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Evaluation of Flaw Detection
Algorithm Using Simulated
X-Ray Computed Tomography
of Ground Truth Data
A framework to generate simulated X-ray computed tomography (XCT) data of ground truth
(denoted here as “GT”) flaws was developed for the evaluation of flaw detection algorithms
using image comparison metrics. The flaws mimic some of those found in additively
manufactured parts. The simulated flaw structure gave a GT data set with which to quan-
titatively evaluate, by calculating exact errors, the results of flaw detection algorithms
applied to simulated XCT images. The simulated data avoided time-consuming manual
voxel labeling steps needed for many physical data sets to generate GT images. The voxe-
lated pore meshes that exactly match GT images were used in this study as opposed to using
continuum pore meshes. The voxelated pore mesh approach avoids approximation error
that occurs when converting continuum pore meshes to voxelated GT images. Spherical
pores of varying sizes were randomly distributed near the surface and interior of a cylin-
drical part. XCT simulation was carried out on the structure at three different signal-to-
noise levels by changing the number of frames integrated for each projection. Two different
local thresholding algorithms (a commercial code and the Bernsen method) and a global
thresholding algorithm (Otsu) were used to segment images using varying sets of algorithm
parameters. The segmentation results were evaluated with various image evaluation
metrics, which showed different behaviors for the three algorithms regarding “closeness”
to the GT data. An approach to optimize the thresholding parameters was demonstrated for
the commercial flaw detection algorithm based on semantic evaluation metrics. A frame-
work to evaluate pore sizing error and binary probability of detection was further demon-
strated to compare the optimization results. [DOI: 10.1115/1.4063170]
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1 Introduction
X-ray computed tomography (XCT) is a powerful tool for nonde-

structive detection evaluation of flaws in traditionally processed
materials, as well as in additive manufacturing (AM) materials
[1]. AM parts can include volumetric flaws such as gas pores,
lack-of-fusion pores, keyholing pores, near-surface pores, cracks,
and delamination [2–6]. XCT scans can be used to characterize
the pores [7] or to detect and screen out defective parts based on
a probability of detection (POD) curve [8]. For quantitative mea-
surements/characterization of pores and automated/assisted flaw
detection, a flaw detection algorithm is generally implemented
through image thresholding [9] or machine learning [10,11].
Regardless of the algorithm, the accuracy of the algorithm and

associated parameters used are often difficult to evaluate due to a
lack of ground truth (GT) information. The GT information may
be obtained through destructive measurements, which are often
time consuming and tedious, and the part is destroyed after the
process and is not reusable. It would be useful to have a reusable
physical phantom or easily configurable synthetic phantom (we
use the term phantom instead of artifact in this article so as not to
confuse the reader with well-known XCT imaging artifacts such
as beam hardening and scattering).
There is, however, a lack of physical or synthetic phantoms to eval-

uate flaw detection algorithms. Existing physical phantoms were
mostly developed to measure spatial resolution [12,13]. Synthetic
phantoms were developed for the evaluation of reconstruction algo-
rithm image quality for medical imaging applications (e.g., the
Shepp–Logan phantom [14]). Simulated phantoms for scientific appli-
cations with synchrotron imaging were also developed to assess recon-
struction algorithms [15]. Similarly, a software package was
developed to generate application-specific phantoms such as those
for dynamic imaging [16]. Pore detection and measurement capabili-
ties have not been assessed using these phantoms. This work addresses
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these deficiencies by focusing on the development of synthetic phan-
toms specifically for the evaluation of flaw detection algorithms.
State-of-the-art XCT simulation codes can generate realistic sim-

ulated data [17], and this capability allows the development of real-
istic synthetic phantoms. Synthetic phantoms have two clear
benefits: (1) the flexibility of developing custom part geometries
and pore distributions and (2) a clear knowledge of the GT informa-
tion regarding the original pore sizes, shapes, and locations. Both
benefits result from the fact that the synthetic phantom is created
voxel-by-voxel, inputting known information into every voxel.
By using these synthetic phantoms, we know exactly what the
binarized image should be after segmentation.
Porosity is a measure of the total amount of void space in a mate-

rial, which can be measured using different techniques [18]. In frac-
ture mechanics, however, the individual pore characteristics (size,
shape, and location) are of interest [19]. Due to the challenges of
measuring individual pore characteristics using traditional measure-
ment techniques, the total porosity is often used to estimate the
mechanical properties and structural integrity of the sample. XCT,
on the other hand, allows measurements of individual pore charac-
teristics from the flawmasks (i.e., segmented images) identified by a
detection algorithm, and evaluating the accuracy of these measure-
ments is the focus of this article.
In this article, we demonstrate a workflow to generate realistic XCT

simulation data with spherical pores placed at locations generated from
appropriate probability distributions and evaluate various segmenta-
tion tasks. The main purpose of developing the synthetic phantom
and simulated images is to provide benchmark data sets for compari-
son between different segmentation algorithms. We demonstrate the
concept on a standard cylindrical part geometry, but our approach
can be readily applied to different part geometries. While similar
XCT simulation-based approaches were independently implemented
to train and evaluate machine learning-based flaw detection algorithms
[20] and to demonstrate a digital twin framework [21], we imple-
mented a unique approach to create unambiguous GT labeled data
based on voxelated pores. Although it is possible to generate labeled
GT images based on the amount of overlap of surface meshes with
image grids (i.e., discretization), our approach ensures that the GT
image was exactly what was used to generate the simulated XCT
images. We further investigate a comprehensive list of metrics to eval-
uate semantic segmentation and instance segmentation of individual
pores (pore-level size errors and binary POD curves) to compare per-
formance of different segmentation algorithms (and different algo-
rithm parameters) and discuss the differences between semantic
segmentation evaluation metrics and pore-level evaluation metrics.
We also demonstrate an approach to optimize local thresholding algo-
rithm parameters using the generated data sets for several evaluation
metrics and discuss transferability of information (e.g., optimized algo-
rithm parameters and measurement uncertainty) from simulated data-
sets to similar experimental data for calibration of flaw sizes. The
methods demonstrated in this article can be applied to evaluate accu-
racy and reliability of different detection algorithms, which is useful
for the NDE 4.0 framework [22].

2 Data Generation
The evaluation data were generated through XCT simulation

using a commercial simulation code (aRTist2) developed by the
German Federal Institute for Materials Research and Testing
(BAM) [23]. Our synthetic phantom, similar to that used for a
detailed pore characterization study [24], was a cylindrical speci-
men (approximately 3 mm diameter × 3 mm height). The data gen-
erated in this article are publicly available [25].

2.1 Ground Truth Image Development. A cylindrical matrix
(827 voxel diameter × 827 voxel height) was generated in the center of
a 10013 voxel structure with 3.63 µm/voxel equivalent to XCT simu-
lation voxel resolution. A total of 420 nonoverlapping pores were ran-
domly distributed in the part representing both near-surface and
volumetric spherical gas pores. Pore diameters ranged from 1 voxel
to 41 voxels (diameters of 3.63 µm to 148.8 µm) in steps of two
voxels (7.26 µm). Smaller pores (<7 voxel diameter) were closer to
a cubic shape, but for voxel diameters greater than about 7, the pore
volume agreed with the true continuum sphere volume within 2%.
Ten pores of each size were randomly distributed in the near-surface
region within 200 µm of the sides of the cylinder, and ten pores of
each size were randomly distributed in the rest of the article. To
avoid placing pores too close to the surface, the minimum distance
between any part of a pore and the cylindrical part surface was
limited to 10 voxels (36.3 µm). It was out of scope to study the
effect of pores being any closer to the surface, whose detection
results would have been influenced by software’s surface determina-
tion capability. Horizontal and vertical cross section examples are
shown in Fig. 1. This synthetic phantom served as the GT image for
the XCT simulation and the evaluation of the segmentation algorithms.
Different pore sizes were labeled by different shades of gray in Fig. 1,
for ease of visualization and identification, but all pores were binarized
for the analysis described in this article. While larger numbers of pores
and additional variations of pore characteristics (size, shape, orienta-
tion, and distribution) can be implemented, we do not do so here to
provide simple, clear GT data for evaluation. We plan to incorporate
additional complexities in the future, as discussed later.

2.2 PoreMesh Generation. The XCT simulation was based on
surface meshes and associated material properties. We generated
voxelated surface meshes that followed the boundaries of the pore
voxel structure developed in the previous step. The voxelated pore
surface meshes were generated by using voxelfuse [26], and duplicate
faces were removed using meshlab [27]. Although pores of contin-
uum shape can be generated (Fig. 2(a)), we opted to directly generate
voxelated pore meshes (Fig. 2(b)). This avoided discretization of a
continuum surface mesh to a voxel grid in order to generate GT
images (Fig. 2(c)). This approximate conversion is a source of uncer-
tainty in the voxel-to-voxel evaluation process. In our case, the voxe-
lated mesh used in the XCT simulation perfectly matched the
voxelated GT image (Fig. 2(d)), so the segmentation from the XCT
reconstruction can be directly compared to the GT image. Examples
of voxelated surface meshes are shown in Fig. 2(e).

2.3 X-Ray Computed Tomography Simulation. In the XCT
simulation software, a cylinder with a diameter of approximately
3 mm and a height of 3 mmwas generated with the material properties
of nickel super alloy 625 (IN625). The voxelated surface meshes of
the pores were placed in the cylinder according to their positions
determined in the previous step. The parameters shown in Table 1
were used for the simulations. Camera binning and optical magnifica-
tion were considered when selecting the effective detector pixel pitch.
The detector size was 1001×1001 pixels, which generated 1001×
1001×1001 voxel volumes after reconstruction identical to the GT
image size. The detector model was used to account for the image
intensity and the signal-to-noise ratio (SNR) of a radiograph acquired
at a specified distance from the source and for a specified exposure
time and number of frames integrated. This allowed estimation of
image intensity and the SNR at different imaging conditions from ref-
erence measurements. In this example, we used 1, 4, and 9 frame aver-
ages, which effectively gave normalized SNR values of 1×, 2×, and
3×, respectively. The parameters used in the detector model are pro-
vided in the Supplemental Materials. The effects of X-ray scattering
(Compton and Rayleigh) were also considered by implementing the
Monte Carlo-based McRay simulation [28] at every ten projections
(2.25 deg) using 107 photons. The effect of X-ray scattering was
found to be minimal under the current test conditions. A spot size
of 5 µm was used.

2Certain commercial equipment, instruments, or materials are identified in this
paper in order to specify the experimental procedure adequately. Such identification
is not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or equip-
ment identified are necessarily the best available for the purpose.

041005-2 / Vol. 6, NOVEMBER 2023 Transactions of the ASME

http://dx.doi.org/10.1115/1.4063170


2.4 X-Ray Computed Tomography Reconstruction. XCT
reconstruction was carried out using the open-source software
ASTRA [29,30], which uses the Feldkamp, Davis, Kress (FDK) algo-
rithm [31]. The effects of iterative algorithms will be further inves-
tigated in future studies. The original reconstructed attenuation
values are in units of mm−1, and the values were rescaled to
16-bit [0–65,535] grayscale values (unsigned integers) in a consis-
tent manner for all data sets. The XCT reconstructed image intensity
(floating point number) is related to the attenuation coefficient in a
unit of length set by the user (mm−1 in floating point precision). We
linearly rescaled the reconstructions to 16-bit unsigned integers by
setting the peak of the air grayscale values to be approximately
13,000. The peak grayscale value of the material was set at
50,000 (slope= 5.405 × 10−5 and offset=−0.703). The slope and
offset can be used to convert the 16-bit unsigned integers back to
floating point values, up to round-off error with digital noise, if
needed (floating point value= 16-bit grayscale value × slope+
offset). Examples of cross-sectional reconstructed images with dif-
ferent SNRs are shown in Figs. 3(a)–3(c), and small regions of
interests (ROIs) are compared in Figs. 3(d )–3( f ). The SNR
values are local values achieved within the ROIs shown, and they
can vary depending on the ROI locations and sizes. Grayscale his-
tograms in Fig. 3(g) show the effect of different SNRs. The histo-
gram peaks are well separated from each other, and the peaks get
sharper as the SNR improves. The image intensity values are
shown for different sizes of pores and solid material in Fig. 4.
The voxelated pore masks were conveniently used to find image
intensities of pores and solid material, and the local contrast

(difference in the image intensity of solid and pore) increased as
the pore size increased. The average image intensities (points)
and their ±1 standard deviations (error bars) are plotted for different
pore sizes, and the solid material image intensity (constant hori-
zontal line)± 1 standard deviation (constant error bars) are also
plotted. In this case, the solid mask was eroded by using a spherical
structural element (61-voxel diameter) to measure the intensity and
noise values sufficiently away from solid/pore interfaces. The
average values of pore intensity are similar for different SNR
data, while a slight reduction in standard deviation is found for
the increase in SNRs. The variability of image intensity in solid
material voxels is affected by the presence of pores; therefore,
SNR values were evaluated in regions sufficiently far away from
these pores.

3 Image Segmentation
Image segmentation was the basis for feature detection in our

XCT images by creating a binary mask through classification of
the voxels as black (pore) or white (solid material). Segmentation
usually involves the implementation of an image thresholding algo-
rithm combined with some preprocessing (e.g., de-noising) and
postprocessing steps (e.g., morphological operations). We imple-
mented a commercial local thresholding algorithm (EasyPore algo-
rithm in VGStudioMax 3.4), the Bernsen local threshold algorithm
[32] implemented in 3D, and the Otsu global thresholding algo-
rithm [33]. Both local thresholding algorithms have two main

Fig. 1 A horizontal cross section (left) and a vertical cross section (right) of the phantom. The
near-surface region is shown as the dashed area

Fig. 2 Surface meshes that can be used for XCT simulation with (a) continuum shape and
(b) voxelated structure. (c) and (d ) Corresponding binary GT images of (a) and (b). (e) Voxe-
lated surface meshes (≈11, 21, 31, and 41 voxel diameters).
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tunable parameters: the local contrast threshold (LCT) and local
window (LW) size, which are specified by the user. A local
thresholding algorithm generally determines the threshold
based on information within each local window surrounding
the voxel to be classified [9], which tends to outperform global
thresholding algorithms when there is nonuniformity in image
intensity [34]. The outside surface of the metal cylinder (part
surface) was determined using the commercial software at the

ISO45 (45% value between the histogram peaks of material
and air, see Fig. 3(g)) value initially and further refined itera-
tively. For the Bernsen algorithm, a minimal follow-up image
processing step was implemented to mask the boundary of the
region to be studied. Inaccuracy in the surface determination
can inadvertently penalize the evaluation of flaw detection algo-
rithms by omitting some pores near surfaces within this bounding
volume. To avoid this, we ensured that all pores were present
within the bounding volumes used. For the Bernsen algorithm,
the thresholding was initially carried out on the entire image,
which included background areas. In order to only account for
the features detected in the part of interest, a cylinder that was
eight voxels smaller than the original cylinder was used as a
mask. The radius of the largest local window size considered in
this study was also eight voxels, which essentially limited how
close to the edge one can evaluate the results using the local
thresholding algorithm. The Otsu algorithm does not have any
user-specified parameters, but it automatically finds n–1 global
thresholds between n histogram peaks (n= 2 in Fig. 3).
Examples of the voxelated pore mesh used for the simulation,

GT image, reconstructed image, and segmented image are
shown in Figs. 5(a)–5(d ), respectively. The voxelated pore
surface meshes used for the XCT simulation are overlaid on the
binary GT image, reconstructed image, and thresholded image.
The surface mesh is the same size as the GT image pore boundary
so that the GT image can be directly compared with the segmented
image. In this example, the segmented pore was slightly larger
than the GT pore based on the LCT chosen for demonstration
purposes.

Table 1 XCT simulation parameters

Parameters Values

Voltage (kV) 160
Current (µA) 61
Target W
Window (material; thickness (mm)) Be; 1
Filter (material; thickness (mm)) Mo; 5
Exposure time (s) 3
Frames/projection 1, 4, 9
Number of projections 1600
Source-to-detector distance (mm) 26
Source-to-object distance (mm) 14
Geometric magnification 1.86
Camera pixel pitch (µm) 13.5
Binning 2
Optical magnification 4
Effective detector pixel pitch (µm) 6.742
Effective voxel pitch (µm) 3.630

Fig. 3 Example reconstructed image of simulated using (a) 1 frame/projection (fpp), (b) 4 fpp,
and (c) 9 fpp. The small squares indicated by a dashed line are shown in (d ) 1 fpp (from (a)), (e)
4 fpp (from (b)), and ( f) 9 fpp (from (c)). (g) Comparison of the grayscale histograms for each
image (a, b, and c).
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4 Evaluation Metrics
The segmentation results were evaluated globally (semantic seg-

mentation evaluation) for an entire 3D image, using a wide range of
metrics in order to maximize the usefulness of this evaluation, and

locally for individual pores. The metrics and methods used to eval-
uate the detection results are described in this section.

4.1 Semantic Segmentation Evaluation. The semantic seg-
mentation evaluation was carried out by comparing the segmented
image to the GT image using metrics or measures of similarity or
distance between the images. The metrics in Table 2 were used to
evaluate the segmentation results.
The equation for intersection over union (IOU) is shown in

Eq. (1) as it will be used throughout the article. The symbols A
and B represent two images being compared, and many metrics
are based on components of a confusion matrix, which include
the true positive counts (TP, pixels/voxels that are correctly seg-
mented as flaws), false positive counts (FP, pixels/voxels that are
incorrectly segmented as flaws), true negative counts (TN, pixels/
voxels that are correctly segmented as solid material or back-
ground), and false negative counts (FN, pixels/voxels that are incor-
rectly segmented as solid material or background). Basic equations
for other metrics are provided in the Supplemental Materials of this
article and summarized in Ref. [53]. The metrics can be grouped
into six categories: (1) overlap based (DICE, IOU, accuracy
(ACR), true positive rate (TPR), true negative rate (TNR), false pos-
itive rate (FPR), false negative rate (FNR), precision (PRC),

Fig. 4 Image contrast of pores and solid material for (a) 1 fpp,
(b) 4 fpp, and (c) 9 fpp. Error bars are ±1 standard deviation

Fig. 5 (a) Pore surface mesh used for simulation, (b) GT image, (c) reconstructed image, and
(d ) segmented image. The saw-tooth line is the surface of the GT particle (in this 2D slice)

Table 2 Metrics and symbols used in this article

Metric Symbol Other names Category References

Dice DICE =F1-Measure Overlap based [35]
Intersection over union IOU Jaccard index Overlap based [36]
Accuracy ACR Overlap based
True positive rate TPR Sensitivity, Recall Overlap based
True negative rate TNR Specificity Overlap based
False positive rate FPR Fallout, = 1 – TNR Overlap based
False negative rate FNR =1-TPR Overlap based
F-measure FMS F1-measure, =Dice Overlap based [37]
Precision PRC Overlap based
Global consistency error GCE Overlap based [38]
Volumetric similarity VS Volume based [39–42]
Rand index RI Pair-counting based [43]
Adjusted Rand index ARI Pair-counting based [44]
Mutual information MI Information theoretic based [45,46]
Variation of information VOI Information theoretic based [47]
Interclass correlation ICC Probabilistic based [48]
Probabilistic distance PBD Probabilistic based [49]
Cohens kappa KAP Probabilistic based [50]
Area under ROC curve AUC Probabilistic based [51]
Mahalanobis distance MHD Distance based [52]
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F-measure (FMS), global consistency error (GCE)), (2) volume
based (volumetric similarity (VS)), (3) pair-counting based (Rand
index (RI), adjusted Rand index (ARI)), (4) information theoretic
based (mutual information (MI), variation of information (VOI)),
(5) probabilistic based (interclass correlation (ICC), probabilistic
distance (PBD), Cohens kappa (KAP), area under receiver operat-
ing characteristic (ROC) curve (AUC)), and (6) spatial distance
based (Mahalanobis distance (MHD)). The AUC for binary image
evaluation follows the definition found in Ref. [51] by measuring
the areas under trapezoids for a single-point ROC curve connecting
(0,0) and (1,1). The MHD metric follows the definition of [52]. For
the type of evaluation carried out in this article, DICE is identical to
FMS. The IOU metric is also called the Jaccard index, and it is
related to DICE (=2*IOU/(1+ IOU)). Therefore, DICE and IOU
provide similar information. The TPR is also called sensitivity,
TNR is also called specificity, and FPR is also called fallout. The
FPR is related to TNR (FPR= 1–TNR), and FNR is related to
TPR (FNR= 1–TPR). Therefore, either FPR or TNR and FNR or
TPR is recommended to be used for evaluation. A simple graphical

illustration is shown in Fig. 6(a) for semantic segmentation evalua-
tion and confusion matrix components. The EvaluateSegmentation
tool [53] was used to compute all semantic segmentation evaluation
metrics. While we investigated all metrics listed in Table 2, we
found that only a few were relevant to this article. It is worth
noting that different metrics are sensitive to different properties
for evaluation, and the choice of metric is considered to be appli-
cation specific [53]. We intend to apply these metrics for the
evaluation of segmentation results and for the optimization of seg-
mentation algorithms.

IOU =
A ∩ B

A ∪ B
=

TP
TP + FP + FN

(1)

4.2 Instance Segmentation Evaluation. The instance seg-
mentation evaluation task is to evaluate how well individual
objects are segmented and detected. All GT pores with a diameter
of 7 voxels or larger are near-spherical shape (perfect spheres that
have been projected on a voxel mesh). Pore volumes and
volume-equivalent spherical diameters (volume of a continuum
sphere of the same volume) of the thresholded pores were found
and compared to the volumes and volume-equivalent spherical
diameters of the GT pores. We used the equivalent spherical dia-
meter for ease of presentation and explanation of the concept.
The volume-equivalent spherical diameter (Deq) is the diameter of
the sphere with equal volume to that of the pore (Vpore) and is
given by Eq. (2). We also developed a volume-based metric,
which can be applied to nonspherical pores. The aspect of object
detection was also investigated through the POD framework.

Deq =
6 · Vpore

π

( )1/3

(2)

When comparing individual thresholded pores to GT pores, it
was not always straightforward to identify the correct pore pairs
automatically. We identified the pore pairs based on IOU between
individual GT pores and segmented pores, which is illustrated in
Fig. 6(b). An IOU score matrix between all labeled GT pores and
segmented pores and a binarized version (yes/no pore overlap)
with the IOU score cutoff value= 0.1 are shown in Fig. 7. The user-
defined cutoff value is used such that if the index is greater than or
equal to that cutoff, there is sufficient pore overlap, while if the
index is below the cutoff, insufficient pore overlap exists. In this
simple example, 11 GT pores were considered, and 12 pores
appeared after the segmentation process. Diagonal elements of the
matrix tended to be nonzero due to the same labeling sequence as
that applied to GT images especially if there was a low false positive
rate. The binarized IOU score matrix enabled the automatic identi-
fication of TP, FP, and FN by summing over the columns and rows.
The value of TN for an object detection task is not meaningful as it
is related to the background. These confusion matrix components as
shown in Fig. 6(b) are evaluating different tasks from those
described for a semantic segmentation evaluation of Fig. 6(a). If
the row sum was equal to 1, it was a TP—one GT pore and one

Fig. 6 (a) Illustration of semantic segmentation evaluation and confusion matrix components for semantic segmentation and
(b) illustration of instance segmentation and object detection

Fig. 7 IOU score matrix (top) and binary IOU score matrix
(bottom). The cutoff for the local IOU score=0.1. 11 GT and 12
segmented pores are considered.
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overlapping segmented pore. If the column sum was equal to 0, it
indicated FN—a single GT pore and no detection of an overlapping
segmented pore. If the row sum was equal to 0, it indicated an FP. In
addition to typical TP, FP, and FN, we identified situations of
merged pores and split pores. If the row sum was larger than 1, it
indicates a merged pore—two or more GT pores merged into one
segmented pore. A merged pore may be found if two or more GT
pores are positioned close to each other, and an example will be
shown later. If the column sum was larger than 1, it indicated a
split pore—a single GT pore split into two or more segmented
pores. Figure 7 gives illustrations of these cases, marked with var-
iously colored boxes.

5 Results
The various segmentations of the simulated XCT data using dif-

ferent local threshold parameters were evaluated using the GT
image data and various evaluation metrics. This systematic

comparison to GT provided the ability to optimize the local thresh-
old parameters and to understand measurement uncertainty based
on a particular algorithm parameter set. Optimization was carried
out for each semantic segmentation metric, which, in general, pro-
duced somewhat different results.

5.1 Semantic Segmentation Evaluation. All unique semantic
segmentation metrics were used to demonstrate the effect of a local
thresholding algorithm parameter (LCT) for the commercial algo-
rithm as shown in Fig. 8. The LCT was varied in five levels from
4000 to 16,000, while the LW was fixed at 11 voxels. The data
set with 4 fpp was used for this example (SNR= 2×). For many
evaluation metrics (DICE, IOU, ACR, GCE, VS, RI, ARI, MI,
VOI, ICC, PBD, and KAP), clear patterns with maxima and
minima were observed, which indicated the possibility of optimiza-
tion. Some metrics such as ACR were not as sensitive to changes in
the LCT parameter compared to metrics such as DICE or IOU due
to imbalance of feature (positive) and background (negative) sizes.

Fig. 8 Semantic segmentation evaluation results for different LCT values
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The background accounts for many more voxels than pores in this
dataset, and therefore, the change in other phases is not significant.
The confusion matrix (TP, FP, TN, and FN) in Fig. 9(a) also shows
that the negative phase (i.e., FP+TN) is significantly larger than the
positive phase, with TN counts dominating all others. The changes
in the confusion matrix components are also shown in the figure. As
the LCT increases, the FP and TP counts decreased, while FN and
TN counts increased. The metrics such as DICE and IOU do not use
the dominant TN counts; therefore, DICE or IOU present higher
sensitivity to changes in positive phase (i.e., TP+ FN) and are pre-
ferred over ACR. The TPR, FPR, and PRC do not show clear
maxima nor minima. These metrics are usually combined as the
ROC curve (i.e., TPR versus FPR) or as a precision-recall curve
(i.e., PRC versus TPR) to provide more meaningful results. The
ROC curve (i.e., TPR versus FPR) in Fig. 9(b) also shows the
effect of LCT values. An optimized value of LCT may be found
by minimizing FPR while maximizing TPR, which is near the
knee point of the curve.
Comparison at the individual pore level shows some interesting

similarities and differences. Segmentation results of a small pore
(≈11 voxel diameter) and a large pore (≈31 voxel diameter) are
shown in Fig. 10 for three levels of LCT using the commercial algo-
rithm. The images are 2D cross-sectional images at the mid-height
of the GT pores. The GT image of the large pore is shown in
Fig. 10(a), and segmented images of the pores are shown in Figs.
10(b)–10(d ) using different LCT values. The GT image of the
small pore is shown in Fig. 10(e), and segmented images of the
pores are shown in Figs. 10( f )–10(h) using the same LCT values.
The LW size was fixed at 11 voxels for these examples. The
global IOU scores of the entire 3D image, shown in Fig. 10(i) for
different LCTs, display a maximum. The behavior of the IOU
score for just the large pore (Fig. 10( j)) is very similar to that of
the global IOU score, while the IOU score for the small pore
(Fig. 10(k)) behaves differently as a function of LCT. The result
shows that at LCT= 10,000, the pore measurement result is close
to the GT for the large pore, but not for the small pore. The
larger pores occupied more volume in the images compared to
the smaller pores, and so the global IOU score and the IOU
scores of the larger pores show a high correlation for the same
LCT value. On the other hand, smaller pores present lower contrast
(as shown in Fig. 4) and, when combined with the complex

interaction of the edge blurring effect, the LCT value optimized
for the larger pores may not be optimal for smaller pores.
The Bernsen algorithm shows a different behavior in Fig. 11. The

LCT value was varied from 2500 to 65,000 (2500 to 30,000 shown
in the figure) by increments of 2500, and three LW sizes were used:
5 voxels, 11 voxels, and 17 voxels. The SNR was also varied in
three levels. No clear maxima or minima were observed for the var-
iation of the local thresholding parameters within the bounds
selected for the study. Instead, only a minimal change is observed
after LCT became large enough, which meant between about
12,000 and 18,000 depending on SNR, LW, and the semantic seg-
mentation evaluation metric. It is also possible to observe that the
increase in LW size increases the LCT needed to reach the
plateau. The effect of increasing the SNR value can be seen using
the IOU score, which increased also with SNR. Similar to the
results of the commercial algorithm, DICE and IOU show higher
sensitivities to parameter changes compared to ACR because for
any LCT, ACR is greater than 0.8, whereas DICE and IOU
occupy the entire possible range of 0–1. Figure 12 shows threshold-
ing results for the same small diameter (≈11-voxel diameter) pore
and the large diameter (≈31-voxel diameter) pore shown for
the commercial algorithm at different LCT values while keeping
LW= 11 voxels. Details of the Bernsen thresholding algorithm are
provided in the Supplemental Materials, but a few key steps are
covered here to aid interpretation of the results. Based on a local con-
trast value and LCT, the algorithm first determines whether the local
window is within a single-phase region or a dual-phase region. Then,
the voxel of interest is thresholded to 0 or 1 depending on the voxel
intensity. By using a low LCT, a higher number of FP voxels were
found around the segmented pores. Once the LCT reaches a suffi-
ciently high value, minimal changes were observed to thresholding
results, which explains why the semantic segmentation values are
almost constant in Fig. 11 for large LCT values.
The commercial local thresholding algorithm, the Bernsen local

thresholding algorithm, and the Otsu global thresholding algorithm
are compared in Fig. 13 for the IOU metric. As seen in Fig. 13(a),
both local thresholding algorithms outperformed Otsu’s method
when algorithm parameters were suitably chosen. The maximum
metric value of the commercial algorithm was higher than that for
the Bernsen algorithm. The Bernsen algorithm, on the other hand,
was more tolerant of inexact choices of the user-defined parameters

Fig. 9 (a) Confusion matrix variation for LCT and (b) receiver operating characteristic curve
for varying LCT values
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(large flat regions for the Bernsen algorithm curves in Fig. 13(a)).
Figure 13(b) compares confusion matrix components of the com-
mercial algorithm (LCT= 10,000 and LW= 11 voxel), the
Bernsen algorithm (LCT= 15,000 and LW= 11 voxel), and
Otsu’s algorithm. Using the confusion matrix components, the
IOU scores were computed as shown in Table 3. The commercial
algorithm performed better than the Bernsen local thresholding
algorithm and the Otsu global thresholding algorithm at its best
settings.
Many overlap-based metrics such as DICE and IOU account for

differences in both the volume and the shape of the pores, and they
provided good measures here. However, this type of metric can be
problematic when segmentation shows misalignment or significant
deviation in shape. In our data set, segmented pores were almost con-
centric while preserving near-spherical shape. Metrics such as ACR,
however, are sensitive to the size of background (e.g., TN), and the
metric may not be sensitive to changes in algorithm parameter
values. VS only accounts for volume, and it may provide misleading
information for more complex pore shapes, but it gave acceptable
results for our data sets. MHD focuses on distances of cluster
center rather than feature size or shape, and it may not be a good
metric for evaluating segmentation accuracy of size or shape.

5.2 Optimization of Parameters. In this section, we demon-
strate a method to optimize the local thresholding algorithm param-
eters, LCT and LW, for the commercial code. This is possible as
there were distinct maxima or minima for most of the semantic

segmentation evaluation metrics. A similar approach could be
used for the Bernsen algorithm, but the goal would change from
finding the optimal parameter values to finding values past which
there is no further improvement. This could change some details,
but the general method, consisting of the following three steps,
would be the same: (1) vary the local thresholding parameters
(and others of interest such as the SNR) according to an appropriate
designed experiment (see, e.g., Ref. [54]) and record the evaluation
metric for each parameter combination; (2) fit an appropriate model
(e.g., a polynomial model) to the experiment results; and (3) use the
fitted model to select the optimal local thresholding parameters.
Using a designed experiment and model for interpolation would
be more resource efficient than a brute force search over a large
space of parameter combinations.
We varied image SNR, LCT, and LW size in the commercial

local thresholding algorithm to observe how the best local thresh-
olding parameters changed with the SNR. We constructed an opti-
mally blocked response surface design [55] since different
combinations of LCT and LW could be applied to the same simu-
lated image, but the SNR is fixed for a given image. Four images
(four blocks) were simulated. Three values of the SNR were used,
≈23.9, ≈50.3, and ≈77.1, and the SNR 50.3 was repeated once to
obtain the fourth image. Nine combinations of the LCT and LW
(some repeated) were then assigned to each image using the opt-
Block function of the AlgDesign package [56] for R [57]. The
LCT values were 7000, 10,000, and 13,000, and the values of the
LW size were 5, 11, and 17 voxels. A total of 36 experimental
runs were implemented for the study.

Fig. 10 (a)—(d ) Thresholding results of a large pore (≈31 voxel diameter) at three LCT values,
(e)—(h) thresholding results of a small pore (≈11 voxel diameter) at the same three LCT values,
and IOU score at the same three LCT values for (i) the entire image, ( j) the large pore, and
(k) the small pore
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To find an optimal combination of LCT and LW for a given value
of the SNR and a given metric, a full quadratic response surface was
fitted where the response variable is the metric, and the predictor
variables are the SNR, LCT, and LW. Since the experiment was
designed and conducted as a split-plot experiment (see, for
example, Chapter 9 of Ref. [54]) that structure is appropriately
accounted for using the lmer function from the lme4 package [58]

for R [57]. The fitted surface was used to find the optimal combina-
tion of LCT and LW, which can occur on the boundary of the exper-
imental region defined by the rectangle [7000, 13,000] × [5, 17] (the
extremes of LCT and LW considered). Confidence intervals were
constructed using a parametric bootstrap algorithm [59]. In cases
where a maximum was sought, relatively small values of the
metric under study were removed so that they would not unduly

Fig. 11 Evaluation metric results of the Bernsen algorithm for varying parameters and SNRs
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influence the fitted response surface. In cases where a minimum was
sought, relatively large values were removed. The respective cutoffs
for excluding an experimental run were the median value of the
metric ±6× the median absolute deviation.
The algorithm segments an object smaller than GT for lower

LCT while it segments the object larger than the GT for higher
LCT. Hence, we observed clear maximum (or minimum) points
for many semantic segmentation evaluation metrics. The presence
of a maximum (or minimum) point for the metric away from the
boundary of the experimental region is also related to the proper
selection of parameter boundaries where we expect to observe
maximum (or minimum) points. The optimized segmentation
parameters are shown in Fig. 14. The segmentation software
rounds up and down the optimized values to the nearest integer,
and rounded values are shown for both the optimized values
and their confidence intervals. The DICE and FMS metrics
showed the same results as they are the same metrics. The FPR
and TNR also showed the same results since they are monotonic
transformations of each other as mentioned earlier. Several
metrics produced the same optimized parameters, e.g., DICE,

ARI, ICC, and KAP. The ACR and RI metrics did as well. The
optimization results will be further discussed with pore size
error plots in a later section. The optimized LCT value tends to
reduce, and the LW value tends to increase as SNR improves.
The mean-squared error (MSE) metric, the mean of the squared
pore size errors, was also used as a metric for optimization and
will be explained in the next section. The MSE metric is an eval-
uation metric for instance segmentation, but it was also used as a
metric for optimization.
The total pore volume for each pore size is shown in Fig. 15(a).

The IOU score contribution of each pore size is shown in
Fig. 15(b). The IOU score was chosen as an example to show
how performance metrics are often dominated by the large
pores. These were determined by breaking the summation defining
the IOU score into partial sums over the pore sizes. Intersection
values for each pore size were divided by the same union values
for all pores (same denominator for each numerator). The linear
correlation between pore volume and pore size (Fig. 15(c))
shows that the dominant pore volumes also dominate this metric-
based optimization.

Fig. 12 Bernsen algorithm thresholding results for a large pore (≈31-voxel diameter, top row)
and a small pore (≈11-voxel diameter, bottom row). LW=11 voxel in this case.

Fig. 13 (a) Comparison of commercial, Bernsen, andOtsu algorithms for IOU. (b) Comparison
of confusion matrix components for commercial algorithm (LCT=10,000 and LW=11 voxel),
Bernsen algorithm (LCT=15,000 and LW=11 voxel), and Otsu algorithm.
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5.3 Pore-level Segmentation Evaluation

5.3.1 Pore Sizing Error. Understanding the accuracy of indi-
vidual pore size measurements is of great interest in many engineer-
ing applications. The individual pore sizing errors using the
optimized local thresholding parameters were computed for the
commercial algorithm, for hand-selected local thresholding param-
eters for the Bernsen algorithm, and for the Otsu algorithm. The
segmentation results that were optimized for the IOU metric and
applied to the 4 fpp data are used as an example to demonstrate
the pore-level evaluation process. Based on the pore pairs found
from the binary IOU score matrix (IOU cutoff value= 0) described
in Sec. 4, an absolute pore diameter error (EDeq = Dth − Dgt) plot is
shown in Fig. 16(a) based on the volume-equivalent spherical dia-
meter of both GT pores (Dgt) and segmented pores (Dth). In this
case, two merged pores were identified from the analysis corre-
sponding to four outlier data points shown in Fig. 16(a). The
merged pores result in outlier data points as the GT pore diameter
was subtracted from the much larger merged pore diameter.
These merged pores were already identified from the binary IOU
score matrix. While it may be possible to separate such merged
pores through a watershed separation algorithm [60], we did not
consider such additional steps in order to focus solely on the seg-
mentation algorithms. Figure 16(b) shows two GT pores, which
had a distance of 3.1 voxels from surface to surface, and
Fig. 16(c) shows how the two pores were merged in a narrow
neck. The approximate surface-to-surface distance between the
two neighboring GT pores was found by subtracting the sum of
the two equivalent spherical radii from the distance between the
spheres’ center voxels.
In Fig. 16(d), the merged pores are removed from the absolute pore

size error plot. For the evaluation task in this article, we do not con-
sider merged pores or split pores as they can skew the average anal-
ysis result. Smaller-sized pores displayed larger average deviations
from the GT and more variability in the individual deviations com-
pared to larger pores. Standard deviations and 95% confidence

bounds for the mean (light gray band) of the pore size errors are
shown in Fig. 16(e). The confidence bounds were based on the stan-
dard error of the mean (std/sqrt(n)) multiplied by the Student’s t dis-
tribution percentile based on the target confidence (95%) and
degrees-of-freedom (n–1) with the number of detected pore pairs
(n). For example, for 11 voxels, std= 0.119, n= 20, Student’s t dis-
tribution factor= 2.093, sqrt(n)= 4.47, and the confidence bound
became very narrow (±0.0279). In this case, we found an average
error of about 1 voxel for the 11-voxel diameter pore and an
average error of approximately 0 voxel for 25-voxel diameter pore.

The MSE, (1N
∑N
i=1

(Dgt − Dth)2), can be found for all pore sizes,

where N is all segmented pore pairs with a single GT pore. The
MSE can be used as an additional metric for optimization. If used
in its aforementioned raw form, based on our observations from
Fig. 16, MSE will prioritize smaller pores with larger pore size
errors, in contrast to IOU, which we established already prioritizes
large pores.

5.3.2 Probability of Detection. A binary POD analysis was
also carried out on these results following the principles of

Table 3 IOU score comparison of the commercial, Bernsen, and
Otsu algorithms

Commercial Bernsen Otsu

LCT (gray level) 10,000 15,000 N/A
LW (voxel) 11 11 N/A
IOU 0.965 0.935 0.874

Fig. 14 Optimized LCT and LW parameters and uncertainty
bounds

Fig. 15 (a) Pore volume distribution of the system, (b) IOU score contribution of individual pore sizes, and (c) correlation
between pore volume and IOU score contribution
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MIL-HNBK-1823A [61]. Previous XCT POD studies [8] focused
on a signal-response (â versus a) POD analysis, which is an
application-specific method that depends on a user-defined decision
threshold when used for inspection. The segmented pore volume
can be used as the signal (â), and the variation in segmented pore
volumes due to possible variations in the thresholding algorithm
parameter was propagated into POD curve uncertainty in
Ref. [17]. In contrast, for this binary POD analysis, a pore was con-
sidered to be detected if it was identified from the IOU score matrix
and the chosen IOU score cutoff value. The detected pores are
plotted as ones and undetected pores are plotted as zeros in
Fig. 17 using the same data sets shown in Fig. 16. A pore was iden-
tified as found regardless of the sizing accuracy. A logistic regres-
sion model (see, e.g., Ref. [62]) with the GT diameter as the
predictor and the zeros and ones, indicating nondetection and detec-
tion, respectively, as the response, was used to estimate the POD
curve. Because there are a mix of zeros and ones only at the GT dia-
meter of 5 voxels, the Bayesian statistical inference paradigm with
weakly informative proper prior distributions was used to estimate
the slope and intercept of the logistic regression model as well as
quantify uncertainty. The same approach can be used when there

is complete separation, i.e., when no GT diameters have a mix of
zeros and ones. The corresponding pore size errors are plotted in
Fig. 17. In this case, we can expect to have an approximately
65% POD for a pore with a 5-voxel diameter, but with an
average sizing error of about 3.5 voxels. The two metrics are com-
plementary as high POD does not necessarily mean high accuracy
in size measurements.

5.3.3 Comparison of Segmentation Algorithms. Figure 18
compares the three segmentation algorithms (commercial,
Bernsen, and Otsu) for POD and pore size error. The commercial
algorithm local thresholding parameters are optimized based on
the IOU metric (LCT= 9653 and LW= 5 voxels). The correspond-
ing parameters for the Bernsen algorithm are LCT= 15,000 and
LW = 11 voxels. Using the optimized parameters, the commercial
algorithm resulted in an IOU score of 0.975, which is a small
improvement over the value of 0.965 found based on LCT=
10,000 and LW= 11 voxel. The commercial algorithm provided
an average pore size error of about −1.5 voxels for the 9 voxel dia-
meter pores while the POD was approximately 95%. Although the
Bernsen algorithm showed slightly higher POD compared to other
algorithms, it performed poorly for pore sizing accuracy. The Otsu
algorithm showed the worst POD curve, but the pore size error for
larger pores (D≥ 15 voxel) was comparable to the commercial algo-
rithm. The variability in the individual pore size errors of smaller
pores (D< 15 voxel) was the largest (in magnitude) for Otsu’s
algorithm.
In addition to evaluating pore diameter error, a pore volume-

based metric was also proposed. In the case of a pore with a

Fig. 16 (a) Pore size error (EDeq ) plot showing outliers due to
merged pores, (b) GT pores separated by approximately 3.1
voxels surface to surface, and (c) a merged pore after segmenta-
tion (d ) pore size error plot with the merged pores removed,
(e) pore size error plot showing mean (red point), ±1 standard
deviation (red bar), and 95% confidence bound (gray band)

Fig. 17 Binary POD curves (left y-axis) and pore size error plot
(right y-axis)

Fig. 18 Comparison of POD curves and pore diameter error
plots for the commercial (LCT=9623 and LW=5 voxel),
Bernsen (LCT=15,000 and LW=11 voxel), and Otsu algorithms

Fig. 19 POD curves and volume error plots in log scale for the
commercial (LCT=9623 and LW=5 voxel), Bernsen (LCT=
15,000 and LW=11 voxel), and Otsu algorithms
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spherical shape, the use of Deq is completely valid and equivalent to
the use of volume. In many cases, however, we expect to evaluate
nonspherical pores, and the evaluation of these pores based on a
derived metric becomes problematic. As a result, we also proposed
to use ln(Vth/Vgt)= (lnVth− lnVgt)) as a basis to understand segmen-
tation error, where Vth and Vgt are pore volumes of the thresholded
image and the GT image, respectively. Figure 19 shows example
POD curves and volume error plots in log scale. Volume-based
metrics were also used for previous XCT signal-response POD
analyses [8,17].

5.4 Comparison of Optimization Results. Using the opti-
mized local thresholding parameters (LCT and LW) presented in
Fig. 14, pore size errors and POD curves are compared in
Fig. 20. The metrics DICE, IOU, MHD, and MSE used for the opti-
mization processes were selected for comparison to highlight their
similarities and differences. Other results are also shown in the
Supplemental Materials. The POD generally improves for increased
SNR values, which means that noise reduction improved the detec-
tion of smaller pores. The selected local thresholding parameters
using DICE and IOU are close to each other, and the pore size
errors and POD curves are similar. The average errors tend to
reduce in magnitude as the SNR value increased. Pores with diam-
eters larger than about 15 voxels showed a small average pore size
error. The 9 fpp data show an average pore size error pattern that is
different from the equivalent 1 fpp and 4 fpp data. The average pore
size error is within ±0.5 voxel for smaller pore sizes (Deq < 15
voxel), while the average pore size error is close to 0 for larger

pore sizes (Deq≥ 15 voxel). Optimizing the local thresholding
parameters based on the MHD metric leads to the largest pore
size errors. This occurs because the MHD metric compares only
the centers of the GT and segmented pores. The size of the pores
is not considered in the computation. MSE-based optimization, on
the other hand, shows similar pore size error trends for all SNRs.
The MSE for all pores in an image, based on optimizing the local
thresholding parameters for the selected metric and SNR

Fig. 20 POD curves (left y-axis) and pore size error plots (right y-axis) of DICE, IOU, MHD, and
MSE

Fig. 21 MSE of pore diameter error for optimization results
based on all metrics
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combination, are shown in Fig. 21. MSE averages over all pore
sizes, so the metric may be more sensitive to the larger errors at
smaller pore sizes. The MSE value generally decreased as the
SNR value increased. However, in some cases, the MSE values
for the 4 fpp and/or 9 fpp data are higher than for the 1 fpp data.
MSE-based optimization showed low MSE values for all SNRs,
which is reasonable since the optimization was carried out to min-
imize MSE for each value of SNR. The expected trend of decreas-
ing MSE with increasing SNR is also observed for the MSE-based
optimization.

6 Discussion
6.1 Calibration of Experimental Pore Size Measurement.

Starting with clear GT information as the input to simulated XCT
data provided clear benchmark information that enabled evaluation
and comparison of XCT flaw detection algorithms. In addition,
there is the possibility of using the simulated data as the basis for
choosing detection algorithm parameters and estimating pore size var-
iability and bias in XCT experimental data. VDI/VDE 2630 part 2.1
[23] mentions a few essential metrological characteristics such as the
component shape, maximum transmission lengths, and the linear
attenuation coefficient for meeting similarity conditions. The guide-
line does not provide details on how closely these conditions
should match, and there may be a valid regime of the XCT simulation
models for users to carefully consider. In this case, the XCT simula-
tion was carried out based on experimental data with a similar part
dimension, shape, and material as described in Ref. [24], which
was an additively manufactured nickel superalloy cylinder (3 mm
diameter and 3 mm height). All simulation parameters in this work
were identically set to match image quality parameters of the exper-
iments. There are differences in the pore size distribution and the
reconstruction algorithm as the vendor software did not allow recon-
struction of projection data acquired by different systems or from
simulation software. The SNR value of the experimental data
(50.44) is similar to that of the simulated data (50.83) with 4 fpp.
Since the sample porosity was relatively low, the differences in the
pore size distributions were not expected to significantly affect the
thresholding parameters, and similar SNR values were expected to
satisfy the similarity conditions. Depending on the application, it
may be possible to transfer the optimized thresholding parameters
determined from the simulated data to experimental data.
Figure 22(a) shows an example reconstructed slice of experimental
data, and Fig. 22(b) shows an ROI with an SNR value of 50.44
within the ROI. Figure 22(c) shows the grayscale histogram of the

experimental data, which has peaks at similar locations as that of
the XCT simulation (shown in Fig. 3(g)).
The segmented pore sizes are not always accurate, but the pore

size measurement can be calibrated based on the simulated data.
An â versus a curve used for a signal-response POD analysis is
plotted from the simulated data in Fig. 23(a), where a refers to
the GT pore sizes and â refers to corresponding signal (in this
case, it is the segmented pore sizes). A seventh-degree polynomial
curve was fit to the data, which well describes the variation in â as a
function of a. Our interest was to predict a values and estimate
uncertainty in those predictions based on observed values of â,
and therefore, an inverted curve is found in Fig. 23(b). Two
example pores and segmentation results are shown in Figs. 23(c)
and 23(d ). The pore in Fig. 23(c) has a measured volume of 3675
voxels with Deq of 19.14 voxels. Based on the calibration curve,
the pore can be calibrated to 19.32± 0.01 voxels. The pore in
Fig. 23(b) has a segmented volume of 391 voxels with a Deq of
9.07 voxels, which is calibrated to be 10.22± 0.02 voxels. A
higher level of nonlinearity was observed for the smaller pore
sizes, and the difference between measured and calibrated values
is higher in this range.

6.2 Considerations for Developing X-Ray Computed
Tomography Flaw Data. NIST is planning to develop a series
of XCT data sets with flaws and associated GT data. We considered

Fig. 22 (a) Example XCT slice, (b) ROI, and (c) histogram of the
experimental data

Fig. 23 (a) â versus a curve, (b) calibration curve, and (c and d )
example segmentation results (left: grayscale image and right:
original segmentation results)
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spherical pores in this article for simplicity of presentation of the
concept. We plan to include more complex pore shapes and orien-
tations in the future datasets. Pore merging due to the close proxim-
ity of multiple pores may be further studied systematically. Pore
splitting is expected to occur on more complex-shaped pores, espe-
cially at narrow necks. There are many possible variations in pore
shapes and orientation. Experiment design can help efficiently
explore such a large space. More complex part geometries must
also be considered to account for imaging artifacts in the pore detec-
tion processes. Complex part shapes are more prone to imaging arti-
facts (e.g., beam hardening), which will make the defect detection
process more challenging. The part surface determination step can
also affect thresholding results if any pore is located very close to
the part surface. The surface determination capabilities and imple-
mented preprocessing steps can affect performance of detection
algorithms. Defects showing lower intensity than the solid material
were considered in this article, but higher intensity inclusions are
occasionally observed in AM parts due to contamination. Detection
algorithms should also find these types of inclusions.
A detection task may be carried out by a computer, a human

observer, or a combination of the two. We focused on computer-
only algorithm-based detection, but other types of detection tasks
will be considered in the future and data sets will be prepared
accordingly. For the evaluation of human observer-based detection,
continuum-shaped pores can be used including sub-voxel sized
flaws. Without evaluating the pore sizes, a binary POD analysis,
similar to the one described in this article, will be the best method
of evaluation. A sequential experiment design to more accurately
characterize the transition region from nondetection to detection
may be necessary. It is important to have both nondetections and
detections at multiple GT pore sizes in the transition region.

7 Summary and Conclusions
We presented a full workflow of generating synthetic XCT phan-

toms with clear GT pores and evaluating XCT flaw detection algo-
rithms with various metrics. This type of data set was useful for
determining detection limits and flaw size measurement accuracy
and uncertainty using a computer-based thresholding and detection
algorithm. The workflow can be easily applied to various part
designs and segmentation tasks. The simulated data avoided any
manual labeling process for GT images. Using voxelated pores
for XCT simulation eliminated uncertainty due to the discretization
of a continuum mesh to generate GT images. To demonstrate eval-
uation processes, two different local thresholding algorithms (com-
mercial and Bernsen) and a well-known global thresholding
algorithm (Otsu) were compared and evaluated using many seman-
tic segmentation evaluation metrics. The details of the commercial
local thresholding algorithm are not disclosed to users, but it is pos-
sible to observe that the two local thresholding algorithms operate
differently in principle. The commercial algorithm often showed
clear maxima/minima when plotting semantic segmentation evalu-
ation metrics against the corresponding value of the local contrast
threshold, but the Bernsen algorithm showed different patterns.
The semantic segmentation evaluation metrics provided a relatively
quick and easy guide for comparing different algorithms. Each
metric emphasizes different properties of segmentation, and the
choice of metric depends on the intended application. For applica-
tions of evaluating structural integrity, accuracies in pore volumes,
shapes, and positions would be of major interest. In this case, seg-
mentation quality was good where most of the pores were seg-
mented properly, and many evaluation metrics showed reasonable
results. While the evaluation results depend on the algorithm param-
eters, the commercial algorithm showed the potential to perform
better than the Bernsen algorithm. On the other hand, the Bernsen
algorithm was more tolerant of user choices over a wide range of
user-defined input parameters. Some semantic segmentation evalu-
ation metrics may not be sensitive to smaller pores, which tend to
occupy a smaller volume fraction of the images. Therefore, pore-

level evaluations (pore sizing errors and binary POD curves) were
also carried out to complement the semantic segmentation evalua-
tions. The pore size error plots provided the level of measurement
error, and the POD curves estimate pore detectability without con-
sidering the pore size measurement accuracy. The bias and variabil-
ity in errors generally increased for smaller pores below
approximately 15 voxels in diameter. Pores below 5 voxels in dia-
meter were never segmented. We also presented a resource-efficient
approach to optimize the thresholding algorithm parameters by
leveraging the design of experiments. The optimization approach
can be automated in principle, and it may be adopted by software
vendors for applicable algorithms. We also introduced mean-
squared pore size error as an additional metric for evaluation and
optimization. When it was used as a metric for optimizing algorithm
parameters, the derived MSE values after the optimization were
found to be consistently low. The simulated data also provided a
calibration curve to correct segmentation results and estimate uncer-
tainty. We further discussed the possibility of transferring thresh-
olding parameters and uncertainties determined from the
simulated data to experimental data with similar part shapes/dimen-
sions and SNRs. We demonstrated a method to calibrate experimen-
tal pore size measurements based on simulated data. NIST is
planning to develop and distribute a series of datasets following
similar methods described in this article as part of a program in
XCT flaw detection challenges. The effect of complex part geome-
try and different reconstruction algorithms will be further investi-
gated. These types of data and metrics will also be useful for the
training and validation of machine learning-based flaw detection
algorithms.
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