
PHYSICAL REVIEW MATERIALS 7, 023803 (2023)
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graph neural network (ALIGNN)
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The phonon density of states (DOS) summarizes the lattice vibrational modes supported by a structure and
gives access to rich information about the material’s stability, thermodynamic constants, and thermal transport
coefficients. Here, we present an atomistic line graph neural network (ALIGNN) model for the prediction of
the phonon density of states and the derived thermal and thermodynamic properties. The model is trained on
a database of over 14 000 phonon spectra included in the joint automated repository for various integrated
simulations: density functional theory (JARVIS-DFT) database. The model predictions are shown to capture the
spectral features of the phonon density of states, effectively categorize dynamical stability, and lead to accurate
predictions of DOS-derived thermal and thermodynamic properties, including heat-capacity CV, vibrational
entropy Svib, and the isotopic phonon-scattering rate τ−1

i . A comparison of room temperature thermodynamic
property predictions reveals that the DOS-mediated ALIGNN model provides superior predictions when com-
pared to a direct deep-learning prediction of these material properties as well as predictions based on analytic
simplifications of the phonon DOS, including the Debye or Born–von Karman models. Finally, the ALIGNN
model is used to predict the phonon spectra and properties for about 40 000 additional materials listed in the
JARVIS-DFT database, which are validated as far as possible against other open-sourced high-throughput DFT
phonon databases.
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I. INTRODUCTION

The vibrational density of states (DOS) is a fundamental
material feature, underpinning several properties related to
thermodynamic stability and thermal conduction. Measuring
the phonon density of states, for example, by inelastic scatter-
ing tends to require access to synchrotron x-ray or high-flux
neutron sources, making high-throughput evaluations unfea-
sible [1]. Evaluation of computational phonon density of
states via density functional theory (DFT) has become more
mainstream via open-sourced software, such as PHONOPY [2]
or ALMABTE [3], allowing for the formation of DFT-based
phonon density-of-states databases [4,5]. However, as this
method requires evaluating the force sets between pairs of
atoms, the calculation becomes increasingly expensive for
complex unit-cell materials.

For this reason, it is common to use simple analytic ap-
proximations of the phonon DOS when predicting thermal
properties based on the Debye linear dispersion and Born–
von Karman sinusoidal dispersion relations, for example,
Refs. [6–9]. However, these models can dramatically fail
for materials that are highly anharmonic, have complex unit
cells, or show large acoustic-optical band gaps [10,11]. An
attractive route to rapid predictions of phonon DOS and vibra-
tional properties, directly from the crystal structure, is through
deep learning [12]. In comparison to analytic approxima-
tions, the neural network phonon DOS offers a more accurate

distribution of phonon modes including van Hove singulari-
ties and acoustic-optical band gaps, and it does not assume
isotropy leading to false degeneracies between phonon modes.
In our current paper, anharmonic effects to the phonon DOS
are not considered as these require expensive training data in
the form of higher-order force constants.

Crystal graph neural networks, which encode features
about atoms and their bonding environment in a non-
Euclidean graph, have recently shown utility in predicting
material properties, such as formation energy, band gap, and
elastic constants [13–16]. In their basic form, the nodes of
a crystal graph represent individual atoms, and the edges
represent interatomic bonds. However, the nearest-neighbor
connectivity provides an incomplete picture of the local
chemical environment, for example, close-packed bonding
environments are difficult to distinguish, but incorporating
information about bond angle distributions has provided a
means to heuristically classify local structures [17]. The atom-
istic line graph neural network (ALIGNN) was developed
recently as an extension of the crystal graph neural network,
which explicitly incorporates bond angles by constructing a
line graph over the original crystal graph representation. In the
line graph, nodes correspond to bonds whereas edges corre-
spond to pairs of bonds and, therefore, encode the bond angle
cosine as a feature. By including bond connectivity and bond
angle information, the ALIGNN model showed substantial
improvements in prediction accuracy for formation energy,

2475-9953/2023/7(2)/023803(12) 023803-1 Published by the American Physical Society

https://orcid.org/0000-0001-7705-4654
https://orcid.org/0000-0001-9737-8074
https://orcid.org/0000-0002-5602-180X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.023803&domain=pdf&date_stamp=2023-02-24
https://doi.org/10.1103/PhysRevMaterials.7.023803


GURUNATHAN, CHOUDHARY, AND TAVAZZA PHYSICAL REVIEW MATERIALS 7, 023803 (2023)

the band gap, and the magnetic moment when compared to
a crystal graph convolutional neural network (CGCNN) [13],
SchNet [18], MEGNet [19], and hand-crafted features, such
as classical force field inspired descriptors [14]. The latter
of which is not a graph representation but centers on struc-
tural descriptors in the form of distribution functions, such
as the radial distribution or angular distribution functions.
Numerous machine learning models have been developed to
directly predict single scalar-valued thermal and thermody-
namic properties, such as heat capacity [20–22], vibrational
entropy [21,23], and thermal conductivity [24–27]. However,
multiple-output prediction as required for predicting the full
phonon DOS spectrum, is relatively less developed [28,29].
In computational spectroscopy, deep-learning forward models
have been developed to predict a spectrum (e.g., infrared
[30], x ray [31,32], photoemission [33]) directly from the
crystal structure. However, as noted in Rankine and Penfold
[32], these methods are less common than “reverse” map-
pings, which instead predict a property based on the measured
spectrum.

In this paper, we apply the ALIGNN model to predict the
phonon density of states as well as derived thermodynamic
and thermal properties, including the vibrational entropy, heat
capacity, and phonon-isotope scattering rate. Recently, Kong
et al. reported the Mat2Spec model for generating electronic
and phononic DOS from material structure features [29]. In
their work, both the input features (crystal structure) as well
as the output features (DOS) are embedded as multivariate
Gaussian distributions. The ALIGNN model, however, has
been shown to perform well directly on discretized spectral
training data when applied to the prediction of electronic
DOS with only modest improvements to model performance
achieved using autoencoder-decoder segments to create a low-
dimensional representation of the output features [34]. The
work of Chen et al. [35] demonstrated the feasibility of pre-
dicting phonon density of states using a graph neural network
trained directly on discretized phonon DOS data. They applied
a Euclidean neural network [E(3)NN], which uses a periodic
crystal graph representation and convolutional filters made
up of learned radial functions and spherical harmonics such
that the neural network is equivariant to three-dimensional
group operations [35]. We build from these works with the
explicit treatment of bond angles, training on the large dataset
of DFT phonon density of states hosted on the JARVIS-DFT

database [4,5,23] and by characterizing the performance of
the neural network on other structural and transport relevant
properties of the DOS, including identification of nega-
tive phonon modes and prediction of DOS-derived material
properties.

The paper first introduces the ALIGNN model and details
of the JARVIS-DFT database used for training and validation.
Next, the DOS-derived property equations are introduced
to emphasize their differences in the weighting of phonon
modes. Finally, we discuss the results of the model first in
terms of the direct spectral features of the DOS and then in
terms of the derived scalar material properties. We find that
prediction of the DOS using the ALIGNN model yields excel-
lent results for the temperature-dependent heat capacity and
vibrational entropy and well as the phonon-isotope scattering
rate.

II. METHODS AND THEORETICAL BACKGROUND

We will begin by introducing the atomistic line graph rep-
resentation used to encode the crystal structure in the neural
network. Next, we will discuss the dataset used to train and
validate the phonon DOS predictions. Finally, we will discuss
the property models used to compute DOS-derived properties,
such as heat capacity, vibrational entropy, and phonon-isotope
scattering rates.

A. Atomistic line graph neural networks

The open-sourced ALIGNN framework [14] is used here to
encode crystal structure information in graph representations
which then interface with a message passing neural network.
This neural network framework can update the embeddings of
nodes and edges in the graph while retaining graph connec-
tivity and allowing neighboring nodes and edges to exchange
information (pass messages) about their state. There are two
graph representations used by the ALIGNN model: (1) an
atomistic crystal graph in which nodes represent atoms and
edges represent bonds, and (2) a line graph built from the crys-
tal graph in which nodes represent bonds and edges represent
bond pairs sharing a common atom (see Fig. 1). The crystal
graph is represented as G = (ν, ε), where ν is the set of nodes,
and ε is the set of edges with a feature set inspired by the
CGCNN model [13]. The following eight node features were
used to describe individual atoms: electronegativity, covalent
radius, group number, block, valence electron count, atomic
volume, first ionization energy, and electron affinity [14]. The
edge features, being associated with pairs of atoms/nodes
(νi, ν j), are the interatomic bond distances ri j . The bond dis-
tances are encoded as M-dimensional edge feature vectors
using a radial basis function (RBF) expansion with support
between 0 and 8 Å. We use 80 edge input features (M =
80) with 256 hidden features. Therefore, the edge feature
set corresponding to the bond distance ri j is represented as
εi j = {RBF(‖ri j − Rm‖)}M

m=1. Here, Rm is the mth center in the
bond distance RBF support spanning R = [R1, R2, . . . RM].

Each edge in the crystal graph then becomes a node in the
line graph. The line graph edges, denoted as ti jk , correspond
to triplets of atoms, which in the atomistic graph are labeled
by nodes νi, ν j , νk , and edges εi j, ε jk . The line graph edge
naturally represents a bond angle cosine spanned by the three
atoms: θi jk = arccos( ri j ·r jk

|ri j‖r jk | ) where the bolded notation ri j

signifies the bond vector connecting nodes (νi, ν j). As before
with the crystal graph edge features, the bond angle cosines
are encoded using an RBF expansion such that the line graph
edge feature vector is defined as ti jk = {RBF(|θi jk − Tm|)}M

m=1,
where Tm is the mth element in an array of bond angle
RBF centers of length 40. The ALIGNN model can effi-
ciently update atom and bond features by alternating message
passing updates on both the crystal and line graphs. The crys-
talline materials treated in this paper are represented using
a periodic graph construction, expanded out to 20 nearest
neighbors [14].

ALIGNN uses edge-gated graph convolution for updating
nodes as well as edge features using a propagation function
( f ) for layer (l) and node (vi) with associated feature vector
(hi) and neighbor list (Ni) [14],

h(l+1)
i = f

(
ν l

i

{
ν l

j

}
j∈Ni

)
. (1)
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FIG. 1. Schematic of a crystal and line graph encoding of the Mg2Si crystal structure. For simplicity of the undirected graph representations,
these graphs are constructed by setting the maximum nearest-neighbor value to 1. In the crystal graph (b), nodes represent atom sites and include
an atomic feature set consisting of attributes, such as the electronegativity (χ ), ionization energy (E ), and volume per atom (V0i). The edges
in the crystal graph represent bonds. Physically, the edge features represent bond distances ri j which are encoded in the model using a RBF.
The line graph (c) is constructed on top of the previous crystal graph such that the nodes now represent the bonds of the crystal. The edges,
therefore, represent pairs of bonds with a common atom or “triplets” featurized by the bond angles, which once again are encoded using a
radial basis function.

As mentioned previously, for this paper, we used 80 initial
bond RBF features, and 40 initial bond angle RBF features.
The atom, bond, and bond angle feature embedding layers
produce 64-dimensional inputs to the graph convolution lay-
ers. We used six ALIGNN update layers followed by six
edge-gated graph convolution (each with a hidden dimension
of 256) updates on the bond line graph. Afterwards, the model
performs a global average pooling of the final node vectors,
which is used as input for fully connected regression layers
that produce the final phonon DOS prediction. The ALIGNN
model uses sigmoidal linear unit activation layers because
they are twice-differentiable [14], however, this results in an
output range of (−0.5, ∞). In order to avoid any unphysical
negative density-of-states values, we apply a final rectified
linear unit (ReLU) layer to the output tensors that replaces any
small, negative values with 0, assuring only positive outputs.

Training was performed with a batch size of 64 sam-
ples, learning rate of 0.001, mean-squared error loss function,
AdamW optimizer, and 600 epochs. Further details about the
ALIGNN model architecture and update procedure can be
found in the original model reference [14], recent application
to electronic structures [34], and in the shared code repository
on GitHub [36].

B. Training dataset

The ALIGNN model is trained on a dataset of over 14 000
material-phonon DOS pairs computed at 0 K using DFT,
each labeled with a unique JARVIS-DFT and hosted on the
JARVIS-DFT public repository.1 The second-order force con-
stants used to generate phonons were calculated using a finite
difference method implemented in the VASP code [38] using
the OptB88vdW functional [39], which includes nonlocal Van
der Waals interactions. The k-point density and plane-wave

1The DFT-computed electronic and phononic DOS hosted on
JARVIS-DFT can be accessed using the JARVIS-TOOLS package or di-
rectly through the following FIGSHARE location Ref. [37].

energy cutoff were determined through an automated conver-
gence method described in Choudhary and Tavazza [40], and
the crystal structure optimization was performed with energy,
forces, and stress relaxation [4]. A Brillouin-zone integration
was then performed to calculate the phonon DOS using Gaus-
sian smearing interpolation in the PHONOPY package with a
smearing width equal to 1/100 of the full phonon frequency
range for the given material [2]. Although the compounds
in the phonon database are all evaluated to be energetically
stable (i.e., negative formation energies evaluated at 0 K), ap-
proximately 18% of the compounds in the JARVIS-DFT phonon
dataset have over 10% of the integrated DOS in the negative
phonon frequency range. These dynamically unstable com-
pounds were included in the training set because predicting
the existence of imaginary phonon modes is an important
task in the vibrational analysis of a material. Therefore, the
predictive range of the phonon deep-learning model should
extend to negative frequencies.

The DOS was then discretized into bins of equal frequency
width. We used a dataset with a frequency range of (−300 to
1000) cm−1 as this is large enough to contain the minimum
and maximum frequencies for nearly all of the compounds in
the dataset. The bin size is 20 cm−1, which is the bin size of
the discretized DFT phonon DOS hosted on the JARVIS-DFT

web page. Additionally, the binned DOS is normalized by the
maximum intensity such that the values range from 0 to 1,
which improves numerical stability and quality of predictions.
As stated in the work of Chen et al. on the E(3)NN phonon
DOS model, the correctly scaled DOS is easily recovered
from the normalized version because of the physical definition
requiring that the integrated DOS equal 3N , where N is the
number of atoms in the formula unit [8,29]. This equality
provides a straightforward route to recover the appropriately
scaled DOS spectrum such that comparisons between differ-
ent phonon DOSs are meaningful.

During training, the dataset was randomly partitioned
into an 80%-10%-10% training-validation(during training)-
test(fully blind) split. The attributes of the training set are
highlighted in Fig. 2. Oxygen is by far the most abundant
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FIG. 2. Attributes of the phonon density-of-states training data set comprising 11 384 total materials. Panel (a) shows the enrichment of
each element in the training set. Oxygen was removed from the color map because it is highly enriched with 3162 total counts. The histograms
in panels (b)–(d) indicate that the training set is enriched with binary and ternary compounds in the cubic or tetragonal crystal system with an
average volume per atom of about (10 to 20) Å3.

element in this dataset, which consists mainly of binary and
ternary compounds in the cubic and tetragonal structure types.
However, all seven crystal systems are represented in the
training dataset.

C. Property models

We focus on the evaluation of three thermodynamic and
thermal properties based on the phonon density of states
[g(ω)]. The first is the harmonic contribution to the heat ca-
pacity, a measure of the heat stored by the phonon modes of
a material, which tends to be the majority contribution to the
overall heat capacity. Within this harmonic approximation, the
lattice does not undergo thermal expansion, and so it is natural
to define the heat capacity at constant volume [41]. The heat
capacity can be determined directly from the phonon density
of states where the phonon modes are weighted by their
energy and the temperature derivative of the Bose-Einstein
distribution [42],

CV =
∫

kB(h̄ω/kBT )2 exp(h̄ω/kBT )

[exp(h̄ω/kBT ) − 1]2
g(ω)dω. (2)

At high temperatures, when the full vibrational spectrum
is excited, the heat capacity will approach a thermodynamic
limit of 1 kB per phonon mode, yielding the Dulong-Petit limit
for molar heat capacity of CV = 3NR, where N is the number
of atoms per formula unit, and R is the gas constant. The
heat capacity begins to saturate at the Dulong-Petit limit near
the Debye temperature (TD), or the temperature at which the
highest phonon mode is activated (see Fig. 3). The Debye tem-
perature relates strongly to the stiffness of the material [41].
As a result, we examine two types of heat-capacity datasets:
(1) CV calculated at a constant temperature (i.e., 300 K), and

(2) CV calculated at a fixed fraction of the Debye temperature
(i.e., 0.5TD). The constant temperature dataset may be useful
when comparing materials for a given application. However,
the constant fraction of the Debye temperature is useful when
assessing the accuracy of the model for a similar weighting of
the density of states in the Eq. (2) integrand. Note that by treat-
ing the temperature dependence using an analytic expression
based on the phonon DOS, we avoid having to train separate
neural networks for each desired temperature.

FIG. 3. Comparison of molar heat capacity versus temperature
for two materials (TiS2 and MgSi2) with the same Dulong-Petit limit
but differing Debye temperatures (TD). As shown, the heat-capacity
values approach the Dulong-Petit limit and, therefore, start to con-
verge above the Debye temperature.
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(a) (b) (c)

FIG. 4. DOS-derived thermodynamic and thermal properties will weigh regions of the phonon spectrum differently as portrayed in these
schematics. (a) The heat-capacity weighting is relatively constant with phonon frequency, whereas (b) the vibrational entropy weighs low-
frequency phonon modes more heavily. Finally, (c) the isotope-phonon scattering rate is proportional to ω2g(ω) and, therefore, weighs high-
frequency phonons more heavily.

The vibrational entropy Svib is also evaluated here and
describes the range of momentum and position coordinates
probed by atoms as they vibrate in a material. As tempera-
ture increases, more phonons are excited, and atoms vibrate
at higher amplitudes, so the vibrational entropy contribu-
tion should increase in magnitude. The vibrational entropy
is known to have a role in polymorphic phase transitions
and can stabilize lower-symmetry structures with longer bond
lengths [43,44]. Additionally, vibrational entropy can signif-
icantly influence solubility limits and the location of phase
boundaries, making it important to quantify [45]. The vibra-
tional entropy can be determined from a different weighting
of the density of states, which stems from multiplying the
partition functions for the 3N oscillators available in the ma-
terial. Lower-frequency phonons tend to be weighted more
heavily in Svib and, therefore, typically require high-accuracy
descriptions (see Fig. 4),2

Svib =
∫

kB{[n(ω) + 1]ln[n(ω) + 1]

− n(ω)ln n(ω)}g(ω)dω,

where n(ω) = [exp(h̄ω/kBT )]−1. (3)

Finally, g(ω) plays an important role in describing elastic
phonon-scattering processes as it defines the scattering phase
space or the set of states that an incident phonon can scatter
into. To exemplify its role in scattering problems, we calculate
the phonon-scattering rate due to phonon-isotope interactions
(τ−1

i ), using the natural isotopic abundance for the given
material [46,47],

τ−1
i =

∫
π

6
Vat	ω2g(ω)dω. (4)

2In Fig. 4, the example spectrum is that of Al2O3 (JARVIS-ID: JVASP-
32) and can be obtained using the JARVIS-TOOLS PYTHON package.
Note that this example spectrum comes from a phonon DOS dataset
with the following specifications: frequency range of (0–1000) cm−1

and bin size of 5 cm−1. These binning parameters differ from that of
the spectra in our training dataset.

Here, Vat is the volume per atom, and 	 is the mass vari-
ance introduced to the lattice by isotopes (see Refs. [47,48]
for details). As indicated by the factor of ω2 in Eq. (4),
higher-frequency phonons will be more heavily weighted in
the scattering rate calculation (see Fig. 4).

III. RESULTS AND DISCUSSIONS

The model predictions are discussed in this section, first
in the context of the direct phonon spectrum prediction and
then in terms of derived properties, including the temperature-
dependent heat-capacity CV, vibrational entropy Svib, and the
phonon-isotope scattering rate τi.

A. Model performance

We use the average mean absolute error (MAE) across
the binned density of states to evaluate the performance in
predicting the direct spectrum. The average MAE is defined
as

MAE = 1

n

n∑
i=1

|yi − ŷi|, (5)

where ŷi is the predicted value of the ith bin, yi is the target
value of the ith bin, and n is the total number of bins.

Figure 5 summarizes the MAE distribution and trends in
the test set. The samples of the test set are concentrated at
lower MAE values with 78% of the samples showing a MAE
of less than 0.086 as represented in the histogram in Fig. 5(a).
To better interpret the MAE values, we show examples of the
DFT versus ALIGNN-predicted spectra from the first eight
MAE bins, which comprise 99.4% of the test set. To better
convey the model performance, we show additional example
spectra in the Supplemental Material Sec. S1 [49] at finer
intervals of MAE. Starting around an MAE level of 0.05,
the ALIGNN model begins to miss or average over certain
peaks in the spectrum, which is an error seen in deep-learning
models for computational spectroscopy [30,33]. The model
does, however, tend to capture peak placement and the overall
frequency range of the material’s phonon DOS relatively well.

Interestingly, we find that MAE is inversely correlated with
the average atomic volume in the compound, likely due to
the fact that a smaller atomic volume tends yield a higher
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FIG. 5. Assessment of model performance in terms of the MAE of individual sample DOS spectra. Panel (a) shows the MAE histogram
for ALIGNN-predicted phonon DOS in the test set, which highlights the concentration of samples at low MAE. Below, we show example
spectra comparing the DFT DOS (black) to the ALIGNN DOS (colored) from the first eight bins, which comprise 99.4% of the test set. Panel
(b) indicates that the MAE tends to decrease with increasing volume per atom. Although panel (c) may suggest that the MAE grows with
increasing number of elements in the compound, although this trend is confounded by the fact that the test set is highly enriched with binary
and ternary compounds. Finally, panel (d) suggests a more complicated relationship with the crystal system where MAE is anticorrelated with
both symmetry and abundance in the training set.

maximum frequency in the phonon DOS. As a result, the
model needs to predict peaks across a larger frequency range
in these compounds. We additionally note that the MAE tends
to increase with the number of unique elements in the com-
pound as well as reduced symmetry of the crystal system.
Increased complexity of the formula unit will yield more nu-
merous vibrational modes whereas reduced symmetry results
in degeneracy breaking, all of which tend to yield a greater
number of peaks in the density of states. Therefore, these
trends are logical but may additionally reflect biases in the
dataset, which is enriched with binary and ternary compounds
as well as cubic and tetragonal materials.

In order to compute meaningful DOS-derived properties,
we must first filter out dynamically unstable compounds from
the dataset or compounds with imaginary or negative fre-
quency phonon modes. Note that because our training data
consist entirely of phonon structure computed at 0 K, this
classification of dynamical stability is strictly for 0 K and
does not apply at any arbitrary temperature. We chose a more
tolerant definition of dynamical stability in order to retain
as many samples as possible and because imaginary phonon
modes are often used to interpret structural or metal-insulator
phase transitions [50,51]. If the integrated area below 0 cm−1

composed less than 10% of the total integrated DOS, then the
sample was labeled dynamically stable. The confusion matrix
(Fig. 6) is used to compare the ALIGNN and DFT phonon

DOS predictions in terms of this dynamical stability criteria.
Note, however, that the ALIGNN model was not retrained
as a classifier model for this task. The ALIGNN model is
being used as a regression model to fit the full phonon DOS,
and then the 10% integrated DOS rule is used to classify the
spectra. Although it is important to note that the dataset is
overwhelmingly composed of dynamically stable compounds,
the ALIGNN model classifies dynamical stability with 90%
accuracy where the mostly likely prediction error is a false
“stable” labeling. The precision of the classification (i.e., per-
centage of predicted stable compounds which are DFT stable)
is 92.4%, whereas the recall (i.e., percentage of DFT stable
compounds correctly predicted as stable) is 95.2%.

B. Derived thermal property predictions

We then analyze model performance in terms of DOS-
derived properties, including the molar heat-capacity CV

[(in J mol−1 K−1)], the molar vibrational entropy Svib [(in
J mol−1 K−1)], and the phonon-isotope scattering rate (in gi-
gahertz). The relationship between properties generated from
the target (DFT) DOS versus the predicted (ALIGNN model)
DOS are depicted as scatter plots in Fig. 7 with scatter points
representing samples in the test set. The central dashed line
represents the 1:1 correlation whereas the surrounding dotted
lines bound the width of the interquartile range for the target

023803-6



RAPID PREDICTION OF PHONON STRUCTURE AND … PHYSICAL REVIEW MATERIALS 7, 023803 (2023)

56

Tr
ue

 L
ab

el

Unstable

Stable

Predicted Label
StableUnstable

151 94

1122

True Unstable

True Stable

False Stable

False Unstable

FIG. 6. Both the DFT and the ALIGNN-predicted phonon DOS are classified as dynamically unstable if more than 10% of the integrated
DOS is in the negative frequency range. Based on this classification rule, the confusion matrix compares the DFT prediction (true label) to the
ALIGNN prediction (predicted label) for all samples in the test set. As depicted, the majority of sample are correctly classified, but the test set
contains primarily dynamically stable compounds. Randomly selected example spectra are shown for each category in the confusion matrix
to illustrate the types of DOS errors that can lead to misclassification. The DFT spectrum is shown in black whereas the ALIGNN-predicted
spectrum is shown in red.

property distribution, as a way to quantify the spread of the
samples.

The molar heat capacity at 300 K [Fig. 7(b)] shows a
concentration of samples at intervals of 3NR since several
samples have reached the Dulong-Petit limit for phononic
heat capacity by room temperature. As this greatly simplifies
the distribution of heat capacity, the correlation coefficient
R2 between the target and the predicted CV values is 0.998
with a mean absolute error to mean absolute deviation ratio
(MAE:MAD) of 0.03, indicating a very low error prediction
with respect to the spread in the property distribution (see
Figs. 8 and 7 for summaries of DOS-derived property error
metrics). The MAD is the average distance between each
data point (yi) and the mean (y) of the dataset: MAD =
(1/n)

∑n
i=1 |yi − yi|.

To avoid the influence of the Dulong-Petit limit in the
model evaluation, we additionally compare CV values com-
puted at half of the Debye temperature (TD) for the entire
test set. As shown in Fig. 7(b), this dataset is more dis-
tributed since no samples have reached their Dulong-Petit
limit of 3NR. Even without the simplification imposed by
the Dulong-Petit limit, there is only a modest reduction
in model performance in the 0.5TD dataset. Figure 7(i)
shows the MAE in the CV prediction varying within 2
J mol−1 K−1 over a wide percentage range of the Debye
temperature.

The molar vibrational entropy Svib also shows a robust cor-
relation between target and predicted values (R2 = 0.986), but

larger error to spread ratio (MAE:MAD = 0.1). As discussed
in Sec. II, one reason for the greater prediction error may
be that the vibrational entropy integration heavily weights
low-frequency phonons. In Supplemental Material Sec. S3,
we show the DFT versus ALIGNN phonon DOS for three
samples with the highest residuals in Svib. A common feature
of these spectra is a large DOS peak near 0 cm−1, which
when improperly predicted yields a significant Svib prediction
error. Moreover, unlike the CV prediction for which the MAE
peaks around 25% of the Debye temperature, the MAE for Svib

steadily increases with temperature and saturates above the
Debye temperature. Lastly, in the phonon-isotope scattering
rate calculation (τ−1

i ), compounds with no natural isotopic
abundance and, therefore, no phonon-isotope scattering were
filtered out. Nonetheless, the property distribution was highly
right skewed. Once again, the ALIGNN DOS model per-
formed well yielding an MAE:MAD ratio of 0.11. Notably,
in this case, some of the variance between samples stems
not from the phonon DOS, but the mass variance factor 	,
which is calculated separately in the analytic expression. The
prediction of the properties of interest (CV, Svib, and τ−1

i ) is ro-
bust against several of the errors in the direct DOS prediction
apparent from visual inspection. The quality of the property
prediction remains high because they are computed as the
integral of the DOS, weighted by a frequency-dependent pref-
actor. Therefore, for these derived properties, it is important
for the ALIGNN model to place the phonon peaks in the cor-
rect frequency range, but these results are robust against many
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R2 = 0.998  

R2 = 0.985

R2 =  0.994

R2 = 0.968

MAE = 1.58  MAE = 2.66

MAE = 2.35  MAE = 7.26  

(a) (b)

(d)(c)

(e) (f )

FIG. 7. Properties derived from the target (DFT) versus the predicted (ALIGNN) phonon DOS. Note that only samples determined to
be dynamically stable both by DFT and ALIGNN are included in thermal property assessments. In panels (a)–(d) scatter points represent
individual samples in the test set, whereas the center dashed line shows the 1:1 correlation and the dotted lines highlight the width of the
interquartile range in the distribution of target values. The heat map values come from a two-dimensional histogram showing the distribution
of samples where red regions indicate a large concentration of samples. Panels (a) and (b) both depict the molar heat-capacity CV at 300 K
and 50% of each material’s Debye temperature, respectively. At 300 K, heat-capacity values are closely clustered around intervals of 3NR
since several samples have reached the Dulong-Petit limit. Since this physical limit greatly simplifies the prediction, we also show that the CV

predictions remain accurate at across intervals of the Debye temperature as shown in the plot of the MAE for the CV prediction as a function of
fractional Debye temperature (e). Panel (c) depicts the room temperature (RT) molar vibrational entropy Svib and shows a strong trend between
predicted and target values with a few instances of underpredictions. Panel (d) depicts the phonon-isotope scattering rate. The natural isotope
abundance for each material was used, which was attained from the isotope database in the PHONOPY package [2]. Compounds without any
known isotope variation were excluded. Finally, the distribution of Debye temperatures for the samples in the test set is shown in panel (f).

distortions in the shape of the peak. As shown in Fig. 4, the
Svib prefactor preferentially weights low-frequency phonons
whereas the τ−1

i prefactor weights high-frequency phonons as
such, DOS errors in these regimes will more greatly impact
the corresponding property. In Supplemental Material Fig. S2

[49], we illustrate the types of DOS prediction errors that lead
to large errors for each DOS-derived property.

To summarize our approach, here we apply the ALIGNN
deep-learning model to generate the phonon DOS and, sub-
sequently, apply the equations in Sec. II to derive various
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FIG. 8. Model performance is compared for three techniques used to compute DOS-derived material properties, showing that the DOS-
mediated approach emphasized in this paper yields the most accurate prediction. Techniques (a) and (b) differ primarily in the placement of
the deep-learning step relative to the DOS integration step used to derive the material properties. In panel (c), we show the results for the best
analytic DOS approximation trialed the Debye approximation. Error metrics include the ratio of the mean absolute error to the MAD of the
target property distribution (MAE:MAD) as well as the correlation coefficient between target and predicted values (R2). Both the molar heat
capacity and vibrational entropy are calculated here at RT, 300 K.

thermal and thermodynamic properties. We can compare this
DOS-mediated approach to a direct prediction of either heat
capacity or vibrational entropy using an ALIGNN model
trained directly on the property values. To perform this cal-
culation, we compile two training datasets, one comprising
DFT heat-capacity values, and the other comprising DFT vi-
brational entropy values [i.e., CV or Svib computed from the
DFT phonon DOS using Eqs. (2) and (3)]. We then train sep-
arate ALIGNN property models using each dataset. In order
to replicate the ALIGNN phonon DOS model as closely as
possible in these follow-up tests, we use the same training-
validation-test split of the JARVIS-IDS in the database, and we
use the same configuration settings related to the graph rep-
resentation of the material (e.g., maximum number of nearest
neighbors, node feature set) and the training (e.g., learning
rate, optimizer).

A major advantage of using the DOS-mediated approach
is that the temperature dependence of the CV and Svib is
embedded in the model. By modeling the full vibrational
structure, we provide knowledge of which phonon modes
can be excited at a given temperature. In contrast, a direct
deep-learning prediction of temperature-dependent CV and
Svib may require either retraining the neural network for each
desired temperature or accumulating property training data
labeled with temperature that spans the temperature range of
interest. Kauwe et al. [20] comments on the difficulty of de-
veloping empirical models [52,53] or direct machine-learning
models for temperature-dependent heat capacity because ther-
mochemical property data as a function of temperature are
not easily attained. Additionally, composition-based features
cannot adequately capture nuances regarding the active vi-

brational modes at a given temperature. When comparing
room-temperature properties, we find that the DOS-mediated
approach yields a significantly lower model prediction er-
ror versus the direct deep-learning approach (see Fig. 8).
The MAE for the direct ALIGNN prediction is 9.60 and
16.9 J mol−1 K−1 for the RT CV and Svib, respectively, com-
pared to the DOS-mediated approach values of 1.58 and 7.26
J mol−1 K−1. The especially poor direct ALIGNN prediction
of the heat capacity comes from the concentration of samples
around discrete CV values as the ALIGNN model tends to pro-
duce a smoother property distribution. These results reaffirm
that predicting the phonon structure from the crystal structure
using deep learning is preferable to a direct machine-learning
prediction of phonon-based properties.

To better understand the performance of the ALIGNN
model, we compared these DOS-derived properties to pre-
dictions from analytic approximations of the phonon density
of states using both the Debye (linear) and the Born–von
Karman (sinusoidal) approximations of the ω versus q relation
[9]. Although these dispersion approximations have known
limitations, they are still frequently applied to rapidly predict
heat-capacity or phonon-scattering rates [7,8,54,55]. Exam-
ple approximations for the phonon dispersions and phonon
DOS are depicted in Fig. 9. We confirm that for room-
temperature property predictions, the Debye and Born–von
Karman approximations yield much lower model perfor-
mance. The MAE for the RT molar CV is 7.90 (Debye) and
10.5 J mol−1 K−1 (Born–von Karman), whereas the MAE for
the RT molar Svib is 30.0 (Debye) and 43.9 J mol−1 K−1

(Born–von Karman).
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(a) (b) (c)

FIG. 9. Schematic of the Debye (linear) and Born–von Karman (sinusoidal) approximations of the phonon dispersion is shown in panel
(a). Panels (b) and (c) depict the resulting density of states approximation for the example case of Al2O3 compared to the DFT density of states.

C. Large-scale prediction on new compounds

We then applied the trained ALIGNN model to 41 000
crystal structures in the JARVIS-DFT database with unknown
phonon DOS and vibrational properties (see Fig. 10). In Sup-
plemental Material Sec. S2 [49], we list the ten highest and
lowest predicted property values and corresponding compo-
sitions for each of the three material properties considered
here: specific-heat capacity at 300 K CV (in J mol−1 K−1),
specific vibrational entropy at 300 K Svib (in J mol−1 K−1),
and phonon-isotope scattering rate τ−1

i (in gigahertz). The
properties showed expected trends: the specific-heat capacity
and vibrational entropy mainly showed an inverse correlation
with molar mass and bond strength. The compounds with
the highest isotope scattering rate were dominated by light
elements with large isotopic variation (such as B and Ge). In
Fig. 11 we show the ALIGNN-predicted phonon DOS yield-

ing the lowest and highest contributions to the heat capacity,
vibrational entropy, and phonon-isotope scattering rate. The
heat-capacity and vibrational entropy comparisons were per-
formed on a per oscillator basis through normalizing by 3N
to emphasize the influence of the phonon DOS shape on these
properties. As a general trend, a shift of phonon modes from
high to low frequencies yields higher room-temperature heat
capacity and vibrational entropy but lower phonon-isotope
scattering rate.

Additionally, about 830 of the predicted compounds over-
lapped with the entries in the Materials Project (MP) phonon
database generated using density functional perturbation the-
ory [5]. We observe a very close correspondence between
our ALIGNN-predicted thermal properties and those derived
from the MP phonon spectra (see Fig. 10) even though the
calculation method for the phonon dataset used in training

R2 = 0.971  

MAE:D = 0.15  
R2 = 0.996  

MAE:D = 0.05  
R2 = 0.982  

MAE:D = 0.13  

(a) (b) (c)

(d) (e) (f)

FIG. 10. Comparison between the ALIGNN thermal property predictions and those calculated from the Materials Project density functional
perturbation theory (DFPT) phonon structure database. We found 830 overlapping compounds and show a close correspondence between the
DFPT and the deep-learning results. The R2 coefficients and MAE to MAD ratio (abbreviated as MAE:D) are shown on the subplots. Note that
this relationship holds even though the phonon DOS used for training of the ALIGNN model were generated using a finite-difference rather
than a perturbative approach.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 11. Summary of predicted phonon properties for 41 000 previously unlabeled compounds in the JARVIS-DFT database. Panels (a)–
(c) show the distribution of the 300-K gravimetric CV and Svib as well as τ−1

i . Panels (d)–(f) show the ALIGNN-predicted spectra yielding
the lowest CV, Svib, and τ−1

i contribution. Note that in the case of CV and Svib, this is the lowest contribution on a “per-oscillator” basis (i.e.,
comparing CV and Svib values divided by 3N). Similarly, panels (g)–(i) show the ALIGNN-predicted spectra yielding the highest contribution
to the DOS-derived properties.

of the neural network relied on the finite difference method
rather than perturbation theory.

IV. CONCLUSION

The atomistic line graph materials representation preserves
the connectivity of the crystal structure and explicitly encodes
features describing the atoms, bonds, and bond angles. The
technique is shown here to give reasonable predictions of the
vibrational structure and properties of a material. In partic-
ular, the ALIGNN DOS model yields excellent predictions
for three thermodynamic and thermal properties studied, the
heat capacity, the vibrational entropy, and the phonon-isotope
scattering rate. Through a comparison of room-temperature
thermodynamic property predictions, we see that the place-
ment of the deep-learning step relative to the physics-based
integration step makes a large difference in prediction qual-

ity. We find that using the deep-learning ALIGNN model to
predict the DOS spectrum is preferable to learning the DOS-
derived properties directly, yielding both better accuracy and
rich information in one deep-learning step since the DOS en-
codes for numerous material properties and their temperature
dependence.
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