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The ability to prepare a macroscopic mechanical resonator into a quantum superposition state is an
outstanding goal of cavity optomechanics. Here, we propose a technique to generate cat states of motion
using the intrinsic nonlinearity of a dispersive optomechanical interaction. By applying a bichromatic drive
to an optomechanical cavity, our protocol enhances the inherent second-order processes of the system,
inducing the requisite two-phonon dissipation. We show that this nonlinear sideband cooling technique can
dissipatively engineer a mechanical resonator into a cat state, which we verify using the full Hamiltonian
and an adiabatically reduced model. While the fidelity of the cat state is maximized in the single-photon,
strong-coupling regime, we demonstrate that Wigner negativity persists even for weak coupling. Finally,
we show that our cat state generation protocol is robust to significant thermal decoherence of the
mechanical mode, indicating that such a procedure may be feasible for near-term experimental systems.
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Introduction.—Engineered micro- and nanomechanical
systems have recently emerged as viable resources for
quantum technologies [1] and fundamental tests of quan-
tum mechanics [2]. At the forefront of this effort is cavity
optomechanics [3], which uses sideband techniques to
stabilize quantum states of motion via reservoir engineering
[4]. Canonical examples include ground state cooling [5,6],
squeezing [7,8], and entanglement [9–12] of mechanical
motion. However, these protocols rely on a strong pump to
parametrically enhance the linear coupling between the
cavity field and mechanical motion, obscuring the inherent
nonlinearity of the interaction. Thus, the current field of
quantum optomechanics is largely confined to performing
bilinear operations on Gaussian states. By reinforcing the
intrinsic optomechanical nonlinearity, one could break free
of this Gaussian prison and prepare interesting nonclassical
states of mechanical motion.
Of particular interest aremacroscopic superposition states

known as cat states [13], which have previously been
observed in trapped ions [14], confined photons [15], and
superconducting circuits [16,17]. Though recent experi-
ments have prepared non-Gaussian states of mechanical
motion using nonlinearities derived from superconducting
qubits [18–21] and single-photon detection [10,22,23], the
experimental generation of macroscopic superposition
states has yet to be demonstrated. Preparing these highly
nonclassical states in mechanical resonators would allow
them to be used as quantum-enhanced sensors [24–26],
nodes in quantum communication networks [27,28], long-
lived, error-protected qubits [29,30], and platforms to study
macroscopic quantum collapse theories [31].
Early proposals to create mechanical cat states used

the intrinsic Kerr nonlinearity of the optomechanical

interaction [31,32]; however, this method requires vacuum
coupling larger than both the mechanical frequency and
cavity loss rate. Subsequent optomechanical cat state gen-
eration protocols have suggested introducing nonlinearities
via single-photon detection to perform conditional mea-
surements [33,34] or single-phonon addition and subtrac-
tion [35,36], coupling with external two-level systems
[37,38], swaps between nonclassical cavity states and
mechanical modes [39,40], or using time-varying electro-
magnetic fields [41–45]. Each of these proposals rely on
some combination of probabilistic measurements, compli-
cated integration with external sources of nonlinearity (e.g.,
qubits), and/or generation of complex electromagnetic
fields. Beyond being difficult to implement experimentally,
the complexity of these methods will incur inefficiencies in
the mechanical cat state preparation, decreasing its fidelity.
On the other hand, optomechanical protocols that use
reservoir engineering techniques [4] have recently been
proposed for the deterministic and stable generation of
macroscopic mechanical superposition states [46–49].
Such schemes use continuous, coherent electromagnetic
sources and are robust to external decoherence. Unfor-
tunately, these proposed methods have relied on quadratic
coupling between the cavity andmechanical element, which
is small relative to its destructive linear counterpart [50,51].
Here, we introduce a reservoir engineering technique

that uses the nonlinearity inherent to all optomechanical
systems to prepare cat states of motion. This simple scheme
differentiates itself from previous reservoir engineering
proposals, as it circumvents the experimentally prohibitive
requirement for direct coupling to the square of mechanical
displacement. Furthermore, our technique obviates the
need for external sources of nonlinearity or complex
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electromagnetic drives, providing a resource-efficient
method to generate macroscopic superposition states. For
this protocol, one applies two continuous-wave pumps to
an optomechanical cavity, one resonant and one red-
detuned by twice the mechanical frequency. This prepares
the mechanical resonator into a cat state via two-phonon
sideband cooling and squeezing processes. Using a master
equation approach, we deduce that mechanical cat state
generation is feasible for vacuum coupling rates that are
greater than the cavity loss rate but much smaller than the
mechanical frequency. By numerically simulating the full
optomechanical Hamiltonian, we verify that our protocol
can generate high-fidelity mechanical cat states with near
ideal Wigner negativity. Finally, we show that our protocol
is robust to contamination from the surrounding environ-
ment, allowing for preparation of mechanical superposition
states in the presence of thermal noise.
Dissipation engineering protocol.—Our procedure is

adapted from a previous technique used to prepare cat
states in superconducting microwave cavities coupled via a
Josephson nonlinearity [16,17]. In this protocol, the cat
state is prepared in the long-lived “storage” cavity, while a
second “readout” cavity is used to engineer nonlinear
dissipation processes. This protocol naturally maps to an
optomechanical system, whereby the mechanical resonator
becomes the “storage” element, with the coupled electro-
magnetic cavity providing the fast “readout.” The requisite
nonlinearity is then provided by the optomechanical
interaction itself in place of a Josephson junction. With
this architecture, one can apply a strong pump to the cavity
red-detuned by twice the mechanical frequency to mediate
two-phonon cooling processes (see Fig. 1). A second tone
applied on resonance will then mix with this detuned pump
providing a two-phonon mechanical drive. Combined,
these two-phonon processes are parity preserving, such
that a resonator initialized into an even (odd) state will be
restricted to the even (odd) manifold of its Fock basis and
will evolve into an even (odd) cat state [46]. Along with
these nonlinear processes, linear optomechanical coupling
will persist in any realistic system, acting to flip the parity
of the desired cat state and contribute to its decohe-
rence [52]. Therefore, we must treat the optomechanical

Hamiltonian in its entirety, such that both linear and
nonlinear terms are included.
To investigate our protocol, we begin with the opto-

mechanical master equation

_ρ ¼ −
i
ℏ
½H; ρ� þ κL½a�ρþ Γðn̄b þ 1ÞL½b�ρþ Γn̄bL½b†�ρ;

ð1Þ
where a (b) is the annihilation operator for the electro-
magnetic cavity (mechanical resonator). Here, we assume a
zero temperature bath for the cavity (i.e., n̄a ¼ 0) with total
loss rate κ and frequency ωc. Meanwhile, the mechanical
mode with frequency ωm is thermalized at its decay rate Γ
to an environment at finite temperature T and average
occupancy n̄b ¼ ðeℏωm=kBT − 1Þ−1. We have also introduced
the Lindblad superoperator L½o�ρ¼oρo†− 1

2
o†oρ− 1

2
ρo†o

for arbitrary operator o and density matrix ρ, as well as the
optomechanical Hamiltonian in the frame rotating at the
pump frequency ωp

H
ℏ
¼ −Δa†aþ ωmb†bþ εda†eiΔpt þ ε�dae

−iΔpt

þ ðg�1aþ g1a†Þðbþ b†Þ þ g0a†aðbþ b†Þ: ð2Þ
Here, we have translated the cavity mode by its steady state
amplitude α ¼ εp=ðΔþ iκ=2Þ in the presence of a coherent
pump with amplitude εp, where Δ ¼ ωp − ωc, such that a
now acts on the displaced cavity mode. The average
number of photons in the cavity due to this pump can
be calculated as n̄p ¼ jαj2. Note that in Eq. (2) we have
implicitly accounted for the static displacement in mechani-
cal equilibrium position due to this steady state photon
population, as well as the corresponding shift in cavity
frequency, by appropriately modifying our reference frame
[53]. Also included is a coherent cavity drive with
amplitude εd and frequency ωd detuned from the pump
frequency by Δp ¼ ωp − ωd. Finally, the last two terms in
Eq. (2) characterize the linearized and nonlinear optome-
chanical interactions, with the linear cavity-enhanced
coupling rate g1 ¼ αg0 expressed in terms of the opto-
mechanical vacuum coupling rate g0.
While Eq. (2) gives an exact description of our opto-

mechanical cavity, often the final term is neglected, leading
to a linearized description. However, this term is crucial in
providing the nonlinearity required for our protocol. We
therefore use a Schrieffer-Wolff transformation [68] with
the generator S ¼ ðg0=ωmÞa†aðb† − bÞ [69] to expand this
term to leading order in g0=ωm, which amounts to the
replacement [53]

g0a†aðbþ b†Þ ⇒ ðg�2a − g2a†Þðb2 − b†2Þ

−
g20
ωm

fða†aÞ2 þ α�ð2a†aþ 1Þa

þ αa†ð2a†aþ 1Þg: ð3Þ

(a) (b)

FIG. 1. Schematic, frequency-space, and phase-space repre-
sentations of (a) conventional optomechanical sideband cooling
and (b) our proposed method of mechanical cat state generation
using nonlinear sideband cooling.

PHYSICAL REVIEW LETTERS 130, 213604 (2023)

213604-2



The first term in Eq. (3) elucidates the fact that the intrinsic
optomechanical nonlinearity can be used to mediate sec-
ond-order processes whereby single photons simultane-
ously interact with two phonons at a strength determined by
the second-order coupling rate g2 ¼ g20α=ωm. Meanwhile
the second term corresponds to the higher-order corrections
to the electromagnetic cavity in the presence of optome-
chanical coupling, including the well-known self-Kerr
nonlinearity [3].
Adiabatically eliminated model.—To proceed, we

assume that the cavity’s decay rate κ exceeds the interaction
rates of the mechanical resonator with its thermal bath and
the electromagnetic cavity [53]. In this regime, the system
will quickly equilibrate to its steady state, which we take to
be the slow subspace spanned by the cavity’s ground state
and the full Hilbert space of the mechanical mode. We then
adiabatically eliminate the cavity mode by tracing over its
rapidly evolving excited states. This is performed using the
Nakajima-Zwanzig formalism [70] to derive the reduced
master equation for the mechanical mode in the sideband-
resolved regime (κ ≪ ωm) as

_ρb ¼ −
i
ℏ
½Hb; ρb� þ Γ2L½b2�ρb þ ΓlinL½b�ρb þ ΓexL½b†�ρb;

ð4Þ

where

Hb

ℏ
¼ ε2b†2 þ ε�2b

2 − Kðb†bÞ2: ð5Þ

Here, we have chosen to maximize cat state generation
efficiency by applying the drive tone on resonance with the
cavity (ωd ¼ ωc) and the pump tone at ωp ¼ ωc − 2ω̃m,
where ω̃m is the dressed mechanical frequency [53].
Equation (4) includes all of the terms necessary to

dissipatively engineer mechanical cat states. The first term
describes the evolution of the resonator according to Hb.
This Hamiltonian contains coherent two-phonon squeezing
terms, with amplitude ε2 ¼ 2iεdg�2=κ, that arise from the
mixing of the pump tones applied to the cavity, along with a
phonon-dependent Kerr nonlinearity with strength K ¼
jg2j2=4ωm. The second term describes two-phonon opto-
mechanical cooling at a rate Γ2 ¼ 4jg2j2=κ. This engi-
neered cooling, coupled with the squeezing terms, restricts
the mechanical resonator to two-phonon operations, thus
preserving its parity. Acting under these two processes
alone, the resonator will naturally evolve from the ground
state into an even cat state on a timescale set by τ ∼ 1=Γ2

(see Fig. 2). The size of the resultant cat state is given by
β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijεdj=jg2j

p
, while its rotation in phase space is set by

the relative phase between εp and εd.
Meanwhile, the last two terms in Eq. (4) represent

incoherent single-phonon loss and excitation processes.
In the first case, decoherence is caused by the mechanical

resonator emitting phonons at a rate Γlin ¼ Γth þ Γ1 into
either its intrinsic environmental bath at its thermal
decoherence rate Γth ¼ ðn̄b þ 1ÞΓ, or to an optomechani-
cally generated reservoir at rate Γ1 ¼ jg1j2κ=ω2

m. The term
proportional to L½b†�ρb then corresponds to incoherent
phononic excitations from these two baths at a rate
Γex ¼ n̄bΓþ Γ1=9. Both of these single-phonon processes
will flip the parity of the cat state from even to odd (or vice
versa), causing it to decohere at a rate Γdec ¼
2jβj2ðΓlin þ ΓexÞ [52]. To generate mechanical cat states
we require Γlin ≫ Γex, so here we will focus on Γlin.
However, we retain the incoherent excitation terms in
our numerical analysis, as they will have noticeable effects
on the cat state’s coherence. Simulations using Eq. (4) can
be seen in Fig. 2(b), where we show the evolution of the
mechanical resonator from its ground state into an even cat
state of size β ¼ 2.
In the ideal situation where Γth ≪ Γ1, only optomechani-

cally induced losses need be considered, which sets a
fundamental limit on our protocol’s ability to generate
mechanical cat states as Γ2 ≳ Γ1, or equivalently,

g0 ≳ κ

2
: ð6Þ

That is, the protocol outlined in this Letter is optimal when
the vacuum coupling rate of the system is on the order of,

(a)

(b)

(c)

(d)

FIG. 2. Evolution of a mechanical resonator’s Wigner distri-
bution from its ground state to a β ¼ 2 even cat state using our
reservoir engineering protocol simulated with (a) the full master
equation in Eq. (1) and (b) the reduced master equation in Eq. (4).
We also show (c) the average occupancy of the mechanical and
cavity modes and (d) the minimal Wigner negativity of the
mechanical state vs evolution time (full model, solid; reduced
model, dashed). Simulation parameters are given in the main text.
Here, we find that for the full (reduced) model the Wigner
negativity is minimized to Wmin ¼ −0.401 (Wmin ¼ −0.455) at
Γ2t ≈ 3.9 (Γ2t ≈ 1.6). This corresponds to a maximal fidelity of
95.6% (99.1%) with an ideal even cat state of the same size,
whose minimal Wigner negativity (Wþ ≈ −0.476) is indicated by
the black dashed-dotted line in (d).
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or exceeds, the loss rate of the cavity (i.e., approaching or
residing in the single-photon, strong-coupling regime). We
also note that for β ≥ 1, Eq. (6) ensures that the autono-
mously stabilized cat states generated by our protocol can
be used in error correction protocols where single quanta
loss is the dominant error channel [17].
Wigner negativity.—To rigorously characterize the quan-

tum superposition states generated using our procedure, we
use the Wigner functionWðx; pÞ, whose minimumwe label
the Wigner negativity or W ¼ minfWðx; pÞg [53]. For
dynamic systems, W can be further minimized in time,
resulting in the minimal Wigner negativity Wmin. Using a
phenomenological model, we show that for Γth ≪ Γ1 the
minimal Wigner negativity for our dissipation engineering
protocol takes the simple form [53]

Wmin ¼ Wþ exp

�
−2Cjβj2

�
κ

2g0

�
2kþ2

�
: ð7Þ

Here, C and k are parameters that characterize the time
required to reach this minimal Wigner negativity as

tmin ¼
C
Γ2

�
Γ1

Γ2

�
k
; ð8Þ

while Wþ is the Wigner negativity of an ideal even cat
state. From Eq. (7), one can see that while Eq. (6) sets the
scale for mechanical cat state generation, it is a soft limit, as
nonzero Wigner negativity persists for 2g0 < κ. However,
far below this limit the Wigner negativity dies off expo-
nentially as a function of κ=2g0 (see Fig. 3).
Numerical simulations.—Using a numerical approach,

we verify our model given in Eq. (4) against the full

optomechanical model of Eq. (1). This is shown in Fig. 2,
where we compare the evolution of a mechanical system
from its ground state to a cat state using both models.
Simulations are performed with the shared parameters
g0=2π ¼ 1 MHz, ωm=2π ¼ 15 MHz, Γ=2π ¼ 15 Hz,
κ=2π ¼ 100 kHz, n̄b ¼ 0, and n̄p ¼ 0.1, with εd chosen
such that β ¼ 2. This parameter set allows for fast simu-
lation, and hence a concrete comparison between these two
models. Though they differ at earlier times, both models
agree well on long timescales where ha†ai ≈ 0 and the
cat state has stabilized, thus validating our adiabatically
eliminated model.
We have also assessed how the condition in Eq. (6)

affects the minimal Wigner negativity of our generated cat
states. This is presented in Fig. 3 using the same parameters
as Fig. 2, while changing κ to vary the ratio g0=κ. We find
that Eq. (7) provides an excellent fit of the exact numerical
results over multiple orders of magnitude in g0=κ with the
parameters C ≈ 1=3 and k ≈ −1=4. This indicates that the
minimal Wigner negativity of the β ¼ 2 cat state studied
here decays exponentially in proportion to jβj2ðκ=2g0Þ3=2.
In spite of this exponential behavior, significant Wigner
negativity still persists for g0=κ ≲ 0.3. Conversely, when
g0 ≫ κ, the minimal Wigner negativities extracted from
both models asymptotically approach their ideal values
and high-fidelity cat states are created. We have addition-
ally investigated the effect of increasing the mechanical
decoherence rate Γlin on the time dependence of the cat
state’s Wigner negativity (inset of Fig. 3). Here, we confirm
that the Wigner negativity is minimized on a timescale set
by 1=Γ2, with a weak dependence on Γ1=Γ2 as indicated by
Eq. (8). We further observe the minimal Wigner negativity
approaches Wþ for Γ2=Γlin ≫ 1, while decohering back to
zero on a timescale set by 1=Γlin.
Finally, we have used our adiabatically eliminated model

to investigate howWmin varies over a large parameter space
in g0=κ and Γth, which is illustrated in Fig. 4. On the right
side of the plot where Γlin ≈ Γth, regions of significant
Wigner negativity are delineated by contours that exhibit a
linear dependence between g0=κ and Γth. Meanwhile on the
left side, these boundaries plateau to a constant value. This
is because the decoherence is no longer dominated by the
thermal environment, but instead by pump-induced linear
dissipation. As Γ1 and Γ2 scale with pump power in the
same way, their ratio is constant and given by ð2g0=κÞ2
[53]. These results show clearly demarcated regions of
parameters space that allow for significant Wigner neg-
ativity even in the presence of significant thermal noise.
Experimental realization.—Currently, the most challeng-

ing aspect of experimentally realizing our protocol is the
condition given by Eq. (6). While existing experiments in
microwave circuits [71] and optomechanical crystals [72]
have demonstrated 2g0=κ ≈ 0.01, ongoing improvements
in both coupling and cavity losses make each of these
platforms a viable candidate for achieving 2g0=κ ≈ 1.

FIG. 3. Wmin (normalized by Wþ ¼ 0.476) vs g0=κ for the
same parameters as Fig. 2 with varying κ and β ¼ 2. Here, we
observe excellent agreement between the full (blue circles) and
reduced (red squares) optomechanical models over nearly 2
orders of magnitude in g0=κ. Furthermore, the Wigner negativity
approachesWþ (black dashed-dotted line) for g0=κ ≫ 1=2, while
exponentially decreasing for g0=κ < 1=2 as expected. Also
included is a fit of Eq. (7) to the full model (solid green line).
Inset: W vs time for varying ratios of Γ2=Γlin. Here, we have
chosen κ=2π ¼ 10 kHz, such that g0=κ ¼ 100, while varying Γ.
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Specifically, in optomechanical crystals, numerical opti-
mization of ultrasmall mode volume cavities projects to
increase the vacuum coupling, while ensuring that radiation
and fabrication uniformity do not limit the cavity losses
[73]. In the microwave regime, bulk superconducting
cavities already achieve sufficiently low loss [74] and
ongoing advances in materials and surface preparation
could allow similar quality factors in vacuum gap capacitor
optomechanical circuits. In addition to improvements in
loss, recent proposals suggest that by pushing circuit
optomechanics into the millimeter-wave regime, g0 could
also be increased by over an order of magnitude [75].
Together these innovations in increased coupling and cavity
quality factor would enable experimental implementation
of this cat state protocol. Regardless of the platform,
verification of these delicate quantum superposition states
will require the ability to perform mechanical state tomog-
raphy with low added noise. Conveniently, cavity opto-
mechanical systems have demonstrated nearly noiseless
mechanical quadrature measurement techniques, using
either quantum nondemolition [8] or transient amplification
[76] methods, which are sufficient for witnessing Wigner
negativity.
Conclusion.—We have introduced a simple scheme that

uses two continuous-wave pumps to cool an optomechan-
ical resonator into a cat state of motion. To generate
significant Wigner negativity with such a protocol, one
must approach the single-photon, strong-coupling regime.
Though unattainable in current experiments, with future
improvements to state-of-the-art optomechanical systems,
mechanical cat state generation using this protocol could
soon be realized. This advancement would allow for
straightforward preparation of long-lived mechanical cat

states to be used as robust, rotation-symmetric bosonic
codes for quantum computing [77], or as canonical systems
to study the fundamental collapse mechanisms of macro-
scopic quantum superposition states [31].
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