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Abstract. The Support Minors method of solving the MinRank prob-
lem has contributed to several new cryptanalyses of post-quantum cryp-
tosystems including some of the most efficient multivariate cryptosys-
tems. While there are a few viable multivariate schemes that are secure
against rank methods, the most prominent schemes, particularly for en-
cryption, are not particularly efficient.

In this article we present a new generic construction for building effi-
cient multivariate encryption schemes. Such schemes can be built from
maps having rank properties that would otherwise be damaging, but are
immune to traditional rank attack. We then construct one such efficient
multivariate encryption scheme and show it to be about 100 times faster
than other secure multivariate encryption schemes in the literature.

Key words: Multivariate Cryptography, MinRank, encryption

1 Introduction

In the past two years there have been several new advances in cryptanalysis that
have significantly impacted the efficiency of various post-quantum cryptosys-
tems. In particular, there has been a dramatic change in the power and variety
of attacks exploiting rank properties of cryptosystems.

These new attacks rely on creative instances or more efficient modeling of
the MinRank problem. The MinRank problem is the generic problem of finding
a low rank linear combination of a collection of matrices.

In the rank-metric code-based regime, the basic problem of rank syndrome
decoding is exactly an instance of MinRank. While it was previously assumed
that the asymptotically most efficient attack on such schemes is the so-called
support-trapping method, see [1], the new support minors technique of [2] not
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only significantly outperforms support-trapping asymptotically, but greatly re-
duces the efficiency of secure instances of these schemes. Schemes such as ROLLO
[3] suffered a roughly square root security reduction.

In the multivariate arena, new MinRank instances have been found that have
significantly changed the security level of prominent schemes. The rectangular
MinRank attack of [4] reduces the security of Rainbow and is made possible by
the efficiency of support minors modeling. Even in conjunction with the new
“simple attack” of [5], the support minors technique supporting the rectangular
MinRank attack is required for the cryptanalysis of larger parameters. While the
new MinRank instances found in GeMSS, see [6], reduce the security level even
with the minors technique, see [7], MinRank attacks powered by the support
minors modeling make the HFEv- framework infeasible for practical use, see [8].

These results along with numerous other rank-based attacks on encryption
and signature schemes, see [9–12], show that MinRank methods are a major
obstacle to overcome in the construction of secure and efficient schemes. Thus
we are in need of a method to side-step MinRank attacks.

Our Contributions We offer a new method for generating multivariate encryp-
tion schemes that are immune from rank attacks. The technique exploits the fact
that modulus switching induces a nonlinear action over finite fields. We find that
we can take essentially any multivariate encryption primitive and apply a modu-
lus switching hack that we call 2F (since two fields of differing characteristic are
used) to mask rank properties and construct an efficient encryption scheme. As
an exercise, we construct from a primitive that is insecure against four different
attacks (two rank-based, one differential and one algebraic) a new multivariate
encryption scheme and show that the new 2F version is secure against these
attacks.

The paper is organized as follows. In Section 2, we present some historical
schemes that have relevance to our construction. Next, in Section 3, we intro-
duce the generic 2F construction and verify its correctness. Then in Section 4, we
introduce a prototype 2F scheme chosen to illustrate the effects on security the
2F construction has. Section 5 then provides a detailed security analysis high-
lighting the impact of the construction on every known attack surface. We then
suggest parameters for the 128-bit and 143-bit security levels in Section 6, draw-
ing performance comparisons with other secure multivariate encryption schemes
in the literature. Finally, we conclude, reflecting on the changes we have seen
in the design approach to multivariate cryptography and noting directions for
future work.

2 Multivariate Encryption Schemes

In this section we describe the relevant historical schemes that motivate and
power our new construction as well as schemes to which we want to draw com-
parison. We introduce them in order of their development and mention the known
results on these schemes in the literature.
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2.1 HFE

The HFE cryptosystem presented in [13] is a “big field” scheme in the lineage of
C∗, see [14]. Such schemes rely on the vector space structure of finite extension
fields to create vector-valued maps whose nonlinear component is derived from
multiplication in the extension field.

Let Fq be a finite field with q elements, let K be a degree n extension of Fq,
and let ϕ : Fn

q → K be an Fq-vector space isomorphism. An HFE polynomial of
degree bound D is a polynomial f : K→ K of the form

f(X) =
∑

qi+qj≤D

αijX
qi+qj +

∑
qi≤D

βiX
qi + γ,

where αij , βi, γ ∈ K. We note that since the ith and jth Frobenius powers are
Fq-linear, f is Fq-quadratic. The HFE public key is then given by

P (x) = T ◦ ϕ−1 ◦ f ◦ ϕ ◦ U(x),

where U and T are Fq-linear or Fq-affine maps, see Figure 1.
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Fig. 1. The HFE scheme. Given the Fq-quadratic map f , the Fq-vector space iso-
morphism ϕ, and Fq-linear maps U , and T , we construct the vector-valued function
P : Fn

q → Fn
q .

One may use the plain HFE as a public key encryption scheme. Encryption is
accomplished by evaluating the public key at an encoding of the plaintext while
decryption is performed by inverting each of the private maps sequentially. The
inversion of the central map can be performed efficiently by using Berlekamp’s
algorithm, see [15], as long as D is fairly small.

There are a few attacks that make HFE inefficient. The first attack on HFE
was [16]. An improvement on this technique in [9] modeled a MinRank instance
with matrices over the small field with solutions in the large field and solved
that instance with the minors modeling technique. The same MinRank instance
was later found to be more efficiently solvable by once again returning to the
Kipnis-Shamir method with variables defined over the extension field in [17].
The new attack on GeMSS, see [7], exploits a new MinRank instance associated
with the structure of the HFE public key, but for naked HFE instances has the
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same complexity as the above attack. Finally, the new method for using support
minors for MinRank instances with solutions in extension fields of [8] significantly
reduces the complexity of attacking HFE and renders it too inefficient for use.

2.2 SQUARE

The SQUARE multivariate encryption scheme, see [18], is a big field scheme
using a simple monomial map that is two-to-one and that employs the projection
modifier, the idea of fixing certain variables before the publication of the key to
alter its algebraic properties. The SQUARE central map can be seen as an odd
field HFE map but with degree bound 2 and no affine component.

Specifically, choose an odd characteristic field Fq and let K be a degree n+ p
extension of Fq. Let f : K→ K be defined by f(X) = X2. Let T : Fn+p

q → Fn+p
q

be an invertible linear map and let U : Fn
q → Fn+p

q be an injection. We then
generate a public key P = T ◦ϕ−1 ◦ f ◦ϕ ◦U , where ϕ : Fn+p

q → K is a Fq-vector
space isomorphism.

We note that unlike the case of HFE where most elements in the range of
the central map have a unique preimage, the map f above is a 2-to-1 map.
Thus, some sort of padding of the plaintext is necessary to ensure uniqueness of
preimages.

SQUARE was broken in [19] with a differential attack similar to that of [20].
We note also that attacks in the style of [9, 17, 7, 8] also break SQUARE due to
the very low Q-rank of the central map.

2.3 ABC Simple Matrix

The ABC Simple Matrix Encryption scheme of [21] uses the structure of a matrix
algebra instead of an extension field to obtain its nonlinear central map. A
modified version of this scheme was published in [22] to repair a high decryption
failure rate of the original that leaked information about the secret key. Another
version with a cubic public key was introduced in [23].

Fix parameters s ≤ r and set n = rs. Let A be an r × s matrix of random
linear forms in n variables and let B and C be s × u and s × v matrices of
random linear forms, respectively, where u and v are additional parameters of

the system. We construct the quadratic map F : Frs
q → Fr(u+v)

q by vectorizing

the matrix product A
[
B C

]
. The public key P is then computed by composing

with linear transformations U and T .
As before, encryption is achieved by simply evaluating the public key at an

encoding of the plaintext. To invert the central map, one parses the preimage
of the ciphertext under T into an r × (u+ v) matrix V, sets W to be a formal
left inverse of A consisting of rs unknowns wij and computes the product WV.
Since W is a left inverse of A, this product must produce

[
B C

]
evaluated at

U(x). This equality produces a system of s(u + v) equations that are linear in
2rs unknowns, the values wij and the values xi. Via Gaussian elimination, all
of the variables wij can be eliminated to produce s(u+ v)− rs linear equations
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in the rs unknown values xi. Since this system has a small dimensional solution
space, these relations can be used to transform the public key into a system with
very few unknowns that can be solved directly to reveal the preimage.

Several attacks are known to affect the security of the ABC scheme. The
first attack that broke security claims was [24]. The attack revealed that there
exist rank 2s maps in the span of the public quadratic forms and outlined an
algebraic/combinatorial attack that was more efficient than the designers antic-
ipated. Subsequently, in [25] it was shown that the cubic scheme was vulnerable
to a similar attack and is less efficient than the quadratic scheme. These attacks
on the cubic version were further improved in [26]. Most recently, it was shown
in [11] that increasing r relative to s decreases security against rank attacks at
the same rate that it decreases the decryption failure rate, thus showing that
there are fundamental limits to the efficiency of any such scheme.

2.4 PCBM

The PCBM multivariate encryption scheme, see [27] is a relatively new encryp-
tion scheme with similar algebraic structure to HFERP, see [28], but with a
wildly different approach to parametrization. PCBM is currently the fastest
published multivariate encryption scheme targeting CCA security that remains
secure at the 128-bit level.

Fix q and n and let C be a random k-dimensional subspace of Fn
q . Let H

be an (n− k)× n matrix whose right kernel is C. Given k random n× (n− k)
matrices Ai, we form the products Bi = AiH. Then define the polynomial

fi(x) = xBix
⊤ + xLi,

where Li is a random n× 1 matrix.
Note that for any x ∈ Fn

q , the value Hx⊤ uniquely identifies the coset of C
in Fn

q containing x. This value is encoded in extra polynomials gi via a small
instance of EFLASH or PFLASH, see [29, 30]. Finally, a large number of random
quadratic equations hi are included. The public key is then given by

P (x) = T ◦ (F∥G∥H) ◦ U,

where T is affine, U is an affine embedding not intersecting C, F =
[
fi
]
, G =

[
gi
]

and H =
[
hi

]
.

Inversion is accomplished sequentially with the most interesting step being
the inversion of F . Once the coset to which x belongs is extracted from G, it
is easy to derive x by solving a linear system. Specifically, if x = x′ + x̂, where
x̂ ∈ C and x′ is a coset representative derived from G we have that

fi(x) = (x′ + x̂)Bi

(
x′⊤ + x̂⊤)+(x′ + x̂)L⊤

i = x′Bix
′⊤ + x̂Bix

′⊤ +(x′ + x̂)L⊤
i ,

for all i and thus we can solve linearly for x̂ and x.
The natural ways to attack this structure relate to searching for the large

subspace C and MinRank methods attacking either the low rank, in general
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2(n − k), maps of F or by attacking the low Q-rank map G. The very large
number of random maps H added mitigates these risks though, and the check
equations that H provides makes PCBM have a very low decryption failure rate.

3 2F Modulus Switching

The first post-quantum cryptosystem to employ modulus switching was NTRU,
see [31]. There, independent reduction modulo two coprime integers was used to
mix and unmix operations in two polynomial rings.

While the original NTRU proposal was probabilistic in nature, with appro-
priate restrictions on the parameters, perfect correctness can be assured, such as
is the case for the NIST Round 3 finalist NTRU, see [32]. The same analogy will
hold with the 2F construction as well. In the following, we present a perfectly
correct version of 2F but comment that we may select parameters to construct
a probabilistic version as well.

Let p and q be primes with q much larger than p. Let F : Fn
p → Fn

p be an
efficiently invertible and computationally injective quadratic function. In par-
ticular, we may consider F to be any public key of a multivariate encryption
scheme over a prime field. Let T : Fn

q → Fn
q be an invertible linear map and let

ι be the map that casts a function on Fn
p as a function on Fn

q with the same
coefficients considered as least absolute residues lying in Fq. The 2F version of

the map F is then F̃ : Fn
q → Fn

q (with domain restricted to (−p
2 ,

p
2 )

n) defined by

F̃ = T ◦ ι(F ).

The reason this simple modulus-switching transformation changes the alge-
braic properties of the function is that ι is neither Fp-linear nor Fq-linear. A
key observation is that even ι modulo p is not Fp-linear since reduction is first

computed modulo q and then modulo p. Thus, in general, F̃ ̸= T ′ ◦ F for any
Fp-linear function T ′.

First, we must show that the inversion process succeeds; that is, we must show
that finding a preimage under T , reducing modulo p, and, finally computing a
preimage under F produces a preimage of F̃ . This discussion establishes the
necessary relationship between the sizes of p and q for the inversion of F̃ to
depend only on the ability to invert F .

Theorem 1. Let p and q be odd primes, let F : Fn
p → Fn

p be a homogeneous
quadratic map and let T : Fn

q → Fn
q be an invertible Fq-linear transformation. If

q >
(p− 1)3

4

(
n+ 1

2

)
,

then y = T ◦ ι(F )(x) if and only if T−1(y) (mod p) = F (x)

Proof. Clearly, T−1(y) = ι(F )(x). It remains to be shown that ι(F )(x) (mod p)
is the same as F (x).
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To accomplish the above task, we first consider computing the value of a
coordinate function Fi over the integers. Since the least residue value of each
coordinate of x is bounded in absolute value by p−1

2 , as are the coefficients of Fi,

each monomial has a least residue bounded in absolute value by (p−1)3

8 . As there

are
(
n+1
2

)
such monomials in Fi, the value calculated as an integer is bounded in

absolute value by (p−1)3

8

(
n+1
2

)
. Since this quantity is less than q

2 , no reduction
modulo q occurs in the computation of Fi. Therefore ι(F )(x) equals F (x) over
the integers, and thus reduced modulo p has the same value as F (x).

Recall that valid decryption for any encryption scheme requires that a ci-
phertext has a unique preimage. Injective functions satisfy this property with
probability 1; however, many encryption schemes are based on functions that are
not injective, but satisfy some weaker property. We describe two such properties
below.

Definition 1 A finite family F of functions F : A→ B on the finite sets A and

B is statistically injective with bound p if given G
U←− F ,

P (∃a ̸= a0 ∈ A with G(a) = G(a0)) ≤ p.

The family F is computationally injective with bound p if given G
U←− F and

a0
U←− A,

P (∃a ∈ A \ {a0} with G(a) = G(a0)) ≤ p.

A good example of a statistically injective family of functions is the collection
of public keys for the PCBM encryption scheme, see [27]. It is estimated in [27]
that the probability that a uniformly sampled PCBM(148, 149, 113, 37, 12, 414)
public key is an injective function is approximately 1−2−200; thus, since decryp-
tion failure can only occur when a ciphertext has multiple preimages, PCBMmay
be used to target CCA security.

For an example of a computationally injective family of functions, consider
the collection of public keys with parameters (q, n,m) = (3, 140, 226) of the
HFERP encryption scheme, see [28, Section 7]. There the bound for computa-
tional injectivity (and therefore a bound on the probability that a randomly gen-
erated ciphertext has multiple preimages) is about 2−136, though the probability
that a given public key is an injective function is quite low. Due to Theorem 1,
we have that injectivity as well as computational and statistical injectivity are
preserved by the 2F construction.

Corollary 1. Let p and q be primes, let F : Fn
p → Fn

p be a homogeneous
quadratic map and let T : Fn

q → Fn
q be an invertible Fq-linear transformation. If

q >
(p− 1)3

4

(
n+ 1

2

)
,

then P = T ◦ ι(F ) is injective if and only if F is injective. Under the same
condition, P is computationally (or statistically) injective if and only if F is
computationally (or statistically) injective.
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We note here that it may be desirable for efficiency to choose a smaller value
of q than the one mentioned above. There are two clear motivations for such a
choice.

First, the output distributions for fixed quadratic forms are typically far
narrower than the theoretical limit given by the bound above. Thus it is possible
to pick a far smaller q that still has a very low, or even zero, decryption failure
rate.

Second, it is not necessary to have the plaintext space be all of Fn
p . For

example, we could insist that valid plaintexts lie in {−1, 0, 1}n, in which case
we can use a much larger p and still utilize a smaller q for which the natural
analogue of Theorem 1 still holds. In this latter case, the output distribution of a
fixed quadratic form is even narrower, so there is room for further optimization
of q if we allow a small decryption failure rate from the 2F construction.

4 An Instance of 2F Multivariate Encryption

As an exercise, we construct and demonstrate 2FSQUARE, the 2F version of the
SQUARE encryption scheme, see [18], without projection. Since SQUARE can
be broken by numerous methods, see [8, 9, 33], this choice offers the best chance
for future cryptanalysis and advancement in this line of research.

Let p be an odd prime and fix a positive integer n. Let q be a prime larger

than (p−1)3

4

(
n+1
2

)
. Let K be a degree n extension of Fp and let ϕ : Fn

p → K
be an Fp-vector space isomorphism. Select an invertible linear transformation
U : Fn

p → Fn
p and define F : Fn

p → Fn
p by

F (x) = ϕ−1(ϕ(U(x))2).

Select another invertible linear transformation T : Fn
q → Fn

q and define

P (x) = T ◦ ι(F )(x),

where ι be the map that casts a function on Fn
p as a function on Fn

q with the
same coefficients considered as least absolute residues lying in Fq. See Figure 2
for a visual description of P .

Encryption is accomplished by evaluating the public key P at the plaintext
x. Decryption is accomplished by inverting T , reducing the result modulo p and
inverting F . For the latter step, some redundancy must be built into the domain
of F to produce unique preimages as was already the case for SQUARE.

5 Security Analysis

The 2F construction adds a nonlinear modification to a multivariate cryptosys-
tem, so we expect it to change the algebraic properties such as rank that we
normally use to cryptanalyze multivariate cryptosystems. We verify the security
of 2FSQUARE against the typical attacks we use on multivariate schemes in
this section. In addition to analyzing what structure is taken away by the 2F
construction, we analyze the structure added by 2F at the end of the section.
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Fig. 2. The 2FSQUARE scheme. Given the Fp-vector space isomorphism ϕ, Fp-linear
map U , Fq-linear map T and the modulus switching map ι, we construct the vector-
valued function P : Fn

p → Fn
q . The inclusion of Fn

p into Fn
q is understood to coordinate-

wise map the least absolute residue a ∈ Fp to least absolute residue a ∈ Fq.

5.1 MinRank Attacks

The SQUARE cryptosystem is vulnerable to two different types of rank attacks.
The historically first such attack originated in the work of Kipnis and Shamir,
see [16], and was improved in [9].

Note that we may represent elements of K as n-dimensional vectors over Fp.
Then the Fp-vector space isomorphism ϕ can be expressed as a matrix over Fp.
In particular, if θ is a primitive element for K over Fp, then we can represent ϕ
via right multiplication by the matrix

M =


1 1 · · · 1

θ θp · · · θp
n−1

θ2 θ2p · · · θ2p
n−1

...
...

. . .
...

θ(n−1) θ(n−1)p · · · θ(n−1)pn−1

 ,

given that the vector representations of elements in K is relative to the same
basis, {1, θ, θ2, . . . , θ(n−1)}.

Letting G(X) = X2, and setting G∗i to be the matrix representation of the
ith Frobenius power of G, we have that

G(X)p
i

=
[
X Xp · · · Xp(n−1)

]
G∗i


X
Xp

...

Xp(n−1)

 .

The matrix G∗i has only one nonzero value, a 1 in the ith row and column.
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Let U be the matrix representation of U and set S = UM. We may then
note that if Hi is the ith quadratic form in H = ϕ−1 ◦G ◦ ϕ ◦ U , we have[

H0 H1 · · · Hn−1

]
(M⊗ In) =

[
SG∗0S⊤ · · · SG∗(n−1)S⊤

]
. (1)

Since G∗0, for example, has rank 1, there is thus a K-linear combination of the
matrices Hi of rank 1.

Notice that the public key of 2FSQUARE is given in matrix form by[
P0 P1 · · · Pn−1

]
=

[
H̃0 H̃1 · · · H̃n−1

]
(T⊗ In) , (2)

where T is the matrix representation of T and Pi are the matrix representations
of the public quadratic forms. Critically, T is Fq-linear, and so not Fp-linear.
Thus there is a K-linear combination of Fq-linear combinations of the Pi that
has low rank as a K-valued matrix. This combination does not correspond to
a linear combination over any ring, and so the rank property is broken. We
verified experimentally for small instances that the smallest rank in the span of
the public matrices is high over Fp, Fq and K.

The second kind of rank attack affecting SQUARE is that of [7]. This rank
attack is also based on Equation (1). The attack works by finding a row of S−1

and reconstructing S by Frobenius relations. Specifically, if s =
[
s0 s1 . . . sn−1

]
is the first row of S−1, then the matrix Z whose ith row is given by sHi has rank
1. This rank condition induces a system of equations on the unknown coefficients
of s which can be solved at low degree, in fact, at degree 2 in this case.

Again, the Fq-linear map T present in Equation (2) halts the attack. Since the
relationship between the public matrices Pi and G∗i is not linear with respect
to any ring, the rank condition present in the Hi is not echoed by the public
matrices. Once again, we have verified this property experimentally.

5.2 Differential

Another class of attack against which SQUARE is vulnerable is the attack based
on differential symmetry. This attack is the one that first broke SQUARE, see
[19].

Recall that the discrete differential of any function F (x) is merely the asso-
ciated bilinear function DF (a, x) = F (a + x) − F (a) − F (x) + F (0). We may
examine the differential over the small field where the function of interest is
vector-valued, or over the large field in which our function is the monomial map
G(X) = X2. In the latter case, the differential is DG(A,X) = 2AX.

Given any element β of the extension field K, we see that the differential
satisfies a symmetric multiplicative symmetry

DG(βA,X) +DG(A, βX) = 2βDG(A,X).

Passing this relation to the small field and incorporating U we obtain the linear
differential symmetry

DH(MβUa,Ux) +DH(Ua,MβUx) = 2MβDH(Ua,Ux),
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where H = ϕ−1 ◦G ◦ ϕ.
For the original SQUARE cryptosystem the linear transformation T was

Fp-linear, and then there is an easy way to translate the above relation into a
relation on the public key. This relation can then be used to complete an attack
on SQUARE by the same technique as [33]. Due to the fact that T is not Fp-
linear, however, the symmetric application of an Fp-linear map corresponding
to multiplication by an element of K in the correct basis is not equivalent to
the composition of a linear map with the public differential over any ring. Thus,
2FSQUARE is immune from differential attack as well.

5.3 Direct

In [34], the authors present evidence that the analysis of EFLASH, see [29],
against direct message recovery attacks is incomplete. Specifically, they show
that low Q-rank relations in the extension field correspond to low degree syzygies
in the direct attack. This observation offers another method of cryptanalysis
against SQUARE as an instance of EFLASH with special parameters.

Note, however, that the observation of [34] relies on relations induced by the
Frobenius automorphisms of K “passing through” the output transformation in
the sense that there exists an Fp linear map L such that L composed with T
is equal to T composed with the Frobenius automorphism. As before, since T
is not Fp-linear in 2FSQUARE, this property fails to hold, thus, 2FSQUARE
does not have the anomalous low degree syzygies observed in [34]. We have
experimentally verified for small instances that the first fall degree matches the
semi-regular degree.

The best method for effecting a direct attack on a balanced multivariate
system is called the hybrid approach. First the attacker guesses the values of
k variables. Then some polynomial system solver is used to solve the resulting
system.

The type of polynomial system solver that is optimal depends on many pa-
rameters including the density of the equations, the number of variables and the
solving degree. Typically denser systems for which the solving degree is lower
benefit from Gröbner basis solvers powered by F4, see [35]. Systems with a larger
number of variables or less dense systems or that require a higher operating de-
gree do not benefit as greatly from the normalization step in F4 and can therefore
benefit from the lower memory costs, see [8], of the XL algorithm [36]. For pa-
rameters of cryptographic interest, we expect that XL variants will be the most
effective.

Notice that the system must be solved over Fq, and so we are not able to
add the normal field equations. Still, we may add equations of the form

gi(xi) =

p−1
2∏

j= 1−p
2

(xi − j),

which perform the same role as Fp field equations when solving over Fq.
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Thus, under the standard semi-regular assumption, the complexity of the
hybrid direct attack with k guesses will then be

Complexitydirect = 3pk
(
n+ 1

2

)(
n+ d

d

)2

(3)

Fq operations, where d is the smallest degree with a nonpositive coefficient in
the series expansion of

H(t) = (1− t2)n(1− tp)n−k

(1− t)n−k
.

Note that each such field operation will cost 2(log2 q
2 + log2 q) bit operations.

5.4 Lattice Attacks

While it seems that all of the standard multivariate attacks are made less efficient
by the 2F construction, some structure is added to the public key. Notice that
there exist Fq-linear combinations of the public key that are polynomials with
small coefficients, bounded in size by p−1

2 . This observation is the basis for an
attack based on lattices.

Notice that, analogous to the NTRU lattice, we may construct the lattice
given by the rowspace of [

p
q In P

0 qI(n+1
2 )

]
,

where P is the matrix whose ith row is the ordered list of monomial coefficients
of the ith public equation Pi. Notice that there exists a vector w with entries
in Fq such that ti∥w multiplied by the above matrix is p

q ti concatenated with

the list of monomial coefficients of Hi ◦U , where ti is the ith row of T−1. Thus,
we expect that the shortest vector in this dimension d =

(
n+1
2

)
+ n lattice to be

among these vectors.
All coordinates of this short vector lie in the interval (−p/2, p/2) with at

least
(
n+1
2

)
of them taking integral values, and so the expected length is well-

approximated by s =
√

(p2 − 1)d/12. In contrast the expected length of the
shortest vector in a random lattice of dimension d and volume V = pnqd−2n is
approximately npn/dq1−2n/d/2

√
πe.

We may follow the core-SVP methodology of [37] to estimate the complexity
of solving this SVP instance conservatively ignoring some polynomial overhead.
Following the geometric series assumption, we suppose that the length of the
ith Gram-Schmidt basis vector is given by ∥b∗

i ∥ = δd−2i−1V 1/d, where δ =
((πb)1/bb/2πe)1/2(b−1). The BKZ block size is then the smallest b for which the
projected length s

√
b/d is bounded by ∥b∗

d−b∥. The classical core-SVP hardness
of this problem instance is then computed as

Complexitycore-SVP = 20.292b. (4)
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Of course, we may change the disparity in the length of the shortest vector in
the above lattice and the value suggested by the Gaussian heuristic by bringing
the values of p and q closer, either by introducing a nonzero decryption failure
rate, by restricting the plaintext space or both, as discussed in Section 3. Thus,
the 2F construction has the strength to address any vulnerability arising from
some future lattice attack by adjusting these parameters in such a way as to make
the vectors associated with the secret key not be among the shortest vectors in
the lattice. The optimization of these strategies as well as other lattice attacks
is an interesting direction to further study.

6 Parameters and Performance

As discussed in Section 5, the best known attacks on 2FSQUARE are the direct
attack and the lattice attack. We find that for p = 3 the disparity in the length
between the shortest vector in the lattice of Subsection 5.4 and the Gaussian
heuristic is sufficiently small and the dimension sufficiently large that the lim-
iting attack is the direct attack. In contrast, for p = 7 the shortest vector is
much smaller than would be implied by the Gaussian heuristic and the lattice
attack then offers an advantage. Thus, we may select parameters based on the
formula (3) for p = 3 and based on formula (4) for p = 7. To be careful, we
assume that one bit of information is leaked in the form of the parity of some
coordinate of the plaintext. We do this because the central map of SQUARE is a
two-to-one function and 1-bit of redundant information is necessary to specify a
unique preimage. For 128-bit security, we may select p = 3, q = 6653 and n = 81
or p = 7, q = 344, 749 and n = 54. Targeting NIST level I security, see [38], we
may select p = 3, q = 8377 and n = 91 or p = 7, q = 449, 287 and n = 64. We
summarize the complexity of attacks at these security levels in Table 1.

Table 1. Complexity of known attacks at the 128-bit and 143-bit (corresponding to
NIST level I) security levels.

Scheme Sec. k Direct b core-SVP

2FSQUARE(3, 6653, 81) 128 43 128 463 135
2FSQUARE(3, 8377, 91) 143 46 143 700 204

2FSQUARE(7, 130411, 69) 128 18 169 360 105
2FSQUARE(7, 145861, 73) 143 20 176 412 120

We made a proof-of-concept implementation on the Magma Computer Alge-
bra System,1 see [39], to make a comparison to other secure multivariate encryp-
tion schemes, see [21, 27]. We find that our simple implementation is dramatically
faster at the same security level, even when compared with optimized code. Still,

1 Any mention of commercial products does not indicate endorsement by NIST.
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Magma’s implementation of the Sqrt command for finite fields is extremely ef-
ficient, so we suspect that an optimized implementation will not significantly
outperform this one. The results of these experiments are recorded in Table 2.

Table 2. Public key, message and ciphertext sizes, decryption failure rate and en-
cryption and decryption performance of multivariate encryption schemes at the best
available comparison to the 128-bit security level.

Scheme Sec. PK pt ct Enc.(ms) Dec.(ms) DFR

ABC(28,384,760) 128 54863KB 384B 760B 502 545 2−32

PCBM(149,414) 128 743KB 149b 414b 13 743 2−350

2FSQ(3, 6653, 81) 128 417KB 162b 129B 1.5 0.4 0
2FSQ(3, 8377, 91) 143 606KB 182b 148B 1.2 0.5 0

2FSQ(7, 130411, 69) 128 346KB 207b 147B 1.0 2.6 0
2FSQ(7, 145861, 73) 143 413KB 219b 157B 1.1 2.8 0

7 Conclusion

In the aftermath of several significant advances in cryptanalysis, there are sev-
eral new directions to explore to find secure post-quantum schemes. These new
schemes have motivations coming from avoiding rank attacks as well as import-
ing ideas from other areas in cryptography.

In the area of multivariate digital signatures the new Mayo scheme of [40]
introduces a method of creating oil-vinegar style maps, see [41], that can have
more balance between the number of variables and number of equations. The Q
modifier of [42] introduces a new method inspired by the relinearization algo-
rithm of [16] to construct structured instances of UOV that have a more efficient
inversion. While the recent result [43] shows that the latter scheme has limits
on how long the keys can be used statically, both schemes appear to be secure
for now.

The PCBM multivariate encryption scheme, inspired by linear codes, see [27],
establishes a new way of parameterizing a multivariate encryption scheme similar
to HFERP, see [28], but far more efficient. Now the 2F construction provides a
new way, inspired by the modulus switching of NTRU, to build secure and very
efficient multivariate encryption schemes.

While the above digital signature schemes take inspiration from established
knowledge in multivariate cryptography, the encryption schemes mentioned are
derived from examining code-based and lattice-based ideas. In all cases, how-
ever, there is a motivation to build a more efficient scheme that does not have
exploitable rank properties.

In particular, both the Q-modifier and the 2F construction are generic and
attempt to nonlinearly modify a given multivariate primitive. This genericity
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means that there is a multitude of possible schemes that may be derived from
these constructions that may have disparate security properties. This fact sug-
gests that there may be an enticing direction in which this work can progress
aside from advancing new targets for cryptanalysis; namely, we may work in the
attempt to build new multivariate schemes based on the 2F construction with
other profitable modifications.
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