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Abstract. The Rainbow signature scheme is the only multivariate scheme
listed as a finalist in round 3 of the NIST post-quantum standardization
process. A few recent attacks, including the intersection attack, rect-
angular MinRank attacks, and the “simple attack,” have changed this
landscape; leaving questions about the viability of this scheme for future
application.
The purpose of this paper is to analyze the possibility of repairing Rain-
bow by adding an internal perturbation modifier and to compare its per-
formance with that of UOV at the same security level. While the costly
internal perturbation modifier was originally designed with encryption
in mind, the use of schemes with performance characteristics similar to
Rainbow is most interesting for applications in which short signatures or
fast verification is a necessity, while signing can be done offline. We find
that Rainbow can be made secure while achieving smaller keys, shorter
signatures and faster verification times than UOV, but this advantage
comes at significant cost in terms of signing time.
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1 Introduction

As the world marches toward a future of widespread quantum computing, the
need for secure post-quantum cryptosystems is imperative. One branch of post-
quantum cryptography is multivariate cryptography. Multivariate cryptosystems
are based on the MQ problem, which is the problem of solving a system of
nonlinear equations over a finite field. The Rainbow signature scheme is the only
multivariate cryptosystem among the round 3 finalists of the National Institute
for Standards and Technology (NIST) Post Quantum Standardization process
[18].

This work was partially supported by a grant from the Simons Foundation (712530,
DCST).
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The first massively multivariate cryptosystem published in the west was C∗,
introduced in 1988 by Matsumoto and Imai [17]. This encryption scheme is
an example of a big-field scheme, which makes use of computations in both a
base field and an extension field. Given a base field Fq and an extension field
K, C∗ will have an Fq-quadratic central map F : K → K, whose structure is
hidden by function composition. C∗ was broken by Patarin in 1995 [19] with
the introduction of linearization equations, which exploits a linear relationship
between plain text and ciphertext vectors. Many modifiers were introduced after
the break of C∗ in the hopes of repairing the scheme, including minus, projection
and internal perturbation modifiers, see [22,21,9]. The security of this family of
modifiers is discussed in [6].

Another avenue of study is to consider small-field cryptosystems, which are
multivariate schemes that work over only one field, Fq. Patarin introduced the
small field scheme Oil and Vinegar [20] as a new possible multivariate signature
scheme. The Oil and Vinegar scheme consists of two different types of variables,
specifically oil variables and vinegar variables. In the original presentation of the
scheme, the number of oil variables was equal to the number of vinegar variables.
Cryptanlysis from Kipnis and Shamir [16] showed this parameterization to be
insecure, which lead to the Unbalanced Oil and Vinegar scheme (UOV) which
necessitates that the number of vinegar variables is much larger than the number
of oil variables.

The Rainbow Signature scheme [11] is an extension of the UOV signature
scheme that consists of layers of UOV central maps. Despite the relatively large
size of public keys associated with the Rainbow scheme, its short signatures and
high degree of computational efficiency in verification make it an attractive choice
for many applications, such as verified/secure boot and certificate transparency.

Following the support minors advance in MinRank methodology, see [1], new
attacks in [3], and more significantly [4], have reduced the security of Rainbow
below their claimed NIST security levels, rendering the scheme significantly less
efficient. The critical insight of these attacks is that information about the secret
key can be encoded in equations in the public variable set and combined with
the public equations, resulting in a significant enhancement of a direct algebraic
attack targeting a hidden subspace.

In this paper, we introduce the variant “IPRainbow,” which adds an inter-
nal perturbation modifier to the Rainbow central map. This perturbation of the
private key disrupts the above attacks by decoupling the new relations from the
public equations; specifically, the public equations are satisfied by a vector in
the secret subspace with low probability, corrupting the attack mechanism. We
analyze the security and efficiency of this new scheme in comparison with UOV.
We show that it is still possible for Rainbow to outperform UOV in terms of ver-
ification speed, signature size and public key size; however, these enhancements
come at a significant cost in signing time.
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2 UOV and Rainbow

2.1 Oil and Vinegar

The Oil and Vinegar signature scheme was introduced in [20] as a response
to Patarin’s linearization equations in [19], which broke the first multivariate
cryptosystem C∗. The scheme consists of two types of variables over a finite field
Fq, namely oil and vinegar variables. Furthermore, the number of oil variables
and the number of vinegar variables were equal in the original parameterization.
Kipnis and Shamir broke this balanced Oil and Vinegar scheme in [16], so we now
only consider the case of Unbalanced Oil and Vinegar (UOV), where the number
of vinegar variables is sufficiently large enough that the statistical attacks of [15]
and the intersection attack from [3] are infeasible.

Let x = (x1, . . . , xv, xv+1, . . . , xn) ∈ Fn
q . We will call x1, . . . , xv the vine-

gar variables whereas xv+1, . . . , xn will denote the oil variables. We define the
following central map F = (f1, . . . , fv+1), where each f is of the form:

f(x) =

v∑
i=1

v∑
j=i

αijxixj +

v∑
i=1

n∑
j=v+1

βijxixj +

n∑
i=1

γixi + δ

To create the public key equations P we compose F with an invertible affine
map T : Fn

q → Fn
q to get P = F ◦ T . Notice that although F is a quadratic

map, F is linear on the oil variables. Therefore, inversion of the central map
is completed by choosing random values in Fq for each of the vinegar variables.
Each equation is then set equal to zero and Gaussian Elimination is used to solve
for the remaining oil variables. If no solution is found, choose different values for
the vinegar variables. Repeat this process until a solution is found.

2.2 Rainbow

The Rainbow signature scheme was first introduced in [11]. Rainbow can be
thought of a banded construction of UOV, where Rainbow consists of L different
UOV layers. Rainbow is the only multivariate signature scheme to make it into
the finalists of the third round of the NIST standardization process [18], but the
scheme has recently faced substantial attacks from [3] and [4].

To create a Rainbow signature scheme, we will still consider input vectors
of the form x = (x1, . . . , xn) ∈ Fn

q , but now each layer of Rainbow will con-
tain a different number of vinegar variables. Consider a sequence of integer
values 0 < v1 < v2 < . . . < vL < n, and corresponding sets of variables
V1 = {x1, . . . , xv1}, V2 = {x1 . . . , xv1 , . . . , xv2}, . . . , VL = {x1, . . . , xvL} that con-
tain the vinegar variables for the 1st, 2nd, . . ., and Lth layers, respectively. Note
that the oil variables in layer ℓ will contain Oℓ = {xvℓ+1, . . . , xn}. Furthermore
V1 ⊂ V2 ⊂ · · · ⊂ VL, whereas OL ⊂ · · · ⊂ O2 ⊂ O1.

Each layer ℓ will be composed of n− vℓ equations, which is also the number
of oil variables in that layer. A polynomial in the ℓth layer will have the form:

fℓ(x) =

vℓ∑
i=1

vℓ∑
j=1

αijℓxixj +

vℓ∑
i=1

n∑
j=vℓ+1

βijℓxixj +

n∑
i=1

γiℓxi + δℓ
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The public key is then formed by composing the central map with two affine
maps, P = U ◦ F ◦ T . The Rainbow parameterization proposed in the current
submission [10] to NIST’s standardization process utilizes L = 2 layers, as is
historically typical. Also, in order to speed up key generation, by convention we
consider only homogeneous polynomials fi.

Layer 1 Rainbow Map Layer 2 Rainbow Map

Fig. 1. These diagrams represent the matrices corresponding to the central map of
a Rainbow scheme with two layers. White areas represent entries of the matrix that
are zero, whereas gray areas correspond to possibly nonzero entries. The lined gray
areas correspond to coefficients on the quadratic vinegar terms, and solid gray areas
correspond to mixed vinegar and oil coefficients.

To invert the central map F = f (1), . . . , f (n) we choose values for the first
layer vinegar variables x1, . . . , xv1 and substitute these values into the first layer
maps f (1), . . . , f (o1). Then we solve the resulting linear system in the first layer
oil variables xv1+1, . . . , xv2 . Next we substitute the values of these variables into
the central maps f (v+1), . . . , f (n) and solve similarly for the remaining variables,
xv2+1, . . . , xn.

3 Known Attacks of Rainbow

3.1 Background

MinRank attacks have proven to be highly effective against multivariate schemes.
We can define the MinRank problem as follows:

Problem 1 (MinRank Problem) Given matrices A1, . . . , Ak ∈ Fn×m
q and

r ∈ N, decide if there exists a linear combination y1, . . . , yk ∈ Fq (not all zero)
such that

rank

(
k∑

i=1

yiAi

)
≤ r.

The MinRank attack was first introduced in [14] as the first effective attack
on the multivariate scheme HFE. This first iteration of the MinRank attack
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is commonly called the Kipnis-Shamir (KS) attack. Other methods have since
followed, including minors modeling and support minors modeling [13,2]. The
goal of MinRank attacks is to try to find linear combinations of the public
matrices that result in a matrix with low rank. This is useful against schemes
like HFE and C∗ as the central map has low rank, thus the attacker can find
an equivalent key. The MinRank attack is also applicable to Rainbow, since the
first layer maps exhibit a rank defect.

The complexity of MinRank attacks are tied to the complexity of polyno-
mial solvers, such as the XL algorithm of [8]. These algorithms create a larger
generating set by generating higher degree equations through monomial mul-
tiplication. The first degree fall of the XL-style algorithm should occur at the
degree corresponding to the first non-positive coefficient of the corresponding
Hilbert Series.

We briefly explain the idea of the support minors modeling of [2], see [2] for
the details. The support minors system from [2] involves two variable sets, the
so-called “minor” variables, whereas the above variables are given the moniker
“linear.” As mentioned in [24] with more details following in [23], the additivity
of Hilbert Series can be generalized to a multi-series respecting disparate variable
sets. Due to the large number of the minor variables, we may restrict ourselves
to consider the algebra of degree one in the minor variables and graded with
respect to the degree of the linear variables. In this way, we can “forget” the
minor variables and recover a univariate series.

In [2], the coefficients of this series for degree b where m′ columns are used
is derived. Specifically, the degree b coefficient is given by

b∑
i=0

(−1)i
(

m′

o2 + i

)(
n+ i− 1

i

)(
n+ b− i− 1

b− i

)
.

Note that we must include all n matrices. Thus we obtain the series

G(t) =

∞∑
b=0

b∑
i=0

(−1)i
(

m′

o2 + i

)(
n+ i− 1

i

)(
n+ b− i− 1

b− i

)
tb.

Given that the solving bi-degree is (1, b), it follows that the support-minors
algorithm solves a MinRank instance of k many n × m matrices with a target
rank r with an estimated cost of

3(k − 1)(r + 1)

(
m′

r

)2(
k + b− 2

b

)2

field multiplications. Note that it is sometimes more efficient to increase b if it
is possible to use a smaller m′.

3.2 Rectangular MinRank Attack

In this section, we describe the attack presented in [3]. The public key of a
multivariate cryptosystem is a set of m nonlinear equations in n variables. We
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can consider the quadratic form of each equation fi, which will be an n × n
matrix Fi of the form:

fi(x) = xFix
⊤.

It is often useful to consider the public or private key of a multivariate scheme
with m equations in n variables as a single 3-tensor. In this vein, consider the
Rainbow public and private keys as 3-tensors of dimension n×n×m. In particu-
lar, consider Figure 2, where the white represents zero coordinates and the gray
represents nonzero coordinates. Given a vector from O2, the multiplication of
the public key with this oil vector will result in a matrix with nonzero elements
only in the upper (v + o1)× o2 coordinates.

× = −→

← o1 → ← o2 →
← m = o1 + o2 →

↑
o2

↓

↑
v + o1
↓

Fig. 2. Multiplication of a Rainbow public key by a vector in O2.

Thus, if we can find a linear combination of the public key equations such
that

rank

(
n−o2+1∑

i=1

yiPi

)
≤ o2,

then it is probable that y ∈ O2. This instance of the MinRank problem requires
n− o2 + 1 different n×m matrices with a target rank of o2.

3.3 Simple Attack

The Simple attack of [4] breaks the Rainbow I parameters quite efficiently. The
technique can also be used in conjunction with the Rectangular MinRank attack
to significantly impact security for the higher security parameters, Rainbow III
and Rainbow V as well. The attack introduces a new strategy to find vectors
in O2, which then can be used to remove the outer layer of the Rainbow public
key, leaving us with a small instance of UOV.

The Simple attack will make use of the discrete differential of the public key,
defined as

P ′(x,y) = P (x+ y)− P (x)− P (y).
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We denote W := P (O1), dim(O2) = dim(W ) = o2. From analysis in [3], we
know that for y ∈ O2, P

′(x,y) ∈ W for any x ∈ Fn
q . This structure is illustrated

in Figure 3.

O2 ⊂ O1 ⊂ Fn
q

P P P

{0} ⊂ W ⊂ Fm
q

P ′(x, ·)

Fig. 3. Structure of nested subspaces.

By fixing a random x ∈ Fn
q , we can define

Dx(y) = P (x+ y)− P (x)− P (y),

where for any nonzero x and y ∈ O2, Dx(y) ∈ W . So, if we restrict our domain
to O2, we see that Dx|O2 is a linear map from O2 to W . Therefore, for any choice
of basis, we can express Dx|O2 as an o2×o2 matrix. For a fixed x, the probability
that there exists a nontrivial kernel vector y ∈ O2 such that Dx(y) = 0 is the
same as the probability that a random o2 × o2 matrix will be singular. This is a
well known problem and gives us the probability

1−
o2−1∏
i=0

(1− qi−o2),

which for large q is approximately q−1. This leads to the strategy of guessing a
random vector x and trying to find a solution to the system of equations{

Dx(y) = 0

P (y) = 0.

If we can find such a y, then it is likely that y ∈ O2. If we cannot find such a y,
choose a different x and repeat the process.

Once we have a vector y ∈ O2, we can generate a subspace ofW by computing

⟨P ′(e1,y), · · · , P ′(en,y)⟩ ⊆ W.

Analysis from [4] shows that with high probability the generated space will be
equal to W . This gives us access to a subspace of, if not the entirety of, the
secret space W . Given this information, we can create a map V that allows us
to find the secret space O2. We define V to be the change of variables such that

V ◦ P (x) =

{
P1(x)

P2(x)
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where P1 : Fn
q → Fm−o2

q and P2 : Fn
q → Fo2

q . From here, we can find the kernel
of the map

x 7→

P ′(e1,x)
...

P ′(en,x)

 .

With high probability, the kernel of this map will be O2. Beullens completes the
attack using another change of variable map. Let U : Fn

q → Fn
q send the last o2

coordinates to O2 and then consider

V ◦ P ◦ U(x) =

{
F1(x)

F2(x)
.

It is shown in [4] that finding a preimage P is equivalent to finding a preimage
of F , and finding a preimage of F1 gives a preimage of F . F1 is a system of m−o2
equations that has the structure of a UOV public key with n− o2 variables and
an oil space of dimension m−o2. Given this smaller UOV system, the remainder
of the attack is to solve a system of m equations in n−m unknowns. Under the
assumption that this system is semi-regular, it can be solved with an XL-style
algorithm at degree

dsr = min
d

{
[td]

(
1− t2

)m
(1− t)

n−m ≤ 0

}
.

In such a case, the complexity of the attack is dominated by the cost of the block
Wiedemann [7] step in the XL algorithm. This cost is well known to be

3

(
n−m− 1 + dsr

dsr

)(
n−m+ 1

2

)
,

where
(
n−m−1+dsr

dsr

)
is the number of monomials (i.e., the dimension of the square

Macaulay submatrix), and
(
n−m+1

2

)
is the number of nonzero entries in each row

of the Macaulay matrix.
The Simple attack of [4] can be combined with the Rectangular MinRank

attack of [3]. We may construct a Hilbert series in this case by pasting together
the rectangular MinRank support minors system with the two systems

Dx(y) = 0, and

P (y) = 0.

The latter two systems involve the same variable set, thus we obtain the Hilbert
series

(1− t)m(1− t2)m

(1− t)n
=

(1− t2)m

(1− t)n−m
.

To obtain the Hilbert series for the entire system, we merely add the relations
in the already present variables. Under the assumption of semi-regularity of the
resulting system, we obtain the series

(1− t)m(1− t2)mG(t),
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where G(t) is as described in Section 3.1. This is a similar result to what was
observed in [3].

4 IPRainbow

4.1 Description of IPRainbow

We will consider the internal perturbation (IP) modifier, see [9], applied to the
Rainbow scheme. The IP modifier can be described as follows. Let Q : Fn

q → Fm
q

be a set of m quadratic equations where qi denotes the ith equation. Given a
public key P : Fn

q → Fm
q whose ith equation is denoted pi we create the internally

perturbed public key P̃ (x) by defining

p̃i(x) = pi(x) + qi(x)

for each 0 < i ≤ m. The support dimension of IP will be denoted as s.
To define IPRainbow, we will keep the layer 1 central maps the same and

internally perturb the 2nd layer maps. Specifically, we will consider an internally
perturbed 2nd layer homogeneous equation of the form:

f(x) =

v2∑
i=1

v2∑
j=1

αijxixj +

v2∑
i=1

n∑
j=v2+1

βijxixj +

v2+s∑
i=v2+1

v2+s∑
j=v2+1

µijxixj ,

see Algorithm 1 in Appendix A. The matrix representations of the central maps
are illustrated in Figure 4.

Layer 1 Rainbow Map. Layer 2 Rainbow Map.

Fig. 4. The first layer maps remain the same as the unmodified Rainbow first layer
maps. Now we consider a s×s submatrix of the oil times oil section of the second layer
map that is nonzero and denoted as light gray.

Given an unmodified Rainbow public key, we know that for any x ∈ Fn
q

such that Tx ∈ O2, P (x) = 0. Now, given the IPModifier, the O2 space is not a
subspace of the kernel. Indeed, an O2 vector is in the kernel of Q with probability
approximately q−s.



10 R. Cartor, M. Cartor, M. Lewis, & D. Smith-Tone

Inversion is similar to the process of inversion for Rainbow. One randomly
assigns values to the first layer vinegar variables, x1, . . . , xv1 and uses the first
layer maps to solve for the first layer oil variables, xv1+1, . . . , xv2 . To invert the
second layer maps, they are evaluated at x1, . . . , xv2 to recover o2 equations
in o2 variables. These equations are quadratic, however, only s variables occur
in quadratic terms, thus by Gaussian elimination, we may recover a system
of s quadratic equations in s variables whose resolution by standard Gröbner
basis techniques allows for the remaining variables to be linearly solved, see
Algorithm 2 in Appendix A.

4.2 Security Analysis

Simple Attack The simple attack of [4] remains applicable to IPRainbow, with
some slight differences. Note that the matrix stucture of Dx remains the same
as in the case of Rainbow. Thus, with probability roughly q−1 the linear map
defined by Dx contains an O2 vector y in its left kernel. For our new IPRainbow
scheme, an oil vector in the kernel of Dx may not necessarily be in the kernel of
the public key. Given that the second layer maps contain quadratic summands in
s of the second layer oil variables, we expect the simple attack of [4] to proceed
with probability roughly q−s−1 (See Lemma 1).

Lemma 1 For sufficiently small s, the linear map Dx has an O2 vector y in its
left kernel that satisfies P (y) = 0 with probability approximately q−s−1.

Proof. Let y be an O2 vector satisfying P (y) = 0. First, note that there are(
s+1
2

)
homogeneous quadratic monomials in the variables yv2+1, . . . , yv2+s. Since

the m unperturbed 2nd layer maps vanish at y, the possibly nonzero terms of
the perturbed second layer maps involve precisely these monomials. Thus, the
probability that all of these monomials are zero (and hence yv2+i = 0 for i from
1 to s) is bounded below by the probability that this set of m equations has rank(
s+1
2

)
, which is

pr =

∏(s+1
2 )−1

i=0 qm − qi

qm(
s+1
2 )

=

(s+1
2 )−1∏
i=0

1− qi−m.

Next, we work under the condition that the values yv2+1, . . . , yv2+s are all
zero and determine the probability that such an O2 vector is in the left kernel of
Dx. This probability is the same as the probability that there exists a nontrivial
kernel vector of Dx restricted to this o2 − s-dimensional subspace of O2. This
restricted linear map, which we may represent as a random (o2 − s)× o2 matrix
over Fq, is of full rank with probability

pk =

∏o2−s−1
i=0 qo2 − qi

qo2(o2−s)
=

o2−s−1∏
i=0

1− qi−o2 ,
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Finally, by Markov’s inequality, the probability that there is at least a one-
dimensional subspace W of O2 in the left kernel of Dx such that P (y) = 0 for
all y ∈ W is then bounded by q−1 times the expected number of such vectors.
We then note that the dominant term in the second expression is bounded by
(1− pr) + (1− pk), which is approximately q−s−1 for sufficiently small s. ⊓⊔

We further remark that the constraint on s being small is not very strict.
Even if s is such that 1 < pr, pk, there is still a rank condition that must be
satisfied for such a vector to exist in the kernel of Dx. Thus, we find that the
above probability estimate is accurate even when

(
s+1
2

)
is somewhat larger than

m, a fact we have verified experimentally.

Rectangular MinRank Attack As is the case with Rainbow, the Simple
attack of [4] can be combined with the Rectangular MinRank attack of [3].
As the attack still involves the finding a second layer oil variable and uses the
property that such a vector satisfies the public equations, Lemma 1 applies, and
we find that the complexity of the combined Rectangular MinRank attack costs
a factor of approximately qs times more for IPRainbow than for Rainbow. Thus,
the complexity of the enhanced Rectangular MinRank Attack is given by

3qs+1(n−m− 1)(o2 + 1)

(
m′

r

)2(
n−m+ b− 3

b

)2

field multiplications, where m′ ≤ m and b are chosen to optimize the attack.

Intersection Attack In addition to the Simple attack and Rectangular Min-
Rank attacks, Beullens also enhanced the Rainbow Band Separation attack of
[12] and the tighter analysis of [23] with what he calls the Intersection Attack,
see [3]. Once again, this attack relies on finding vectors in O2 that satisfy the
public polynomials. Therefore, once again, Lemma 1 applies and the complex-
ity of these attacks is increased by a factor of about qs. Even in the case that
n = 3m, this attack is not the limiting attack.

4.3 Efficiency and Key Size

The complexity of the signing procedure is dominated by the complexity of the
Gröbner basis algorithm used to solve the s-quadratic terms introduced in the
IP modifier. Since the security of IPRainbow is exponential in s with base q,
we choose q = 257 so that s can remain small for the fastest inversion. Table 5
compares the efficiency of IPRainbow with comparable UOV parameters. These
estimates were computed with unoptimized implementations using the Magma
Computer Algebra System,1 see [5], on a 2.4 GHz Quad-Core Intel Core i5
processor.

1 Any mention of commercial products does not indicate endorsement by NIST.
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Scheme-(q, o1, o2, v, s) Signing
time

Verif.
time

Key
size

Sign.
size

Security

UOV-(257, 47, 0, 71, 0) 0.750ms 0.370ms 330.2KB 118 144.5
IPRainbow-(257, 32, 32, 32, 9) 13700ms 0.370ms 298.2KB 96 145
IPRainbow-(257, 32, 32, 36, 8) 1976.5ms 0.380ms 323.4KB 100 144.3
IPRainbow-(257, 32, 32, 38, 7) 491ms 0.440ms 336.4KB 102 142.4
IPRainbow-(257, 32, 36, 44, 6) 127ms 0.510ms 430.6KB 112 143.1

UOV-(257, 71, 0, 107, 0) 138ms 1.190ms 1131.9KB 178 205.5
IPRainbow-(257, 32, 42, 68, 9) 16552ms 0.850ms 751.9KB 142 207.1
IPRainbow-(257, 32, 48, 70, 8) 4579ms 1.100ms 906.6KB 150 206.8
IPRainbow-(257, 32, 48, 76, 7) 987ms 1.020ms 980.4KB 156 206.9
IPRainbow-(257, 32, 50, 84, 6) 269ms 1.440ms 1137.4KB 166 206.9

UOV-(257, 97, 0, 146, 0) 5.240ms 4.630ms 2854.1KB 243 271
UOV-(257, 98, 0, 147, 0) 5.320ms 4.670ms 2931.3KB 245 275
IPRainbow-(257, 36, 64, 112, 9) 22026ms 2.390ms 2259.4KB 212 272
IPRainbow-(257, 36, 64, 122, 8) 29597ms 2.460ms 2477KB 222 271
IPRainbow-(257, 36, 64, 135, 7) 1123ms 5.300ms 2774.9KB 235 271.5
IPRainbow-(257, 36, 66, 148, 6) 298ms 5.280ms 3202.5KB 250 272.4

Fig. 5. Parameters targeting NIST security levels I, III and V.

We find that it is easy to achieve secure parameters of IPRainbow with
smaller keys and smaller signatures. While it is possible to set parameters so
that IPRainbow verification is faster than UOV, in all of the experiments we
performed the signing times for these instances are very costly, to the point of
possibly being disqualifying even for applications using offline signing. Still, it
is important to note that our data seem a bit noisy and better implementation
can make the relationship between key size and verification time tighter.

5 Conclusion

In the past year and a half, the new attacks from Beullens have significantly
improved the cryptanalysis of Rainbow and have rendered it less efficient than
UOV. As the motivation of Rainbow was originally to create a more efficient
scheme based on the oil-vinegar structure, these attacks are particularly prob-
lematic for Rainbow.

Still, the appeal of schemes such as Rainbow is their ability to provide low cost
for applications that are not dominated by investment in public key transmission.
Such applications are naturally amenable to offline signing, so a penalty in the
cost of inversion may be acceptable if there is sufficient benefit in verification
speed or signature size.

As we have shown, the implementation of the IP modifier on Rainbow adds
solid theoretical protection from these new attacks at the cost of a significant
increase in the complexity of inversion. Our data indicate that it is indeed feasible
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to salvage an advantage in verification time, key size and signature size at the
cost of additional signing time. The next step for future work is optimizing this
construction and determining the market for such a product.
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A Algorithms

Below are the key generation and central map inversion algorithms of IPRain-
bow.

Algorithm 1 IPRainbowKeyGen

Input: IPRainbow Parameters (q, v1, o1, o2, s)
Output: IPRainbow Key Pair (sk, pk)
1: Set m := o1 + o2, n := m+ v1
2: T ,U ← GL(n,Fq)
3: F ← RainbowMap(q, v1, o1, o2)
4: Q ← IPModifier(s)
5: P = T ◦ (F +Q) ◦ U
6: sk = (T ,F ,Q,U)
7: pk = P
8: return (sk, pk)
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Algorithm 2 Inversion of IPRainbow Central Map

Input: IPRainbow central map F +Q = (fv1+1, . . . , fm), vector x ∈ Fm

Output: y ∈ Fn with F̃(y) = x

1: y1, . . . , yv1
$←− Fq

2: f̃i := fi(y1, . . . , yv1) for i ∈ {v1 + 1, . . . ,m}.
3: yv1+1, . . . , yv2 := GaussElim(f̃v1+1, . . . , f̃m).
4: f̂j := f̃j(yv1+1, . . . , yv2) for j ∈ {v2 + 1, . . . ,m}.
5: g1, . . . , gs := GaussElim(f̂v2+1, . . . , f̂m).
6: yv2+1, . . . , yn := PolySolve(g1, . . . , gs).
7: y := y1, . . . , yv1 , yv1+1, . . . , yv2 , yv2+1, . . . , yn.
8: return y.
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