties share the same key-derivation key and are able to separately derive 
the same keying material, and the other in which one entity derives keying material using a key-
derivation key known only to itself and distributes the derived keying material to other entities. 
When multiple parties share the same key-derivation key, the cryptographic application 
employing a KDF must define the way to convert (i.e., parse) the keying material into different 
keys. For example, when 256 bits of keying material are derived, the application may specify 
that the first 128 bits will be used as a key for a message authentication code and that the second 
128 bits will be used as an encryption key for a given encryption algorithm. In the case where a 
single party derives the keying material, a re-derivation can produce the same keys (when 
required). 
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To define key-derivation functions, the following notations are used. Some of the notations have 
been defined in Appendix C, but definitions are included here for easy reference. 

1. KIN – Key-derivation key; a key that is used as an input to a key-derivation function 
(along with other input data) to derive keying material. When HMAC is used as the PRF, 
KIN is used as the HMAC key, and the other input data is used as the value of text, as 
defined in [7]. When CMAC is used as the PRF, KIN is used as the block cipher key, and 
the other input data is used as the message M, as defined in [6]. When KMAC is used as 
the PRF, KIN is used as the KMAC key, and the other input data is used as the main input 
string X, as defined in [8]. 

2. KOUT – Keying material that is output from a key-derivation function specified in this 
Recommendation; a bit string of the required length that is derived using a key-derivation 
key (and other data). 

3. Label – A string that identifies the purpose for the derived keying material, which is 
encoded as a bit string. The encoding method for the Label is defined in a larger context, 
for example, in the protocol that uses a KDF. 

4. Context – A bit string containing the information related to the derived keying material. It 
may include the identities of the parties who are deriving and/or using the derived keying 
material and, optionally, a nonce known by the parties who derive the keys. 

5. IV – A bit string that is used as an initial value in computing the first iteration in the 
feedback mode. It can be either public or secret. It may be an empty string. The length for 
an IV should be specified by the application or protocol using the key-derivation 
function. 

6. L – An integer specifying the requested length (in bits) of the derived keying material 
KOUT. L is represented as a bit string when it is an input to a key-derivation function. The 
length of the bit string is specified by the encoding method for the input data. 

7. h – An integer that indicates the length (in bits) of the output of a single invocation of the 
PRF. 

8. n – An integer whose value is the number of iterations of the PRF needed to generate L 
bits of keying material. 

9. i – A counter taking integer values in the interval [1, 2r − 1] that is encoded as a bit string 
of length r; used as an input to each invocation of a PRF in the counter mode and 
(optionally) in the feedback and double-pipeline iteration modes. 

10. r – An integer (1 ≤ r ≤ 32) that indicates the length of the binary encoding of the counter i 
as an integer in the interval [1, 2r − 1]. 

11. {X} – Used to indicate that the data X is an optional input to the key-derivation function. 
12. 0x00 – An all-zero octet; an optional data field that is used to indicate a separation of 

different variable-length data fields.2 

 
2 This indicator may be considered as a part of the encoding method for the input data and can be replaced by other indicators (e.g., an indicator 

to represent the length of the variable length field). If, for a specific KDF, only data fields with identical lengths are used, then the indicator may 
be omitted. 
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When KMAC is used as the PRF in a key derivation function as in Section 4.4, the required L 
bits of keying material are derived in a single invocation of the PRF, while for a PRF with an 
output length of h bits – as in Sections 4.1, 4.2, and 4.3 – the key-derivation function invokes the 
PRF n times, concatenating the outputs until at least L bits of keying material are derived; this 
requires n = L/h. When using the counter mode, n shall not be larger than 2r−1, where 1 ≤ r ≤ 
32 is the length of the binary representations of the counter values. This ensures that the counter 
values are distinct, which is necessary to prevent a PRF used in counter mode from generating 
the same output. For the feedback mode and the double-pipeline iteration mode, a repeat in the 
counter value (if a counter is used at all) will not be sufficient to cause the iterated PRF to repeat 
an output value. Nevertheless, for compliance with this Recommendation, n shall not be larger 
than 232−1 when using the feedback mode or the double-pipeline iteration mode; L = (232−1) h 
bits of keying material is more than enough for most applications. Regardless of the mode, a 
particular implementation of a KDF or an application that uses a KDF can impose a smaller 
bound on the maximum value of n (the number of PRF iterations) than those imposed in this 
Recommendation. 
For each of the iterations of the PRF, the key-derivation key KIN is used as the key, and the input 
data consists of some iteration-dependent input data and a string of fixed input data. Depending 
on the mode of iteration, the iteration-dependent input data could be a counter, the output of the 
PRF from the previous iteration, a combination of both, or an output from the first pipeline 
iteration (in the case of the double-pipeline iteration mode). In the following key-derivation 
functions, the fixed input data is a concatenation of a Label, a separation indicator 0x00, the 
Context, and [L]2. One or more of these fixed input data fields may be omitted unless required 
for certain purposes, as discussed in Section 6.5 and Section 6.6. 
The length for each data field and their order shall be defined unambiguously. For example, the 
length and the order may be defined as part of a KDF specification or by the protocol where the 
KDF is used. In each of the following sections, a specific order for the feedback value, the 
counter, the Label, the separation indicator 0x00, the Context, and [L]2 is used, assuming that 
each of them is represented with a specific length. This Recommendation specifies several 
families of KDFs. Alternative orders for the input data fields may be used for different KDFs. 

 KDF in Counter Mode 

This section specifies a family of KDFs that employs a counter mode. In the counter mode, the 
output of the PRF is computed with a counter as the iteration-dependent input data. The mode is 
defined as follows. 
Parameters: 

• h – The length of the output of a single invocation of the PRF in bits 

• r – The length of the binary representation of the counter i 

Input: KIN, Label, Context, and L 
Process: 

1. n := L/h. 
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2. If n > 2r−1, then output an error indicator and stop (i.e., skip steps 3, 4, and 5). 

3. result := ∅. 

4. For i = 1 to n, do  

a. K(i) := PRF (KIN, [i]2 || Label || 0x00 || Context || [L]2), 

b. result := result || K(i). 

5. KOUT :=  the leftmost L bits of result. 

Output: KOUT (or an error indicator) 
In each iteration of a PRF execution in step 4 above, the fixed input data is the string Label || 
0x00 || Context || [L]2. The counter [i]2 is the iteration-dependent input data and is represented as 
a string of r bits. The KDF in counter mode is illustrated in Fig. 1. 

 
Fig. 1. KDF in Counter Mode 

When using CMAC as the PRF in counter mode, a party with knowledge of the key KIN, who 
also can freely select portions of the string Label || 0x00 || Context || [L]2 (as described in 
Appendix B), may be able to control the values of one or more of the K(i). One way to guard 
against the possibility of this sort of key control would be by replacing the fixed input data 

Label || 0x00 || Context || [L]2 

with  
Label || 0x00 || Context || [L]2|| K (0), 

where 
K(0) = PRF(KIN, Label || 0x00 || Context || [L]2). 
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That is, 
K(i) = PRF (KIN, [i]2 || Label || 0x00 || Context || [L]2 || K (0)), for i = 1, 2, …, n. 

 KDF in Feedback Mode 

This section specifies a family of KDFs that employs a feedback mode. In the feedback mode, 
the output of the PRF is computed using iteration-dependent input data that consists of the result 
of the previous iteration and, optionally, a counter. The mode is defined as follows. (Note that 
when L ≤ h, IV = ∅, and the counter is used, the feedback mode will generate an output that is 
identical to the output of the counter mode specified in Section 4.1.) 
Parameters: 

• h – The length of the output of a single invocation of the PRF in bits 

• r – The length of the binary representation of the counter i. r is specified only when a 
counter is used as an input 

Input: KIN, Label, Context, IV, and L 
Process: 

1. n: = L/h. 

2. If n > 232 −1, output an error indicator and stop (i.e., skip steps 3, 4, and 5). 

3. result := ∅ and K(0) := IV. 

4. For i = 1 to n, do 

a. K(i) := PRF (KIN, K(i−1) {|| [i]2 }|| Label || 0x00 || Context || [L]2). 

b. result := result || K(i). 

5. KOUT := the leftmost L bits of result. 

Output: KOUT (or an error indicator) 
In each iteration of a PRF execution in step 4 above, the fixed input data is the string Label || 
0x00 || Context || [L]2. The iteration-dependent input data is K(i-1) {|| [i]2}. The KDF in feedback 
mode is illustrated in Fig. 2. 
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Fig. 2. KDF in Feedback Mode 

When using CMAC as the PRF in feedback mode, a party with knowledge of the key KIN, who 
can also freely select portions of the string Label || 0x00 || Context || [L]2 and/or portions of the 
IV, may be able to control the values of one or more of the K(i), as was the case for counter 
mode. One way to guard against the possibility of this sort of key control would be by requiring 
that 

IV = PRF (KIN, Label || 0x00 || Context || [L]2) 
and requiring the inclusion of a counter in the feedback mode (i.e., [i]2 is not optional). 

 KDF in Double-Pipeline Mode 

For a KDF in the counter mode or feedback mode, the invocation of a PRF is iterated in a single 
pipeline. This section specifies a family of KDFs in which the invocation of a PRF is iterated in 
two pipelines. In the first iteration pipeline, a sequence of secret values A(i) is generated, each of 
which is used as an input to a corresponding PRF invocation in the second iteration pipeline. 
Parameters: 

• h – The length of the output of a single invocation of the PRF in bits 

• r – The length of the binary representation of the counter i. r is specified only when a 
counter is used as an input 

Input: KIN, Label, Context, and L 
Process:  

1. n := L/h. 

2. If n > 232 −1, output an error indicator and stop (i.e., skip steps 3, 4, 5, and 6). 
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3. result := ∅. 

4. A(0) := Label || 0x00 || Context || [L]2. 

5. For i = 1 to n, do 

a. A(i) := PRF (KIN, A(i−1)). 

b. K(i) := PRF (KIN, A(i){|| [i]2}|| Label || 0x00 || Context || [L]2). 

c. result := result || K(i). 

6. KOUT := the leftmost L bits of result. 
Output: KOUT (or an error indicator) 
The PRF iterations in the first pipeline use a feedback mode with key KIN and an initial value of 
A(0)= Label || 0x00 || Context || [L]2. Each PRF iteration in the second pipeline generates K(i) 
from KIN and fixed input data while using A(i) and, optionally, a counter [i]2 as the iteration-
dependent input data. The KDF in the double-pipeline iteration mode is illustrated in Fig. 3. 
When using CMAC as the PRF in double-pipeline mode, a party with knowledge of the key KIN 
may be able to control the values of one or more of the K(i). One way to guard against the 
possibility of this sort of key control would be by requiring the inclusion of a counter in double-
pipeline mode (i.e., [i]2 is not optional). 

 
Fig. 3. KDF in Double-pipeline Mode 
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 KDF Using KMAC 

KMAC is the Keccak-based Message Authentication Code, which is specified in [8]. KMAC is 
based on a sponge function and can output a bit string with a desired length L. When using 
KMAC, there is no need for an iterated PRF execution (as was the case for the KDFs defined in 
Sections 4.1, 4.2, and 4.3). Two KMAC functions – KMAC128 and KMAC256 – are specified 
in [8]. Here, KMAC# indicates the use of either KMAC128 or KMAC256. 
In this section, a KDF specification of KMAC#(K, X, L, S) takes the following parameters. 

1. K – KIN, the key-derivation key. 

2. X – Context, a bit string containing the information related to the derived keying material. 

3. L − An integer specifying the desired output length (in bits) of the derived keying 
material. 

4. S − Label, an optional customization bit string; for example, Label can be an encoding of 
the characters “KDF” or “KDF4X” in 8-bit ASCII. 

Input: KIN, Context, L, and Label 
Process: 

1. If L > 21040 − 1, output an error indicator and stop (i.e., skip step 2). 

2. KOUT = KMAC#(KIN, Context, L, Label). 

Output: KOUT (or an error indicator) 

 
Fig. 4. KDF Using KMAC 

In [8], besides KMAC128 and KMAC256, another two functions (i.e., KMACXOF128 and 
KMACXOF256) are defined for the situation in which the number of output bits L is not known 
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until after the outputs begin to be produced. For KMACXOF128 and KMACXOF256, L is not 
an input for the function but a parameter to determine the output length. However, for a key-
derivation function to comply with this Recommendation, the length of the derived keying 
material must be known before the function is called. Therefore, KMAC128 or KMAC256 shall 
be used for the key-derivation function. 
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 Key Hierarchy 

The keying material derived from a given key-derivation key could subsequently be used as one 
or more key-derivation keys to derive still more key-derivation keys. In this way, a key hierarchy 
could be established. In a key hierarchy, a KDF is used with a higher-level “parent” key-
derivation key (and other appropriate input data) to derive a number of lower-level “child” keys. 
Fig. 5 presents a three-level key hierarchy as an example. 
In this example, the second-level key-derivation keys KIN (1), KIN (2), KIN (3), and an additional 
second-level (non-key-derivation) key, Knon-KDK, are all derived from the top-level key KIN. The 
keys KIN (1), KIN (2), and KIN(3) are then used to derive the bottom-level keys in this key hierarchy 
(i.e., K11, K12,..K32). In any key hierarchy, only designated key-derivation keys are used to derive 
lower-level keys, and those key-derivation keys shall not be used for any purpose other than key 
derivation. 
 

 
Fig. 5. Key Hierarchy 
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(1)
 KIN 

(2)
 KIN 
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 Security Considerations 

An improperly defined key-derivation function can make the derived keying material vulnerable 
to attacks. This section will discuss some factors that affect the cryptographic strength of the 
keying material derived by a KDF. However, some of the required security properties cannot be 
achieved by the key-derivation function itself. For example, the overall security of the derived 
keying material depends on the protocols that establish the key-derivation key. These external 
conditions are out of the scope of the security discussion in this Recommendation. 

 Cryptographic Strength 

The security strength of a key-derivation function is measured by the amount of work required to 
distinguish the output of the KDF from a uniformly distributed bit string of the same length, 
under the assumption that the key-derivation key, KIN, is the only unknown input to the KDF. 
This is certainly no greater than the work required to recover KIN and/or the remaining portions 
of the derived keying material from a given segment of KDF output. Knowing the data used as 
input to the KDF (other than the w-bit key-derivation key KIN) and observing corresponding 
output data of sufficient bit length (say, w bits or more), one can very likely recover the key KIN 
through an exhaustive search over its possible values, performing (at most) 2w executions of the 
KDF. 
For a secure KDF, the revelation of one portion of the derived keying material must not degrade 
the security of any other portion of that keying material. For example, the compromise of some 
derived keys (or the revelation of derived IVs) must not enhance an adversary’s ability to predict 
or determine the value of any other (secret) keying material derived during the same execution of 
the KDF. 

 The Length of a Key-Derivation Key 

It is recommended that the length of a KDK used by a KDF be at least as large as the targeted 
security strength (in bits) of any application that will be supported by the use of the derived 
keying material. This may affect the choice of the MAC algorithm used to implement a PRF-
based key-derivation function, since the possibilities for the KDK size are determined by what is 
allowed for the MAC keys. For example, when using CMAC as a PRF, the key length is 
uniquely determined by the underlying block cipher. In this case, an implementation should 
check whether the key-derivation key length is consistent with the length required by the PRF. 
However, some PRFs can accommodate different key lengths. If HMAC is used as the PRF, then 
a KDF can use a key-derivation key of essentially any length. It is worth noting, however, that if 
the chosen key is longer than one input block for the hash function underlying HMAC, that key 
will be hashed, and the (much shorter) h-bit output will be used as the HMAC key instead. In this 
case, given a pair consisting of the input data (other than the key) and enough corresponding 
output of the KDF, the hashed key can likely be recovered in (at most) 2h computations of the 
KDF. Therefore, the security strength of an HMAC-based key-derivation function may be 
decreased by increasing the length of the KDK beyond the length of an input block of the 
underlying hash function. 
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KMAC can accommodate different key lengths up to 22040−1 bits. However, its security strength 
is also limited by the KMAC functions used in the KDF. KMAC128 and KMAC256 provide 
security strengths of no more than 128 and 256 bits, respectively, against generic attacks. 

 Converting Keying Material to Cryptographic Keys 

The length of the derived keying material L depends on the requirements of the cryptographic 
algorithms that rely on the KDF output. The length of a given cryptographic key is determined 
by the algorithm that will employ it (e.g., a block cipher or a message authentication code) and 
the desired security strength. In the absence of limitations that may be imposed by relying 
applications, any segment of the derived keying material that has the required length can be 
specified for use as a key, subject to the following restriction: when multiple keys (or any other 
types of parameters, such as initialization vectors) are obtained from the derived keying material, 
they shall be selected from disjointed (i.e., non-overlapping) segments of the KDF output. 
Therefore, the value of L shall be greater than or equal to the sum of the lengths of the keys and 
other types of parameters that will be obtained from the derived keying material. 
Care must be taken to avoid confusion when parsing KDF output if any segments are used as 
public parameters (such as public IVs). Attacks on the protocol level may attempt to cause one 
party to mistakenly release a secret portion of the KDF output. The security of any protocol 
using the derived keying material is beyond the scope of this Recommendation. 
The use of the derived keying material as a key stream (as in a stream cipher) is not 
recommended because the security of using KDFs as stream cipher algorithms has not been 
sufficiently investigated. 

 Input Data Encoding 

The input data of a key-derivation function consists of different data fields (e.g., a Label, the 
Context, and the length of the output keying material). In Section 4, each of the data fields that 
represents certain information is encoded as a bit string. The encoding method shall define a 
one-to-one mapping from the set of all possible input information for that data field to a set of 
corresponding bit strings. The different data fields shall be assembled in a specific order. The 
encoding method (including the field order) may be defined in a larger context (e.g., by the 
protocol that uses a key-derivation function). The encoding method shall be designed for 
unambiguous conversion of the combined input information to a unique bit string. 
Unambiguous encoding for input data is required to deter attacks on the KDF that depend on 
manipulating the input data. For detailed discussions of such attacks, see [10]. 

 Key Separation 

In this Recommendation, key separation is a security requirement for the cryptographic keys 
derived from the same key-derivation key. The keys shall be separate in the sense that the 
compromise of some keys will not degrade the security strength of any of the other keys. In the 
families of KDFs specified in this Recommendation, key separation can be achieved through 
different approaches for the following two situations. 
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1. When keying material for multiple cryptographic keys is obtained from the output of a 
single execution of a key-derivation function, the segments of the keying material used 
for the different keys need to be cryptographically separate: the compromise of some of 
the keys must not degrade the security of any of the other keys that are obtained from the 
output of the same execution of a KDF. That is, the compromise of some of the keys 
must not make the task of distinguishing any of the other keys from random strings with 
the same length easier than the task would be if none of the keys were compromised. In 
order to satisfy this requirement when using the key-derivation functions specified in this 
Recommendation, different keys shall be obtained from disjointed (i.e., non-overlapping) 
segments of the derived keying material. 

2. When keying material for multiple cryptographic keys is obtained from the output of 
multiple executions of a particular key-derivation function using the same value for KIN, 
the keying materials output by different calls to the KDF need to be cryptographically 
separate: the compromise of the keying material output from one of the executions of the 
KDF must not degrade the security of any of the keying material output from the other 
executions of the KDF using the same KIN. That is, the compromise must not make the 
task of predicting (or determining) the value of any of the other keying material easier 
than if none of the keying material were compromised. In order to satisfy this 
requirement when using the key-derivation functions specified in this Recommendation, 
different input data strings (e.g., Label || 0x00 || Context || [L]2) shall be used for 
different executions of the KDF using the same KIN. The different data strings can be 
obtained by including different data related to the derived keying materials. Examples of 
different information include: 

- Label if the keying materials are derived for different purposes 
- Identities included in Context if the keying materials are derived for different sets 

of entities 
- A nonce included in the Context if the nonce is communicated by means of the 

relying protocol and, therefore, shared by each entity who derives the keying 
material 

- Session identifiers if the keying materials are derived for different sessions 

 Context Binding 

Derived keying material should be bound to all relying entities and other information to identify 
the derived keying material. This is called context binding. In particular, the identity (or 
identifier, as the term is defined in [2] and [3]) of each entity that will access (i.e., derive, hold, 
use, and/or distribute) any segment of the keying material should be included in the Context 
string input to the KDF, provided that this information is known by each entity who derives the 
keying material. In addition to identities, other information related to the derived keying material 
(e.g., session identifiers, sequence numbers) as well as a nonce may be included in the Context 
string, assuming that the information can be communicated (e.g., by means of the relying 
protocol). 
Context binding may not necessarily increase the security strength of an application that makes 
use of a derived key. However, the binding may provide a way to detect protocol errors by 
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providing assurance that all parties who (correctly) derive the keying material share the same 
understanding of who will access it and in which session it will be used. If those parties have 
different understandings, then they will derive different keying material. When that keying 
material is used in a protocol, the protocol will likely fail to complete its execution and, 
therefore, will indicate errors to the participants. 

 Key Control Security 

When multiple parties contribute to the input of a key-derivation process, key-control security 
(or key-control resistance) is attained when the parties have assurance that (even with knowledge 
of the input key KIN) no single party (or proper subset of the contributors) can manipulate the 
process in such a way as to force output keying material to a preselected value (regardless of the 
contributions of the others) to the detriment of any applications relying on that keying material. 
When CMAC is used as the PRF and multiple blocks of input data are involved, there are 
scenarios in which an entity that knows KIN and has sufficient freedom of choice in its 
contribution to the KDF input (after all other inputs are known) may be able to unduly influence 
the output keying material. See Appendix B for an example. 
If key control security is a desired property, then HMAC or KMAC should be used as PRFs for 
key derivation unless, for example, AES is the only primitive implemented in the platform or 
using CMAC has a resource benefit. If CMAC is used as the PRF in a key-derivation function, 
then to achieve key control security, the input to the PRF needs to be specified in such a way that 
a single party cannot flexibly select any significant portion of the input data. Some methods are 
suggested in Section 4.1, 4.2, and 4.3 to mitigate key-control issues. 
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Appendix A. Revisions 

The original version of this document was published in November 2008. In October 2009, the 
publication was updated with the following change: 
At the end of the next to last paragraph of Section 4, the following statement was added: 

For each of the iterations of the PRF, the key-derivation key KIN is used 
as the key, and the input data consists of an iteration variable and a string 
of fixed input data. Depending on the mode of iteration, the iteration 
variable could be a counter, the output of the PRF from the previous 
iteration, a combination of both, or an output from the first pipeline 
iteration in the case of double-pipeline iteration mode. In the following 
key-derivation functions, the fixed input data is a concatenation of a 
Label, a separation indicator 0x00, the Context, and [L]2…One or more 
of these fixed input data fields may be omitted unless required for certain 
purposes, as discussed in Section 6.5 and Section 6.6. 

This revision, NIST SP 800-108r1 (August 2022) adds a KMAC-based key-derivation function. 
The key-control issues when using CMAC as a PRF are discussed, and some methods to prevent 
a single party from controlling the derived key block are provided. 
The structure of the document was modified so that the notations and glossary in Section 3 are 
now provided in Appendix C and Appendix D, respectively. As a result, the contents of Sections 
4, 5, 6, 7 are now included in Sections 3, 4, 5, 6, respectively. 
In addition, the notations KI and KO are replaced with KIN and KOUT, respectively, because KI and 
KO are easily mistaken for K1 and K0. 
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Appendix B. Example of CMAC Key Control Security Issue 

An example of a CMAC-related key-control security issue is provided here for illustrative 
purposes. This example was contributed by Scott Arciszewski, Matthew Campagna, Panos 
Kampanakis, and Adam Petcher of Amazon through public comments. 
In this example, the KDF operates in counter mode, takes two full input blocks, and outputs a 
128-bit key. Vulnerabilities similar to this can arise when using an n-block input (with or without 
padding) with n ≥ 2. Other KDF modes using CMAC as the PRF can also be susceptible to 
similar methods of manipulation. 

Assume that L = 128 and | [L]2 | = t ≥ 8. Input M consists of two full blocks. 
M = M1|| M2 = [1]2 || Label || 0x00 || Context || [L]2, 

where 
M1 = [1]2 || Label || 0x00 || context1 

and 
M2 = context2 || [128]2. 

Assume that the string Context = context1 || context2 is under the control of one party, referred to 
as the manipulator. To derive a 128-bit block of keying material using CMAC as the PRF for the 
counter-mode KDF, one computes a chain of cipher blocks 

C1 = AES (KIN, M1) and C2 = AES (KIN, C1 ⊕ K ′ ⊕ M2), 

where K ′ is the subkey derived from KIN per the specification of CMAC. C2 is output by CMAC 
as K(1), and used as the derived 128-bit key. If the manipulator knows the input key KIN, can 
control context1 and context2, and would like to force the derived key to a preselected value T 
(i.e., force C2 = T), then it must be arranged that 

C1 = AES-1(KIN, T) ⊕ K ′ ⊕ M2. 

Let R = AES-1(KIN, T) ⊕ K ′, then the manipulator’s goal is to force C1 = R ⊕ M2. 
For an n-bit binary string X = (x0, x1, …, xn –1), and integers a and b satisfying 0 ≤ a < b ≤ n,  
let X [a : b] denote the (b – a)-bit substring, (xa, xa+1, …, xb-1).  Using this notation, 

R ⊕ M2 = (R[0 : 128 – t] ⊕ context2) || (R[128 – t : 128] ⊕ [128]2 ). 
Since C1 = AES(KIN, [1]2 || Label || 0x00 || context1), we can restate the manipulator’s goal as 
choosing context1 and context2 to arrange that 

AES(KIN, [1]2 || Label || 0x00 || context1)  

= (R[0 : 128 – t] ⊕ context2) || (R[128 – t : 128] ⊕ [128]2 ), 

where t = | [128]2 |. Note that the manipulator knows input key KIN and can generate K ′; the 
manipulator can therefore calculate R. 
In attempting to satisfy the last equation above, suppose that the manipulator randomly selects 
values for context1. If for some choice of context1 it happens that 

AES(KIN, [1]2 || Label || 0x00 || context1)[128 – t : 128]   =  R[128 – t : 128] ⊕ [128]2, 
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then the manipulator can satisfy the desired equation by simply setting 

context2 = AES(KIN, [1]2 || Label || 0x00 || context1)[0 : 128 – t] ⊕ R[0 : 128 – t]. 
If the bit length of context1 is large enough (compared to t), then there is a high probability that 
such a value for context1 can be found. Using Context = context1 || context2, the derived key block 
K(1) will be equal to the preselected value T. 
Alternatively, the manipulator can randomly select context2 in an attempt to satisfy the equation 

[1]2 || Label ||0x00|| context1  

= AES-1(KIN, (R[0 : 128 – t] ⊕ context2 ) || (R[128 – t : 128] ⊕ [128]2)). 
Assume that |context1| = w. If a context2 string is found such that the leftmost 128 – w bits of 

AES-1(KIN, (R[0 : 128 – t] ⊕ context2 ) || (R[128 – t : 128] ⊕ [128]2) ) 
are equal to [1]2 || Label || 0x00, then the desired equation can be solved by setting context1 equal 
to the rightmost w bits. If the bit length of context2 is large enough (compared to the bit length of 
[1]2 || Label || 0x00), then there is a high probability that such a context2 value can be found. 
Using Context = context1 || context2, the derived key block K(1) will be equal to the preselected 
value T. 
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Appendix C. List of Symbols, Abbreviations, and Acronyms 
A(i) 
The output of the ith iteration in the first pipeline of a double pipeline iteration mode 

A || B 
The concatenation of bit strings A and B 

CMAC 
Cipher-based Message Authentication Code (as specified in NIST SP 800-38B [6]) 

h 
The length of the PRF output in bits 

HMAC 
Keyed-hash Message Authentication Code (as specified in FIPS 198-1 [7]) 

i 
A counter taking integer values in the interval [1, 2r − 1] that is encoded as a bit string of length r; used as an input 
to each invocation of a PRF in the counter mode and (optionally) in the feedback and double-pipeline iteration 
modes 

IV 
A bit string that is used as an initial value in computing the first iteration of the PRF in feedback mode. It may be an 
empty string 

KDF 
Key-Derivation Function 

K(i) 
The output of the ith iteration of the PRF 

KIN3 
A key-derivation key used as input to a key-derivation function (along with other data) to derive the output keying 
material KOUT 

KOUT4 
Output keying material that is derived from the key-derivation key KIN and other data that were used as input to a 
key-derivation function 

KDF 
Key-Derivation Function 

KDK 
Key-Derivation Key 

KMAC 
Keccak-based Message Authentication Code (as specified in SP 800-185 [8]) 

L 
An integer specifying the length of the derived keying material KOUT in bits, which is represented as a bit string when 
it is an input to a key-derivation function 

 
3 NIST Special Publication (SP) 800-108 (2008) uses KI to denote key-derivation key, where the subscript is the letter “I.” The notation is easily 

mistaken for K1, where the subscript is the number one. In this revision, KIN is used to denote the key-derivation key. 
4 NIST Special Publication (SP) 800-108 (2008) uses KO to denote output keying material, where the subscript is the letter “O.” The notation is 

easily mistaken for K0, where the subscript is a zero. In this revision, KOUT is used to denote output keying material. 
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MAC 
Message Authentication Code 

n 
The number of iterations of the PRF needed to generate L bits of keying material 

PRF 
Pseudorandom Function 

PRF(s, x) 
A pseudorandom function with seed s and input data x 

r 
An integer that is less than or equal to 32, whose value is the bit length of the agreed-upon binary encoding of a 
counter i used as input during invocations of the PRF employed by a KDF 

|X| 
The length of a bit string X in bits 

[T]2 
A binary representation for the integer T (using an agreed-upon length and bit order) 

w 
The length of a key-derivation key in bits 

{X} 
Used to indicate that data X is an optional input to the key-derivation function 

X 
The smallest integer that is larger than or equal to X. The ceiling of X. For example, 8.2 = 9. 

X := Y 
X is defined to be equal to Y 

∅ 
The empty bit string. That is, for any bit string A, ∅ || A = A || ∅ = A. 

0x00 
An all-zero octet 

∈ 
For an element s and a set S, s ∈ S, means that s belongs to S 
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Appendix D. Glossary 
approved 
An algorithm or technique for a specific cryptographic use that is specified in a FIPS or NIST Recommendation, 
adopted in a FIPS or NIST Recommendation, or specified in a list of NIST-approved security functions. 

cryptographic key 
A bit string used as a secret parameter by a cryptographic algorithm. In this Recommendation, a cryptographic key 
is either a random bit string of a length specified by the cryptographic algorithm or a pseudorandom bit string of the 
required length that is computationally indistinguishable from one selected uniformly at random from the set of all 
bit strings of that length. 

entity 
An individual (person), organization, device, or a combination thereof. In this Recommendation, an entity may be a 
functional unit that executes certain processes. 

hash function 
A function that maps a bit string of arbitrary length to a fixed-length bit string. Approved hash functions satisfy the 
following properties: 

i. (Collision resistance) It is computationally infeasible to find any two distinct inputs that map to 
the same output. 

ii. (Preimage resistance) Given a randomly chosen target output, it is computationally infeasible to 
find any input that maps to that output. (This property is called the one-way property.) 

iii. (Second preimage resistance) Given one input value, it is computationally infeasible to find a 
second (distinct) input value that maps to the same output as the first value. 

This Recommendation uses the strength of the preimage resistance of a hash function as a contributing factor when 
determining the security strength provided by a key-derivation function. 

key derivation 
The process by which keying material is derived from 1) either a cryptographic key or a shared secret produced 
during a key-agreement scheme and 2) other data. This Recommendation specifies key derivation from an existing 
cryptographic key and other data. 

key-derivation function (KDF) 
A function that, with the input of a cryptographic key and other data, generates a bit string called the keying 
material, as defined in this Recommendation. 

key-derivation key (KDK) 
A key used as an input to a key-derivation function to derive additional keying material. 

key establishment 
A procedure conducted by two or more participants, after which the resultant keying material is shared by all 
participants. 

key hierarchy 
A multiple-level tree structure such that each node represents a key and each branch – pointing from one node to 
another – indicates a key derivation from one key to another key. 

keying material 
A bit string such that non-overlapping segments of the string (with the required lengths) can be used as 
cryptographic keys or other secret (pseudorandom) parameters. 

message authentication code (MAC) 
A family of secret-key cryptographic algorithms acting on input data of arbitrary length to produce an output value 
of a specified length (called the MAC of the input data). The MAC can be employed to provide an authentication of 
the origin of data and/or data-integrity protection. In this Recommendation, approved MAC algorithms are used to 
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determine families of pseudorandom functions (indexed by the choice of key) that are employed during key 
derivation. 

mode of iteration 
A method for iterating the multiple invocations of a pseudorandom function in order to derive the keying material 
with a required length. 

nonce 
A time-varying value that has – at most – a negligible chance of repeating; for example, a random value that is 
generated anew for each use, a timestamp, a sequence number, or some combination of these. 

pipeline 
A term used to describe a series of sequential executions of a pseudorandom function. 

pseudorandom function (PRF) 
An indexed family of (efficiently computable) functions, each defined for the same input and output spaces. (For the 
purposes of this Recommendation, one may assume that both the index set and the output space are finite.) If a 
function from the family is selected by choosing an index value uniformly at random, and one’s knowledge of the 
selected function is limited to the output values corresponding to a feasible number of (adaptively) chosen input 
values, then the selected function is computationally indistinguishable from a function whose outputs were fixed 
uniformly at random. 

security strength 
A number characterizing the amount of work that is expected to suffice to “break” the security definition of a given 
cryptographic algorithm. 

shall 
The term used to indicate a requirement of a Federal Information Processing Standard (FIPS) or a requirement that 
needs to be fulfilled to claim conformance with this Recommendation. Note that shall may be coupled with not to 
become shall not. 

should 
The term used to indicate an important recommendation. Ignoring the recommendation could result in undesirable 
results. Note that should may be coupled with not to become should not. 
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