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A B S T R A C T   

An automated approach for evaluating the strength of the evidence of firearm toolmark comparison results is 
presented for a common source scenario. First, comparison scores are derived describing the similarity of marks 
typically encountered on the primer of fired cartridge cases: aperture shear striations as well as breechface and 
firing pin impressions. Subsequently, these scores are interpreted using reference distributions of comparison 
scores obtained for representative known matching (KM) and known non-matching (KNM) ballistic samples in a 
common source, score-based likelihood ratio (LR) system. We study various alternatives to set up such an LR 
system and compare them using qualitative and quantitative criteria known from the literature. As an example, 
results are applied to establish a system suitable for a firearm-ammunition combination often encountered in 
casework: Glock firearms with Fiocchi nickel primer ammunition. The system outputs an LR and a measure of LR 
uncertainty. The range of possible LR-values is limited to a minimum and maximum value in areas of the score 
domain with little reference data. Finally, the feasibility of combining LRs of different mark types into one LR for 
the entire primer is assessed. For the distribution models considered in this paper, different modeling approaches 
are optimal for different types of similarity scores. For the chosen firearm-ammunition combination, non- 
parametric Kernel Density Estimation (KDE) models perform best for similarity scores based on the correla
tion coefficient, whereas parametric models perform best for the Congruent Matching Cells (CMC) scores, 
assuming binomial and beta-binomial models for KM and KNM score distributions respectively. Finally, it is 
demonstrated that individual LRs of different mark types can be combined into one LR, to interpret a set of 
different marks on the primer as a whole.   

1. Introduction 

To evaluate whether two ballistic samples were fired from the same 
firearm, forensic examiners typically use a comparison microscope to 
manually compare firearm toolmarks on the samples. Both the evalua
tion of firearm toolmark similarity and its significance are based on 
subjective judgements and rely on the skill, training, and experience of 
the examiner. Several studies recommend a more objective approach for 
comparing toolmarks and estimating the strength of the evidence, based 
on quantitative measures of toolmark similarity, variability, and 
repeatability [1,2]. 

In recent years, more objective approaches for evaluating the simi
larity of firearm toolmarks and interpretation of the strength of the 

evidence were proposed for a variety of marks encountered in casework: 
breechface impressions [3–11], firing pin impressions [3–5,12], aper
ture shear striation marks [13–15] and bullet LEA (land engraved area) 
striation marks [13,16–21]. 

Most of these approaches rely on algorithms to calculate a similarity 
score of two toolmarks. While similarity scores do not include infor
mation about typicality of features, which might lead to a loss of in
formation when determining toolmark similarity [22], it has been 
shown for a variety of mark types that similarity scores do contain 
enough information to be discriminative. This means that distributions 
of scores of known-matches (within-source distributions) are signifi
cantly different from distributions of scores of known non-matches 
(between-source distributions). 
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Examples of discriminatory scores are the profile correlation coeffi
cient (CCFmax) for striated marks, such as aperture shear on the primer 
[13,14] and the land engraved areas (LEAs) on a bullet [16,20,23]; as 
well as the areal correlation coefficient (ACCFmax) [24,25], and the 
Congruent Matching Cells (CMC) score [5,6,26] for breechface and 
firing pin impressions. In addition, approaches based on multiple scores 
were proposed, combining scores of breechface and firing pin impres
sions [4,27] and different scores derived from the same LEA profile [28]. 

For interpreting the results of a score-based comparison algorithm, 
basically two approaches are discussed in the literature: 1) making an 
identification decision based on the score(s) observed and evaluating the 
associated error rates [8], or 2) assessing the evidential strength of a 
comparison result using score-based likelihood ratios [29]. In the cur
rent paper, we focus on likelihood ratios (LR). 

To obtain an LR by automated means requires representative tool
mark population databases of known matching (KM) and known non- 
matching (KNM) similarity scores (please refer to Section 4.3 for an 
in-depth discussion of representative databases). The respective score 
distributions are used to transform a comparison score to an LR. In the 
literature on automated LR-methods, this is achieved in several ways. 
First, score distributions can be generalized with non-parametric models 
[3,14] or parametric models [8,13]. Second, binary classifiers from 
machine learning can be used to transform the score to an LR. The soft 
(probability) output of the binary classifier is used for this purpose [30]. 
In this paper we focus on the first approach. 

Based on the current literature, it is not obvious which distribution 
modeling approach is preferable for a particular mark type. The key 
challenge is that for a discriminatory score, the LR calculation requires 
evaluation of the tail of at least one of the score distributions, where 
typically little experimental data is available. Using parametric models 
has the advantage that it requires relatively less data to obtain well 
defined score distributions. However, unless the choice of the para
metric model has a strong (physics-based) justification, evaluation of the 
tails of the model where little experimental data is available can lead to 
unsupported (extreme) LR values. In addition, parametric models may 
be too restrictive leading to a poor fit of the data. The non-parametric 
KDE (kernel density estimates) approaches do not require choosing a 
specific model. However, they require more data to generalize well, and 
the evaluation of a distribution tail is affected by the choice of the KDE 
kernel size parameters. 

2. Goals and research questions 

In this paper, we compare several automated LR approaches for the 

interpretation of comparison scores obtained for a set of toolmarks on 
the cartridge primer: the breechface (BF) impression, the firing pin (FP) 
impression and the aperture shear (AS) striations (Fig. 1, left). In addi
tion, we study whether the interpretation results for the individual 
toolmarks can be combined into a single result. 

Briefly, we aim at answering the following research questions:  

• Among the approaches studied, which is optimal for the score-based 
interpretation of comparison results for three primer mark types (BF, 
FP and AS), using LRs?  

• How can we interpret the combined comparison results for the 
various mark types on the primer? 

3. Materials and methods 

3.1. Firearms and ammunition 

For this study, two hundred 9 mm caliber Glock firearms of types 17, 
17 C, 19, 19 C, 26 and 34 of generation 2–4 were used [14]. These 
firearms typically leave similar types of marks with similar properties. 
Two test fires were obtained for each firearm, using ammunition with 
nickel plated primer (Fiocchi, 9 mm LUGER, Full Metal Jacket, FMJ). An 
example of a fired cartridge case is shown in Fig. 1, left. 

3.2. Firearm toolmark acquisition 

The three-dimensional (3D) surface topography of the three tool
mark types evaluated in this study were acquired with Alicona Infinite 
Focus Microscopes (IFM), types G4 and SL [31]. These are optical mi
croscopes that employ white light focus variation to measure sample 
topography [32]. Advantages of this measurement approach are that it 
does not require mechanical probes, is fast, has high vertical and hori
zontal resolution, and enables measurement of areas with relatively high 
slopes. While the various areas of the primer containing the toolmarks 
can all be measured with the IFM, this direct approach is complicated by 
the presence of deep firing pin impressions, strong reflections and var
iations in surface reflectivity and color. Therefore, the acquisitions were 
performed on a cast of the base of the cartridge cases. The casts were 
made using gray forensic silicone [33], which yields a detailed negative 
copy of the cartridge case base with homogeneous reflective properties. 
The measured 3D image was then mirrored in software to obtain the 
toolmark surface topography. Fig. 1 (Right) shows an example of the 
surface topography image obtained. 

For this study, the three toolmark types were measured separately, 

Fig. 1. (Left) Light microscopy image of cartridge case base after firing with a Glock firearm. Typical mark types are the firing pin (FP) impression, the breechface 
(BF) impression, and the aperture shear (AS) striations. (Right) Example of a 3D surface topography of a cast made from the cartridge case primer area. 

M. Baiker-Sørensen et al.                                                                                                                                                                                                                      



Forensic Science International 353 (2023) 111858

3

with the following settings: objective with 20 x magnification and a 
numerical aperture (NA = 0.4), 200 nm vertical resolution and 
approximately 1 µm pixel spacing. For the firing pin impression, the 
acquisition was limited to the bottom of the impression. The acquisition 
time varied from approximately 30 s for the firing pin impression (FP) to 
approximately 10 min for both, breechface impressions (BF) and aper
ture shear (AS) striations. 

3.3. Toolmark type definition and pre-processing 

The different regions of interest (ROIs), each containing one tool
mark type, were defined manually, using the in-house developed soft
ware package Scratch [34]. The software allows for the segmentation of 
the acquired image into ROIs using geometrical primitives such as 
rectangles, polygons, circles and ellipses, or combinations of those. All of 
these can be rotated. Each shape can be labeled foreground (i.e., its 
enclosed area contains the mark) or background (i.e., its enclosed area is 
not a part of the mark). For the different toolmark types, the following 
ROI shapes were chosen:  

• BF:Circular foreground ROI and (rotated) rectangular background 
ROI  

• FP: Elliptical foreground ROI  
• AS:(Rotated) Rectangular foreground ROI 

After ROI definition, the AS data and the FP data were resampled to a 
pixel separation of 1.5 μm, and the BF data to a pixel separation of 3.5 
μm. During this process, noise and surface form components were 
attenuated using Gaussian regression filters [35] with a low-pass cutoff 
length of 5 μm and a high-pass cutoff length of 250 μm. Examples of 
cropped and filtered toolmarks are shown in Fig. 2. 

3.4. Comparison algorithms for firearm toolmarks 

3.4.1. Comparison of striation marks 
Striation toolmarks typically only contain relevant information in a 

cross-section, orthogonal to the direction of the striations. Therefore, 
after cropping and filtering, a striation profile was generated by aver
aging the surface heights along the striations. The resulting averaged 
profile heights are more repeatable than the individual pixel height data 
[13]. Automated comparison of two aperture shear profiles was then 
conducted using a previously published approach [13,14]. First, two 
toolmark profiles are aligned (registered) using a multi-scale, Gaussian 

filter-based registration strategy [36,37] with two degrees of freedom, 
lateral scale and translation (shift). This means that during alignment, 
one profile is shifted and scaled with respect to the other profile such 
that the two profiles are most similar. The respective similarity metric, 
and resulting similarity score, is the Pearson Correlation Coefficient 
[20]. In the context of toolmark comparisons, this score is often referred 
to as the normalized Cross Correlation Function maximum CCFmax. The 
maximum allowed scale factor difference and translation were set to +/- 
3% and +/- 100 µm respectively. The similarity score ranges between 
− 1 and + 1, corresponding to full negative or positive linear de
pendency respectively, with 0 corresponding to no linear dependency. 
The correlation score is not sensitive to differences in the vertical scale of 
the compared profiles, which facilitates the comparison of weak and 
strong striations. Most studies [16–21] do not adjust comparison scores 
for differences in the lateral scale of the profiles. Here, the adjustment 
was applied to account for differences between the direction of the tool 
(firing pin aperture) motion and tool orientation. 

3.4.2. Comparison of impression marks 
Impression toolmarks were compared in two ways. The first 

approach evaluated the areal similarity of the entire surface topography 
of the impressed marks. Two images were aligned (registered) using a 
multi-scale, Gaussian filter-based registration strategy [36,37] with 
three degrees of freedom: rotation around the vertical axis and trans
lation in the lateral X and Y directions. The respective similarity metric, 
and resulting similarity score, is again the Pearson Correlation Coeffi
cient. In the context of tool mark comparisons, this score is often referred 
to as the normalized areal cross correlation function maximum ACCFmax 
[24,25]. The second approach was the Congruent Matching Cells (CMC) 
method [5,6]. Briefly, the image domain of one image is divided into 
small image patches or cells, which are subsequently registered inde
pendently to the other full image with the same image registration 
strategy as for the whole marks described above. The similarity score is 
the number of congruent matching cells, i.e., the subset of cell pairs that 
meet or exceed a similarity tolerance value, as determined by their 
correlation coefficient, and that have an approximately congruent 
registration location (similar difference in position and orientation). The 
resulting CMC score is an integer value between 0 (no congruent 
matching cell pairs) and the number of available reference cells into 
which the image domain was split up (all cell pairs are congruent 
matching cells). 

Fig. 2. Demonstration of the manual ROI determination step in Scratch. The red circle and rectangle were used to select the breechface impression, the blue ellipse 
was used to select the bottom of the firing pin impression and the green rectangle was used to select the aperture shear striations (left). Note that all elements can be 
rotated if required and that the rectangle of the breechface impression was set to ‘background’. After ROI determination, noise and form components in the data were 
attenuated, yielding datasets similar to the false-color image shown on the right. The surface height is represented by colors, with the highest structures shown in 
yellow and the lowest structures shown in blue. To ensure a proper height-to-color mapping also in the presence of outliers, surface heights of more than two standard 
deviations above or below the average surface height are cut off and represented as yellow and blue respectively. 
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3.5. Interpretation of comparison results for individual marks 

Following the strategies described in the previous subsections, dis
tributions of known matching (KM) and known non-matching (KNM) 
scores were determined by comparing marks on test fires from the same 
firearm and different firearms respectively. For each pair of test fires, 
one AS, two BF, and two FP similarity scores were calculated. The 
reference similarity score distributions were subsequently modeled to 
interpret a comparison result quantitatively by estimating a score-based 
likelihood ratio (LR). 

3.5.1. Approaches for estimating a likelihood ratio 
In the context of this study, a score-based likelihood ratio is the ratio 

between the likelihood of obtaining the comparison score, given that the 
prosecutor hypothesis H1 is true (the samples were fired from the same 
firearm), and the likelihood of obtaining the comparison score, given 
that the defense hypothesis H2 is true (the samples were fired from 
different firearms): 

LR(s) =
p(s|H1)
p(s|H2)

Here, p(s|H1) means the probability of observing score (s) given H1. 
In this study, we compared two methods to estimate this measure of 
evidentiary strength. The methods require samples of two probability 
density or probability mass functions. The first one is a dataset of H1- 
scores, and the second one a dataset of H2-scores. H1-scores result 
from comparisons between marks that are known to have been made by 
the same firearm. These ‘Known Match’ (KM) scores correspond to the 
prosecutor hypothesis (H1). The H2-scores originate from comparisons 
between marks that are known to have been made by different firearms. 
These ‘Known Non-Match’ (KNM) scores correspond to the defense hy
pothesis (H2). 

The two studied methods differ in the statistical models that are used 
to describe the observed distribution samples. The first method uses 
non-parametric distribution models, based on Kernel Density Estimation 
(KDE) and the second method Bayesian statistics and parametric dis
tribution models, such as Gaussian, binomial, or beta-binomial distri
butions. The implementation details of these two methods are described 
in more detail in Sections 3.5.4 and 3.5.5 respectively. 

Next to this direct approach to estimate an LR via probability den
sities, also an indirect approach via ‘posterior odds’ might be used. In the 
indirect approach, the sets of KM and KNM similarity scores are used to 
predict the probability of a KM. Because there are only two possible 
mutually exclusive comparison categories, either KM or KNM, this also 
fixes the probability of a KNM. By dividing their ratio (also known as the 
posterior odds) with the prior odds (typically determined by the ratio p 
(H1)/p(H2) of the dataset sizes for KM and KNM), an estimate for the LR 
can be obtained. 

LR(s) =
p(H1|s)

1 − p(H1|s)
p(H2)
p(H1)

During preliminary studies, two regression models were used for the 
probability of a KM: logistic and isotonic regression. Compared to the 
direct ‘probability density’ models, these two indirect ‘posterior odds’ 
models performed similar or worse for all the criteria discussed in Sec
tion 3.5.3. Therefore, they were not used in further analyses. 

3.5.2. General LR-method choices 
Some of the LR-method choices that have been made are more 

general in nature and are applicable to both studied LR-methods. They 
are discussed first in this section. 

The LR-methods in this study are based on a ‘common source’ 
framework. This means that the prosecutors hypothesis states that the 
two cartridge cases that are compared were fired with the same firearm. 
The defense hypothesis states that the two cartridge cases were fired 

with two different firearms. This framework corresponds to the forensic 
scenario where the firearm that may have fired questioned cartridges 
found at one or more crime scenes is not available. In a ‘specific source’ 
framework, on the other hand, the prosecutor’s hypothesis states that a 
questioned cartridge case was fired by a particular firearm, and the 
defense hypothesis states that the cartridge case was not fired by that 
firearm. Both scenarios differ in the nature of the likelihoods in the LR 
and the respective reference score distributions. In a specific source 
scenario, the KM distribution could be based on a collection of test fires 
obtained from the firearm identified in the hypotheses, to accommodate 
differences observed in these distributions for different firearms of the 
same manufacturing model [3,8]. Capturing specific firearm charac
teristics is not possible for a common source scenario, where, instead, we 
model the KM distribution based on test fires from firearms that yield 
toolmark class characteristics similar to those observed on the compared 
cartridge cases. For both scenarios, it is important to match the char
acteristics of the test fire ammunition used to establish a distribution 
with that of the questioned cartridge case. See [38,39] for more back
ground and discussion on this and other frameworks. The choice to use a 
common source framework is based on practical arguments: although 
initially more data is needed to develop the LR-method, requiring a large 
collection of pieces of evidence fired with representative firearms and 
ammunitions, no additional data is needed when interpreting compar
ison results in practice. The specific source approach would require 
building a firearm specific reference database for each case, including 
various ammunition types, which is very time-consuming and therefore 
less feasible in practice. 

For the set of 200 firearms, a total of 19900 KNM firearm pairs can be 
identified. The set of comparison results for these pairs most likely 
contain some degree of dependency, as the same firearm is used in more 
than one comparison, which can lead to clustering. In this study, we used 
all available firearm pairs for the development of the LR-methods. For 
each KNM pair, multiple cartridge case comparisons can be performed, 
because two cartridges of the same ammunition type were fired for each 
firearm. To prevent introducing more dependency in the data, only one, 
randomly selected, similarity score was used for each of the firearm 
pairs. For each firearm and ammunition type, there was only one KM 
comparison available. 

Both the KM and KNM datasets are samples of much bigger pop
ulations, as it is practically unfeasible to include all firearms of a 
particular brand that are in usage worldwide or in a specific country. 
The datasets are based on a realistic subset of the Glock firearm popu
lation of the Netherlands however, as they were randomly selected from 
cases involving shooting incidences. In this study, the resulting model- 
uncertainty that is associated with the use of a subset of the whole 
population was quantified by an interval around the predicted best es
timate for the LR [40] (what is considered as the best estimate will be 
explained in the separate sections). 

We note that there is controversy on the issue of interval estimation 
for LRs. It has been argued that using confidence/credible intervals in LR 
values does not fit in the Bayesian probability framework. On the other 
hand, it has been argued that information as to the preciseness of LR 
results is relevant information for the trier of fact. Besides, intervals may 
be seen as useful when evaluating performance, as it happens in this 
manuscript. More general considerations and opinions on the use of 
intervals for LRs are described in [41]. In the current study we use LR 
systems that result in intervals. 

Before being used as input for an LR-method, the scores can be 
transformed, for example to obtain a domain from − ∞ to + ∞, to 
obtain a probability density function that better matches with a specific 
distribution, or to reduce the dimensionality. We used two trans
formations in this study. The cross-correlation scores were always 
transformed from a − 1 to +1 domain to a − ∞ to +∞ domain: first a 
transformation to a 0 to 1 probability domain takes place (add 1, divide 
by 2), followed by a log-odds transformation (log10(score/(1 − score) )). 
When using CMC scores in a non-parametric model, a dimensionality- 
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reduction transformation was used: the number of congruent matching 
cells for each comparison was divided by the number of available 
reference cells. 

When using an LR-method, it must furthermore be considered 
whether limitations on the attainable values of the LR should be 
enforced. For a score that has high sensitivity and specificity, the LR 
calculation requires evaluation of the tail of at least one of the score 
distributions where typically little experimental data is available. In 
many situations, the most extreme LR values supported by the available 
data are related to the sizes of the KM (smallest LR) and KNM (largest 
LR) datasets. Extrapolation beyond the experimental range of the 
respective score values should be done with caution. Different ap
proaches to limit the LR are described in literature; see for example [22]. 
In the current study, we used the Empirical Lower and Upper Bound 
(ELUB) approach to truncate LR-values, as described by [42]. 

3.5.3. Comparing LR-methods 
To compare different LR-methods, we considered two qualitative 

criteria and two more quantitative ones:  

• Qualitative 1: Explainability  
• Qualitative 2: Availability of a parametric distribution model  
• Quantitative 1: Validity of predicted LRs  
• Quantitative 2: Final-system characteristics 

The first qualitative aspect is related to how easy it is to explain the 
LR-method and how intuitive it is to understand. In this study, we 
considered the non-parametric distribution model implementation 
(Section 3.5.4) to be easier to explain than the parametric model 
implementation (Section 3.5.5). The kernel density estimations are a 
rather intuitive way of modeling the observed data since they directly 
follow the data. Parametric models need to have a ‘fit’ with the data 
which involves more study and explanations. Next to this, in general, we 
considered the direct ‘probability density’ approaches to be easier to 
explain than indirect ‘posterior odds’ approaches. 

The second qualitative aspect is related to the availability of 
commonly applied parametric statistical models. For the CMC-scores, 
the binomial (KNM) and beta-binomial (KM) models [8] are used. In 
this modeling approach, a comparison is viewed as a series of Bernoulli 
trials, each describing whether a reference cell is successful in becoming 
a CMC cell. The underlying assumptions are that the cell trials are in
dependent and that each reference cell has the same success probability, 
which differs for KM or KNM comparisons. For the beta-binomial dis
tribution, this assumption is relaxed in that the cell success probabilities 
are allowed to vary from comparison to comparison according to a beta 
distribution. This modification seeks to account for differences in mark 
reproducibility for different samples. For the cross-correlations scores, a 
one-dimensional Gaussian model was used, though its application to 
cross-correlation scores has not been studied as thoroughly as the 
modeling of CMC scores. 

The first quantitative aspect is related to the validity of the estimated 
LRs. To assess this validity, both the KM and KNM datasets were 
randomly split into three equal-sized subsets, to be used in a three-fold 
cross-validation scheme. Iteratively, one part is used to construct an LR- 
system, while the other parts are used to assess to what extent the pre
dicted LRs match with the known categories of KM or KNM. Each of 
these three subsets was used once as validation data, using the other 
remaining subsets as training data. The three subsets of predicted LRs 
were recombined into a single dataset, which had the same size as the 
original dataset. The predicted LRs in this recombined dataset were 
finally limited using the ELUB-method. 

As a first investigative check, a quantity called devPAV has been 
calculated, based on the predicted LRs [43]. This quantity aims to assess 
to what extent the predicted LR values disagree with the corresponding 
LRs based on observed relative frequencies of the KM and KNM LR-data. 
Since this is an iterative procedure (we calculated LRs for a set of LRs), 

ideally an identity relation should be observed. A systematic deviation 
from identity indicates non-valid LRs. devPAV measures how much the 
predicted LRs deviate from the newly calculated LRs, on average. This 
deviation is measured on a 10 logarithmic scale. As a rule of thumb, we 
used a devPAV value above 0.5 as criterion for ‘the disagreement needs 
further investigation’, which corresponds to an average absolute devi
ation of a factor of 3 (100.5≈ 3) on the LR-scale. Next, the properties of 
the LR system were visualized using histograms of the predicted KM and 
KNM LRs as well as using an Empirical Cross Entropy (ECE) plot [44]. 
The ECE is a commonly used cost-function that mainly penalizes 
misleading evidence (KM data for which an LR below 1 is predicted, and 
KNM data for which an LR above 1 is predicted). Generally, a lower ECE 
is better. The ECE of an LR system should always be below the one of a 
‘neutral’ system (a ‘neutral’ system always returns the uninformative 
result LR = 1), otherwise it would be better not to use the LR system at 
all. 

The second quantitative aspect is related to the characterization of 
the final LR-system. This final LR-system used all available data as 
training data; no validation data was used. Because a larger training 
dataset was used compared to cross-validation, it was assumed that the 
validity of the final LR-system is at least as good as the cross-validation 
results. The best estimate for the LR was calculated for all possible score 
values, yielding a score-to-LR transformation function. The sampling 
uncertainty associated with the predicted LRs was quantified using an 
uncertainty interval. A 90% interval was calculated by generating dis
tributions of the predicted LRs and using the 0.05 and 0.95 percentiles. 
The LR-distributions were obtained by developing LR-systems that were 
based on different samples of either the model parameter(s) or the score 
data, see Sections 3.5.4 and 3.5.5 for more details. The ELUB-method 
was applied to each of these samples separately, before the percentiles 
were calculated. The resulting interval is visualized by plotting the LR- 
percentiles as a function of the best estimate for the LR that belongs to 
the corresponding score. 

3.5.4. Method 1 details: Non-parametric models and bootstrap samples 
For the non-parametric distribution modeling approach, a Kernel 

Density Estimation (KDE) was used [45] based on Gaussian-shaped 
kernels. KDE requires specifications of the kernel bandwidth, which 
corresponds to the standard deviation of the Gaussian. In our experi
ments, the ‘optimal’ bandwidth was different for each dataset. Usually, 
it is a trade-off between capturing the essential properties of the distri
bution of the dataset, and overfitting of this distribution. Unfortunately, 
there is no single method to determine the optimal bandwidth for all 
possible datasets. 

In this study, a two-step approach was used to select the bandwidth 
for each of the ten evaluated distributions, corresponding to the five 
different scores for both the KM and KNM datasets. First, a bandwidth 
was determined for all ten datasets individually, based on the number of 
peaks in the distribution of the dataset. The number of expected peaks 
was chosen visually using a histogram of the dataset. The smallest 
bandwidth that yielded that number of peaks in the resulting probability 
density function was used as bandwidth. Only one significant digit was 
used when determining this bandwidth, except between 1 and 2, in 
which case two significant digits were used. 

Next, a single multiplication factor was chosen, which is applied to 
the bandwidths of all ten datasets. When choosing this factor, the two 
quantitative comparison aspects of LR-systems (as described in Section 
3.5.3) are taken into account, in addition to the matches between the 
histograms of the datasets and their probability density functions. In this 
study, a multiplication factor of 1.5 was chosen. The resulting band
widths were used for the original datasets, and also for the dataset splits 
that were used during cross-validation; they are listed in the Appendix. 

To obtain a sampling uncertainty interval for the predicted LRs, 
bootstrapping was used. For each bootstrap sample, new sets of both KM 
and KNM scores were randomly drawn with replacement from the 
original KM and KNM datasets. A total number of 400 bootstrap samples 
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was used. The kernel bandwidth chosen for the original dataset was used 
for all bootstrap samples. Each of these samples resulted in slightly 
different probability density functions for both KM and KNM data, and 
therefore in slightly different LRs at a specific score. The LR calculated 
based on the original data sets was used as the best estimate for the LR. 

3.5.5. Method 2 details: Parametric models and MCMC-simulations 
For parametric score distribution models, there are different ways to 

calculate an LR that includes an uncertainty interval. In this study, we 
used the so-called ‘Posterior-LR’ approach [46,47]. It is based on Mar
kov Chain Monte Carlo (MCMC) simulations to obtain samples from the 
posterior distributions of the score distribution model parameters. The 
KM and KNM score probabilities, obtained when evaluating the models 
at a specific score value, are slightly different for each sample of these 
distribution model parameters. When dividing the probabilities calcu
lated with the KM model by those of the KNM model, a distribution of 
LRs is obtained for that specific score value. The median of this distri
bution was used as the best estimate for the LR at that score. 

The MCMC-simulations were performed in Stan [48], using the 
default ‘no-U-turn sampler’ (NUTS) algorithm. After a warm-up or 
burn-in period of 10,000 samples, 100 samples were drawn from four 
chains, resulting in a total of 400 samples. Experiments conducted using 
a higher number of samples after burn-in did not yield significant 
changes. 

3.6. Combining comparison results of different toolmark types 

In the previous sections an approach was proposed for independent 
interpretation of comparison results, obtained for each type of toolmark. 
In casework however, it is desirable to additionally provide a combined 
interpretation result for all evaluated toolmarks for a given cartridge 
case. LR-based systems can do that by multiplying the LR results ob
tained from the comparisons of different toolmarks, provided that the 
comparison results are independent (given the hypothesis) [29]. The 
three toolmark types on the primer considered in this work are gener
ated by different parts of the firearm. The BF toolmark by the slide’s 
breechface, the FP mark by the firing pin and the AS mark by the edge of 
the firing pin aperture. They are therefore in general considered inde
pendent by forensic toolmark examiners in practice. 

To study quantitatively whether the similarity scores (CCFmax for 
striation marks and ACCFmax as well as CMC for impression marks) are 
conditionally (in)dependent of each other, score combinations were 
analyzed in three different manners, qualitatively using scatterplots, and 
quantitatively using the distance correlation [49] and the 
Bergsma-Dassios sign covariance test of independence [50]. The dis
tance correlation falls within a range of 0 and 1, with 0 meaning that 
there is no dependency. The Bergsma-Dassios tests of independence 
were done using the R-implementation in the TauStar-package [51], 
with p = .05 as significance level to reject the null hypothesis (two 
similarity scores are independent). Please note that we limited the 
analysis to testing for independence to between the continuous variables 
AS CCFmax, BF ACCFmax and FP ACCFmax. The CMC score includes the 
local ACCFmax for each patch that is compared as a crucial part of the 
decision whether a cell is congruent or not, and we therefore consider 
testing for independence between the FP ACCFmax and BF ACCFmax 
scores sufficient. 

4. Results and discussion 

4.1. Comparison results interpretation for separate marks 

The results using both the non-parametric (KDE, M1) and parametric 
(MCMC, M2) distribution models are shown and compared separately, 
for each of the five combinations of toolmark and score type. For the first 
combination of firing pin impression and ACCFmax score, six figures are 
included in the main text: two figures with the observed transformed 

score distribution and the respective estimated probability density 
function, two figures with LR cross-validation results, and two figures 
with details of the final LR system characteristics. A single figure with 
the distributions of the observed untransformed scores of both the KM 
and KNM datasets is included in the Appendix. For the other four 
combinations, only the most relevant figures are included in the main 
text; the other figures are included in the Appendix. 

For the two-dimensional parametric models of the CMC score, a 
different approach is used to present the score distributions. The com
bined overview of both datasets is given using a contour plot, based on 
grouped numbers of CMCs. The comparisons between the observed 
distributions and their respective distribution models are given using 
histograms, based on the largest group of grouped CMCs. 

For these two-dimensional models, the characterization of the final 
system is shown as a function of the first score variable (number of 
matching cells) for both the minimum and maximum of the second score 
variable (number of reference cells) that was observed in the available 
dataset. 

4.1.1. Firing pin impression – ACCFmax 
Normalized histograms of the untransformed scores are shown in the 

Appendix (Fig. 14). Fig. 3 shows a comparison between the probability 
density functions of the two modeling methods with a histogram of the 
transformed scores, for both the KM and KNM datasets. For the KNM 
data, both methods yield comparable probability densities that visually 
correspond well with the histogram. For the KM data, the difference 
between the two methods is larger, but both still correspond well with 
the histogram. 

Fig. 4 shows the results of the cross-validation calculations. The left 
graph shows the relative frequencies of the predicted log10-LRs (LLRs) 
for both the KNM and KM datasets, for both methods. For all datasets, 
the majority of the predicted LLRs are at the most extreme values, 
defined by the ELUBs. The results are very comparable for both methods. 
Comparing the Empirical Cross Entropy (ECE) plots of the two methods, 
the right graph, reveals that they are very similar as well, and both 
methods are clearly better than a neutral system (refer to Section 3.5.3). 
The calculated devPAV values are 0.21 and 0.45. 

Fig. 5 shows comparisons between the characterization of the two 
final LR-systems. The left graph shows the score-to-LLR transformation 
functions. M2 reaches the highest LLR values at relatively lower scores. 
In addition, the lower bound on the LLR is slightly lower for M2. Fig. 5 
(right) shows a comparison between the uncertainty intervals around 
the best estimates for the LLRs. At low LLRs, the two methods are 
comparable. At LLRs above zero, the interval of M2 is smaller than that 
of M1 due to higher 95%-percentile values of M1. 

In summary, the cross-validation results of the two methods are 
comparable, while the final-system characteristics of M2 are a bit better 
than those of M1. In addition, the explainability of M1 is better than that 
of M2. Overall, since we prefer a well explainable model over a bit better 
performance, we chose to use M1 for this dataset, although M2 is also 
applicable. 

4.1.2. Firing pin impression – CMC 
Three figures related to the score distributions are included in the 

Appendix (Fig. 15 to Fig. 17); they show distributions combined for KM 
and KNM, and comparisons between the observed and modeled distri
butions for KM and KNM and for M1 and M2. The relative frequencies of 
the predicted LLRs are comparable for the two methods, as shown in the 
Appendix (Fig. 18). Fig. 6 shows that the Empirical Cross Entropy of 
both methods are very low compared to a neutral system (LR = 1, see 
Section 3.5.3), with M1 performing better than M2. The calculated 
devPAV values are 0.86 and 0.92, both above 0.5. These relatively high 
values are mainly explained by the limited amount of KM data in the 
area where the KM and KNM distributions overlap and a somewhat poor 
model fit for either the KM or KNM distributions for CMCs between 
0 and 4. Overall, we consider the predictive performance of both 
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methods sufficient. The performance could be further improved by 
acquiring more data in the overlap area and refitting the models. 

Fig. 7 (left) shows the characteristics of the final systems, where the 
lower bound on the LLR is slightly lower for M2, but the upper bounds 
are similar. M1 seems to be more sensitive to the number of reference 
cells (N) than M2. At the minimum value of N (24), the difference be
tween the methods is a shift of the transformation function. However, at 
the maximum value of N (48), M2 reaches the most extreme LLR values 
at less extreme scores. 

The plot at the right of Fig. 7 shows that the two methods behave 
comparable at LLRs below zero, and that the interval of M2 is smaller 
than that of M1 above an LLR of zero, mainly due to a higher 95th- 
percentile. For M2, the interval appears to depend to a limited extent 
on the number of reference cells (N). 

Summarizing, the cross-validation results of M1 are slightly better 
than those of M2, while the final-system characteristics for M2 are better 
than that for M1. The explainability of M1 is better than that of M2. 
However, suitable statistical models are available for CMC scores, which 
favors M2. Taking all aspects into consideration, we recommend using 
M2 for this dataset, but M1 is also applicable. 

4.1.3. Breechface impression – ACCFmax 
The probability densities of both untransformed score distributions, 

of the transformed KM data, and the ECE-plot are included in the Ap
pendix (Fig. 19, Fig. 20 and Fig. 21); they show comparable results for 
the two methods. The calculated devPAV values are 0.25 and 0.30. On 
the other hand, the methods show relevant differences for the KNM data.  
Fig. 8 shows the probability density functions of the KNM data. Although 
there is a visible difference in the height of the modus of the distribu
tions, the most significant difference is located at transformed scores 
between approximately 0.3 and 0.5. The M1 distribution reflects the 
presence of a few data points in this area. The Gaussian model of M2 is 
incapable of modeling two distribution peaks, and instead widens the 
distribution function. 

Fig. 9 shows the relative frequencies of the predicted LLRs for the KM 
and KNM data. Although most of the data points are located at the 
ELUBs, a significant portion are not, especially for the KM data. M2 
correctly predicts most KNM data points at the lower bound, but it also 
incorrectly predicts more KM data points at this lower bound than M1 
does. 

The characteristics of the final systems are shown in Fig. 10. Most 

Fig. 3. Histogram of the KNM (left) and KM (right) transformed ACCFmax scores of the firing pin impression marks and the estimated probability densities for the 
non-parametric (M1; red) and parametric (M2; blue) models. 

Fig. 4. Relative frequencies of the predicted LLRs for both the KNM and KM datasets, using the non-parametric (M1; red) and parametric (M2; blue) models, for the 
ACCFmax scores of the firing pin impression marks (left). Empirical Cross Entropy (ECE) of the non-parametric (M1; red) and parametric (M2; blue) models, for the 
ACCFmax scores of the firing pin impression marks (right). 
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striking is the behavior of M1 between a score of 0.4 and 0.55: it in
creases up to its upper bound, decreases, and increases again to its upper 
bound. This effect is related to a small number of KNM data points with 
relatively high scores. The chosen parametric model for M2 is not able to 
capture this behavior. More experiments would be required to evaluate 
whether the rare high-score events occur in a wider score domain, which 
would smoothen the M1 LLR curve. The upper bounds of the two 
methods are comparable, while M1 has a smaller lower bound. M2 
reaches its most extreme LLR values at less extreme scores. The uncer
tainty intervals of both methods are very comparable, except for the very 
high LLR values where M1 shows the effects of the rare KNM data points 
with high scores. 

Summarizing, the cross-validation results of the two methods are 
comparable, while the final-system behavior for M1 is slightly better 
than that for M2. In addition, the explainability of M1 is better than that 
of M2. Overall, we choose to use M1 for this dataset, although M2 is 
applicable as well. 

4.1.4. Breech face impression – CMC 
Qualitatively, the results for CMC scores of this impression toolmark 

are comparable to those of the FPs mark (see Section 4.1.2). Fig. 25 and 
Fig. 26 (in the Appendix) show that the cross-validation results of the 
two models are very comparable. The calculated devPAV values are 0.30 
and 0.21. Results for the characteristics of the final system shown in  
Fig. 11 are similar to those in Fig. 7 of the firing pin impression marks in 
that M2 is behaving better than M1. Overall, because of the better 
explainability, we choose to use M2 for this dataset, although M1 is also 
applicable. 

Also included in the Appendix (Fig. 22 to Fig. 24) are the three fig
ures related to the score distributions. They show distributions com
bined for KM and KNM, and comparisons between the observed and 
modeled distributions for KM and KNM and for M1 and M2. 

4.1.5. Aperture shear – CCFmax 
The probability density functions (Fig. 28 and Fig. 29, in the Ap

pendix) and the cross-validation results (Fig. 30 and Fig. 31, also in the 
Appendix) are very comparable for M1 and M2, with M2 performing 
slightly better during cross-validation. The calculated devPAV values 
are 0.26 and 0.56. The latter is slightly higher than 0.5, but we consider 
the predictive performance of both methods sufficient. Also included in 
the Appendix are the normalized histograms of the untransformed 
scores of both the KNM and KM datasets (Fig. 27). 

Fig. 12 shows the final-system characteristics of the two methods. M2 
has a smaller lower bound, while M1 has a higher upper bound. M2 
reaches its most extreme LLR values at relatively lower scores. At low 
LLRs, the uncertainty intervals of the two methods behave comparable. 
However, at LLRs above two, the interval of M1 becomes larger than that 
of M2. 

Summarizing, the cross-validation results of the two methods are 
comparable, while the final-system characteristics for M2 are a bit better 
than that for M1. In addition, the explainability of M1 is better than that 
of M2. Due to the better explainability, we use M1 for this dataset, 
although M2 would be applicable as well. 

4.2. Combining comparison results of different toolmark types 

For qualitative assessment of the dependency between marks, scat
terplots are presented in Fig. 13. Quantitative results are given in  
Table 1. No obvious dependencies could be found between the similarity 
scores of the different mark types, either for KM or KNM comparisons. 
Almost all distance correlations are close to 0 and for all combinations to 

Fig. 5. Score-to-LLR transformation functions of the non-parametric (M1) and parametric (M2) models, for the ACCFmax scores of the firing pin impression marks 
(left). Uncertainty intervals (90%; P1 = 5%, P2 = 50%, P3 = 95%) around the best estimates for the LLRs of the non-parametric (M1) and parametric (M2) models, 
for the ACCFmax scores of the firing pin impression marks (right). 

Fig. 6. The Empirical Cross Entropy (ECE) of the non-parametric (M1; red) and 
parametric (M2; blue) models, for the CMC-scores of the firing pin impres
sion marks. 
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which the Bergsma-Dassios test was applied, the null hypothesis of 
similarity score independence could not be rejected. Exceptions are the 
combination of ACCFmax and CMC, based on the same mark, in the KM 
case. Both for BF (Distance corr.: 0.56) and FP (Distance corr.: 0.62) 
there is a strong dependence between the similarity scores, but as it 
concerns the exact same mark, this is to be expected. Consequently, LRs 
calculated using these two similarity scores should not be multiplied. 
Rather one of the two should be chosen. Alternatively, a multi- 
dimensional or combined similarity score, combining CMC and 
ACCFmax scores, may yield improved separation between KM and KNM. 

A scenario in which the distance correlation is slightly elevated is for 
the combination KM BF CMC and FP CMC (Distance corr.: 0.24), 
although no obvious dependency can be seen in the scatter plot (Fig. 13). 
Note that this elevated dependency does not show for the KM BF 
ACCFmax and FP ACCFmax pair (Distance corr.: 0.15). Although all car
tridges were of the same brand and had the same primer material, 
properties like primer material hardness might vary to some extent [52], 

which in turn may influence how well marks are transferred from the 
firearm to the primer, particularly for marks of the same category, 
impression or striation like BF and FP. That is not necessarily the case for 
different mark categories. 

In conclusion, none of the results point towards any (strong) de
pendency between the similarity scores used for calculating the LRs for 
the different marks. This does not irrefutably prove independence, but 
provides enough support for the validity of multiplying LRs of different 
mark types in practice. 

Consequently, we consider it reasonable for our studied dataset to 
calculate a combined LR for all studied marks on the primer by multi
plying the individual LRs of the different mark types. Various examples 
of individual as well as combined LRs for both, known matching as well 
as known non-matching exhibits, are presented in Table 2. Note that the 
calculated LR intervals cannot be multiplied in a straightforward 
manner. Future research will have to be conducted to find the optimum 
strategy for determination of a combined LR including uncertainty 
intervals. 

Fig. 7. Score-to-LLR transformation functions of the non-parametric (M1; red) and parametric (M2; blue) models, for the CMC-scores of the firing pin impression 
marks (left). Uncertainty intervals (90%; P1 = 5%, P2 = 50%, P3 = 95%) around the best estimates for the LLRs of the non-parametric (M1) and parametric (M2) 
models, for the CMC-scores of the firing pin impression marks (right). For the two-dimensional parametric model, intervals for the minimum (N = 24) and maximum 
(N = 48) total number of cells are shown. 

Fig. 8. Histogram of the original KNM data and the resulting probability 
densities of the non-parametric (M1; red) and parametric (M2; blue) models, for 
the transformed ACCFmax scores of the breechface impression marks. 

Fig. 9. Relative frequencies of the predicted LLRs for both the KNM and KM 
datasets, using the non-parametric (M1; red) and parametric (M2; blue) models, 
for the ACCFmax scores of the breechface impression marks. 
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If dependencies would be present, combining LRs of different mark 
comparisons may still be possible by including the dependencies be
tween scores in the statistical models. LRs would have to be estimated 
using procedures that sample the multivariate probability distribution of 
the various scores, similar to the case when more than one score is 
considered for each mark. 

Note that material properties of the primer can influence all inter
pretation results. If the primer is very hard, especially impression marks 
may not transfer very well, causing the various mark comparisons to 
yield relatively lower similarity scores. This in turn will lead to LRs of 
the individual mark comparisons to be relatively lower as well. On the 
other hand, if the primer material is very soft, marks typically transfer 
better, leading to higher similarity scores and LRs. Thus, depending on 
material properties, all LRs can be relatively lower or higher, but can still 
be considered conditionally independent with respect to the firearm part 
creating the mark. In the current study we set up the reference database 
with samples of the same ammunition brand that have similar primer 
material properties. However, if in the future reference databases 

including samples of various ammunition brands, and thus primer ma
terial properties, should be combined, e.g. to obtain a larger database, 
LR multiplication might not be possible as a result of the primer material 
dependency of the various scores. Further research is required to study 
the best approach under such circumstances. 

4.3. Choosing representative background population samples 

The score-based LRs in this study are calculated using population 
samples of known matching and known non-matching comparison 
scores. The population from which the cartridge case samples are drawn 
is assumed to be representative of the case based on the forensic infor
mation available to the examiner. There are two major criteria that 
affect this determination. The first is the comparison scenario: same 
source vs specific source. Significant differences have been observed in 
the KM score distribution of firings obtained from similar firearms, even 
from (consecutively manufactured) firearms of the same manufacturing 
model [3,8]. Thus, the KM distribution for a specific source scenario may 

Fig. 10. Score-to-LLR transformation functions of the non-parametric (M1; red) and parametric (M2; blue) models, for the ACCFmax-scores of the breechface 
impression marks (left). Uncertainty intervals (90%; P1 = 5%, P2 = 50%, P3 = 95%) around the best estimates for the LLRs of the non-parametric (M1) and 
parametric (M2) models, for the ACCFmax scores of the breechface impression marks (right). 

Fig. 11. Score-to-LLR transformation functions of the non-parametric (M1; red) and parametric (M2; blue) models, for the CMC-scores of the breechface impression 
marks (left). Uncertainty intervals (90%; P1 = 5%, P2 = 50%, P3 = 95%) around the best estimates for the LLRs of the non-parametric (M1) and parametric (M2) 
models, for the CMC-scores of the breechface impression marks (right). For the two-dimensional parametric model, intervals for the minimum (N = 22) and 
maximum (N = 49) number of reference cells are shown. 
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have to be based on test fires obtained from the case firearm. For a 
common source scenario, the firearm is not available, and our only 
choice is to base the KM distribution on firearms that yield class char
acteristics similar to those observed on the questioned cartridge cases. 
Similarly, for both scenarios, one could argue that the KNM distributions 
should be based on comparisons that involve the questioned cartridge 
case(s). This could be achieved by (automatically) comparing the 
questioned cartridge case with cartridge cases sampled from a repre
sentative population. On the other hand, preliminary results obtained at 
NIST and NFI seem to indicate that KNM distributions are less sensitive 
to variations in firearms or ammunition (results in preparation for 
publication). The second aspect concerns the influence factors, and their 
values, which must be considered in selecting the representative popu
lation. All the LRs in this study were determined with a database of 
samples that have the same characteristics as the samples that are 
compared. They were all from the same firearms manufacturer and the 
ammunition brand was identical as well. In casework, this may not be 
feasible. Reference databases should therefore be set up with different 
firearm and ammunition brands with varying properties like primer 
material (e.g. nickel, brass and steel). Research is required to evaluate 
the extent to which these properties may vary from the case scenario and 
the respective effect on LRs. Currently, we consider a sampled popula
tion representative for the comparison at hand, if influence factors such 
as firearm manufacturing method/brand and ammunition brand are 
either identical to the considered case, or as long as statistical data on 
the expected variation of the LR, as a result of using samples from a 
wider population, is available. 

5. Summary and conclusion 

In this study we compared the performance of several common 
source LR systems for automated interpretation of score-based com
parison results of firearm toolmarks on cartridge case primers. Perfor
mance was evaluated using four qualitative and quantitative system 
comparison criteria known from the literature. Combinations of various 
toolmark types and similarity scores were studied, leading to the 
following statistical model recommendations: Non-parametric Kernel 
Density Estimation models for the correlation metrics CCFmax (aperture 
shear striation mark) and ACCFmax (firing pin and breechface impression 
toolmarks) and parametric models for the CMC metric (firing pin and 
breechface impression marks). The parametric models for CMC are a 
beta-binomial model for KM and a binomial model for KNM. 

The proposed LR-method was applied to and evaluated for the 
combination Glock firearms and Nickel primer ammunition (Fiocchi). 
The system can thus be employed in casework, given that our framework 
is acceptable for the judicial system of the country in which it is used. 
Besides the specific combination of firearm and ammunition evaluated 
in this work, we expect that the framework is generic enough to be 
applied to other firearm/ammunition combinations as well, given that 
model parameters are optimized with that particular combination. 

It was observed that most combinations for different toolmark types 
revealed no dependency between similarity scores, suggesting that LRs 
for separate toolmark types can reasonably be multiplied to yield an 
interpretation result for all considered toolmark types on a primer. A 
weak dependency was found for the KM CMC results of the breechface 
and firing pin impressions that requires more research. 

In combination with automated toolmark comparison methods for 
all relevant toolmark types published previously, the presented inter
pretation framework provides an objective evaluation of the strength of 
the evidence in casework. 

Disclaimer 

Certain commercial equipment or materials are identified in this 
paper in order to specify the experimental procedure adequately. Such 
identification is not intended to imply recommendation or endorsement 
by the NFI, NIST, or FBI, nor is it intended to imply that the materials or 
equipment identified are necessarily the best available for the purpose. 

CRediT authorship contribution statement 

Martin Baiker-Sørensen: Conceptualization, Methodology, Soft
ware, Validation, Formal analysis, Investigation, Resources, Data 
Curation, Writing – original draft, Writing – review & editing, Visuali
zation, Supervision, Project administration. Ivo Alberink: Methodol
ogy, Software, Validation, Formal analysis, Writing – original draft, 
Writing – review & editing, Visualization. Laura B. Granell: Investi
gation, Data Curation, Writing – review & editing. Leen van der Ham: 
Methodology, Software, Validation, Formal analysis, Writing – original 
draft, Writing – review & editing, Visualization. Erwin J.A.T. Mattijs
sen: Conceptualization, Methodology, Investigation, Resources, Data 
curation, Writing – review & editing, Supervision. Erich D. Smith: 
Conceptualization, Resources, Writing – review & editing. Johannes 
Soons: Conceptualization, Methodology, Investigation, Writing – 

Fig. 12. Score-to-LLR transformation functions of the non-parametric (M1; red) and parametric (M2; blue) models, for the CCFmax-scores of the aperture shear marks 
(left). Uncertainty intervals (90%; P1 = 5%, P2 = 50%, P3 = 95%) around the best estimates for the LLRs of the non-parametric (M1) and parametric (M2) models, 
for the CCFmax-scores of the aperture shear marks (right). 
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Fig. 13. Scatterplots for qualitative assessment of the similarity score distributions for various mark type combinations. For categorical vs. categorical score scat
terplots (BF CMC vs. FP CMC), the size and color of the markers indicates the number of scores. Large markers with bright red color indicate a large number of scores, 
small markers with dark red color indicate a small number of scores at a given location. 
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Appendix 

KDE bandwidths  

Table 3 
Selected KDE bandwidths for the KM and KNM datasets of all five toolmark types and score type 
combinations.  

Mark type Score type KDE bandwidth 

KM KNM 

Firing pin impression ACCFmax  0.14  0.021 
Firing pin impression CMC  0.09  0.020 
Breechface impression ACCFmax  0.17  0.027 
Breechface impression CMC  0.14  0.017 
Aperture shear CCFmax  0.23  0.05  

Table 1 
Distance correlations between similarity scores of toolmarks on the same primer (CCFmax, ACCFmax, CMC) as well as similarity score independence test results (p = . 05 
significance level).    

BF FP 

ACCF CMC ACCF CMC 

KM AS CCF 
(n = 170) 

Distance correlation 0.09 0.08 0.12 0.11 
Independence test (p-value) 0.94 - 0.78 - 

BF ACCF 
(n = 191) 

Distance correlation - 0.56 0.13 0.15 
Independence test (p-value) - - 0.41 - 

CMC 
(n = 191) 

Distance correlation - - 0.16 0.24 

FP ACCF 
(n = 191) 

Distance correlation - - - 0.62 

KNM AS CCF 
(n = 6130) 

Distance correlation 0.02 0.03 0.03 0.02 
Independence test (p-value) 0.23 - 0.11 - 

BF ACCF 
(n = 820) 

Distance correlation - 0.13 0.07 0.06 
Independence test (p-value) - - 0.39 - 

CMC 
(n = 820) 

Distance correlation - - 0.08 0.09 

FP ACCF 
(n = 820) 

Distance correlation - - - 0.06  

Table 2 
Examples of individual and combined LLRs for three known matching (KM 1–3) and three known non-matching (KNM 1–3) exhibits. The combined LLR is given for a 
combination of ACCFmax LLRs (BF and FP) and the CCFmax LLR (AS) as well as for a combination of CMC LLRs (BF and FP) and the CCFmax LLR (AS). The combined LLRs 
are presented without uncertainty intervals, as more research is required to determine the optimum intervals for a combined LLR. Note that the set of KNM reference 
scores used in this example is larger than the one used during the evaluation. While for the evaluation only one measurement per firearm was included in the 
determination of KNM scores, for this example both measurements were included.   

Breech face 
KM: n = 188 
KNM: n = 56918 

Firing pin 
KM: n = 187 
KNM: n = 42001 

Aperture shear 
KM: n = 196 
KNM: n = 76440 

Combined LLR 

ACCF LLR 
(5%, 95%) 

CMC LLR 
(5%, 95%) 

ACCF LLR 
(5%, 95%) 

CMC LLR 
(5%, 95%) 

CCF LLR 
(5%, 95%) 

ACCF 
ACCF 
CCF 

CMC 
CMC 
CCF 

KM 1  0.66 3.78 
(3.47,3.91) 

14/24 4.65 
(4.65,4.65)  

0.91 4.50 
(4.47,4.54) 

28/36 4.53 
(4.53,4.53)  

0.96 4.78 
(4.75,4.81)  

13.06  13.96 

KM 2  0.57 3.78 
(3.47,3.91) 

8/32 4.65 
(4.65,4.65)  

0.97 4.50 
(4.47,4.54) 

32/42 4.53 
(4.53,4.53)  

0.89 4.78 
(4.75,4.81)  

13.06  13.96 

KM 3  0.56 3.78 
(3.47,3.91) 

20/24 4.65 
(4.65,4.65)  

0.93 4.50 
(4.47,4.54) 

35/36 4.53 
(4.53,4.53)  

0.95 4.78 
(4.75,4.81)  

13.06  13.96 

KNM 1  0.22 -0.10 
(− 0.13,− 0.08) 

0/24 -0.86 
(− 0.94,− 0.84)  

0.27 -1.55 
(− 1.90,− 1.33) 

0/36 -1.34 
(− 1.38,− 1.32)  

0.22 -1.91 
(− 2.01,− 1.82)  

-3.56  -4.11 

KNM 2  0.12 -0.90 
(− 0.94,− 0.81) 

0/24 -0.86 
(− 0.94,− 0.84)  

0.27 -1.55 
(− 1.92,− 1.33) 

2/36 -1.14 
(− 1.36,− 0.97)  

0.33 -1.91 
(− 2.01,− 1.77)  

-4.36  -3.91 

KNM 3  0.16 -0.71 (− 0.74,− 0.68) 2/32 -0.21 
(− 0.30,− 0.13)  

0.26 -1.55 
(− 1.96,− 1.33) 

0/42 -1.34 
(− 1.38,− 1.32)  

0.45 -1.39 
(− 1.55,− 1.27)  

-3.65  -2.94  
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Firing pin impression – ACCFmax

Fig. 14. Normalized histograms of the untransformed scores for both the KNM (blue) and KM (red) datasets of the ACCFmax of the firing pin impression marks.  

Firing pin impression – CMC

Fig. 15. Contour plot of the observed distributions of the grouped KM (solid lines) and KNM (dashed lines) CMC data of the firing pin impression marks. Group sizes 
of 5 were used. 
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Fig. 16. Histogram of the KNM (left) and KM (right) transformed CMC scores of the firing pin impression marks and the estimated probability densities for the non- 
parametric (M1) model.

Fig. 17. Histogram of the grouped numbers of KNM (left) and KM (right) CMCs of the firing pin impression marks and the estimated probability densities for the 
parametric (M2) model.

Fig. 18. Relative frequencies of the predicted LLRs for both the KNM and KM datasets, using the non-parametric (M1; red) and parametric (M2; blue) models, for the 
CMC-scores of the firing pin impression marks. Only towards the lowest LLRs of the KNM data there is a difference: M2 predicts almost all data at the LLR extreme, 
while M1 also predicts some data points in the adjacent bins. 

Only towards the lowest LLRs of the KNM data there is a difference: M2 predicts almost all data at the LLR extreme, while M1 also predicts some 
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data points in the adjacent bins. 
Breechface impression – ACCFmax

Fig. 19. Normalized histograms of the untransformed scores for both the KNM (blue) and KM (red) datasets of the untransformed ACCFmax- scores of the breechface 
impression marks.

Fig. 20. Histogram of the original KM data and the resulting probability densities of the non-parametric (M1; red) and parametric (M2; blue) models, for the 
transformed ACCFmax- scores of the breechface impression marks. 
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Fig. 21. Empirical Cross Entropy (ECE) of the non-parametric (M1; red) and parametric (M2; blue) models, for the ACCFmax- scores of the breechface impres
sion marks. 

Breechface impression – CMC

Fig. 22. Contour plot of the observed distributions of the grouped KM (solid lines) and KNM (dashed lines) CMC data of the breechface impression marks. Group 
sizes of 5 were used. 
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Fig. 23. Histogram of the KNM (left) and KM (right) transformed CMC scores of the breechface impression marks and the estimated probability densities for the non- 
parametric (M1) model.

Fig. 24. Histogram of the grouped numbers of KNM (left) and KM (right) CMCs of the breechface impression marks and the estimated probability densities for the 
parametric (M2) model.

Fig. 25. Relative frequencies of the predicted LLRs for both the KNM and KM datasets, using the non-parametric (M1; red) and parametric (M2; blue) models, for the 
CMC-scores of the breechface impression marks. 
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Fig. 26. Empirical Cross Entropy (ECE) of the non-parametric (M1; red) and parametric (M2; blue) models, for the CMC-scores of the breechface impression marks.  

Aperture shear – CCFmax

Fig. 27. Normalized histograms of the untransformed scores for both the KNM (blue) and KM (red) datasets of the CCFmax- scores of the aperture shear marks.  

M. Baiker-Sørensen et al.                                                                                                                                                                                                                      



Forensic Science International 353 (2023) 111858

20

Fig. 28. Histogram of the original KNM data and the resulting probability densities of the non-parametric (M1; red) and parametric (M2; blue) models, for the 
transformed CCFmax- scores of the aperture shear marks.

Fig. 29. Histogram of the original KM data and the resulting probability densities of the non-parametric (M1; red) and parametric (M2; blue) models, for the 
transformed CCFmax- scores of the aperture shear marks.

Fig. 30. Relative frequencies of the predicted LLRs for both the KNM and KM datasets, using the non-parametric (M1; red) and parametric (M2; blue) models, for the 
CCFmax- scores of the aperture shear marks. 

M. Baiker-Sørensen et al.                                                                                                                                                                                                                      



Forensic Science International 353 (2023) 111858

21

Fig. 31. Empirical Cross Entropy (ECE) of the non-parametric (M1; red) and parametric (M2; blue) models, for the CCFmax- scores of the aperture shear marks.  
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