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ABSTRACT 

Data fusion techniques aim to improve inference results 
or decision making by ‘combining’ multiple data sources. 
Additive manufacturing (AM) in-situ monitoring systems 
measure various physical phenomena and generate multiple 
types of data. Data types can occur at different scales and 
sampling rates during an AM build process. Data types that 
can be used to monitor the state of that process. Monitoring 
typically requires software tools to analyze data from multiple 
sources. There are two reasons. First, data only from one data 
source may not be accurate enough or large enough to 
monitor the process accurately. Second, a single source will 
be limited by the relevancy of the observations, signal-to-
noise ratio, or other measurement uncertainties.  

This work proposes a decision-level, multimodal, data 
fusion method that combines multiple, in-situ, AM monitoring 
data sources to improve that accuracy. The work is based on 
a recent, laser powder bed fusion (LPBF) experiment that was 
conducted at NIST to create overhang surfaces during a 3D 
part build. The data from that experiment is used to illustrate 
and validate the proposed method. The experiment involved 
using constant laser power and scan speed. The resulting 
overhang features were designed with different shapes. 
angles, and build locations. 

A high-frequency, coaxial melt-pool, imaging system and 
a low-frequency layerwise staring camera are the two, in-situ, 
monitoring, data sources used in that experiment. The Naïve 
Bayes and the k-nearest-neighbor algorithms are first applied 
to each data set for overhang feature detection. Then both 
hard voting and soft voting are adopted in fusing the 
classification outcomes. The results show that while none of 
the individual classifiers are perfect in detecting overhang 
features, the fused decision of the 324 test samples achieved 
100 % detection accuracy. 

Keywords: Powder Bed Fusion, Additive Manufacturing, 
Decision Fusion, Data Fusion, Bayesian Network, Classification 

1. INTRODUCTION 
Additive Manufacturing (AM) technologies use powder 

materials to fabricate parts with complex geometries. Quality 
assurance is one of the biggest challenges for manufacturers to 
adopt those technologies [1]. The unique layer-by-layer building 
process expands the design options, freedoms, and spaces over 
traditional, subtractive processes [2]. However, in powder bed 
fusion (PBF) AM, this comes at increased costs.  The costs are 
associated with the difficulty in controlling both the 
manufacturing process and the part quality. These difficulties 
emerge because parts undergo repeated and rapid melting and 
solidification. Our view is that we can improve AM part quality 
control using model-based, decision optimization.  

Other researchers have held the same view. For example, 
one study shows a simple, decision-support model for choosing 
between additive and subtractive, to optimize energy efficiency 
[3]. Similar models may be applied when selecting the material 
and machine for a build. Often, these models result in feasible 
ranges for several, process parameters including 1) the required 
energy density per material melting temperature [4], 2) layer 
thickness per powder particle size [5] and 3) other dimensionless 
numbers [6]. While these ranges help choose process parameters 
for a given part, there is still no part-quality guarantee.  

The authors' previous work involves analyzing, modeling, 
and optimizing a PBF process [7-9]. All three mostly rely on one 
process parameter, the current scan strategy, and one set of 
synchronized, in-situ, monitoring data [10-12]. Recently, more 
research efforts have been published that improve AM process 
controllability and part quality with in-situ monitoring data and 
advanced data analytics [13-16]. Data fusion is an advanced, 
data-analytics technique that integrates data from multiple 
sources.  The fused data provides a comprehensive picture of 
the current process [17]; and it can be used to optimize decisions 
related to the future process parameters.  

Figure 1 shows a multi-level, reference model for AM data 
fusion, which combines multiple streams of in-situ AM data to 
identify the state of a build process [18]. At the bottom level,  
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Figure 1. AM data fusion framework 

fusion combines all raw data and creates an input file for decision 
making software. Such a file will have no information loss, but 
it will most likely suffer from data imbalance [19]. At the next 
level, data features provide the basis for the fusion model. For 
example, remelting maps reflect the current melting conditions 
of a layer by fusing melt-pool, image features with the scan 
commands. The fused data can be used to determine whether an 
overhang of the physical AM part is under or over fused [20].  

The authors’ previous work fused layerwise, build-surface 
images with high-frequency, coaxial, melt pool images. They 
then correlated those images to assess different geometric 
features such as overhangs [21]. However, the initial 
uncertainties in both data sources prevent building accurate 
point-to-point correlations. Moreover, it is difficult to build a 
data-driven model using features extracted from one dataset to 
predict features based on a different dataset.  

The ability to make good decisions based on a single, data 
source may be limited due to the noise, algorithm, data 
characteristic, and data instance. However, such a single-source 
decision can avoid the accumulated uncertainty that results from 
feature-level fusion. On the other hand, a high initial noise of the 
source or misaligned data from that source can aggravate this 
situation. In addition, data from a single source may be sensitive 
to different processing conditions. For example, layerwise image 
(LWI) data can be good source for measuring surface texture 
though it has a lower resolution. Melt pool monitoring (MPM) 
images provide detailed melting conditions on a smaller scale but 
lack an overall representation of the entire layer.  

While it is difficult to use ONLY one data source to make a 
good decision about the current AM process and parts, it is 
possible to integrate multiple, independent, data sources into a 
single, consolidated decision. We call this integration process  
decision fusion [22]. The final, fused decision is not limited by a 
fixed integration strategy because users can design relevant rules 
based on their preferences and expectations.  

We believe that our proposed decision-fusion method, 
which is based on a hierarchical voting system, can make very 
accurate predictions. The foundation of the system derived from 
what we call individual classifiers. Section 2 will introduce the 
classification and voting methods. Section 3 presents the general 
workflow of the multi-modal, decision-fusion method for AM. 
Section 4 has details about the experimental design and basic 
data analysis. Section 5 demonstrates a case study using the 

proposed method to identify the overhang and non-overhang 
surface. The last section provides summary and future works. 

 
2. BACKGROUND 

The AM process-monitoring problem can be formulated as 
a classification task with input data 𝑋 = {𝑥!, … , 𝑥"}  at an 
index 	𝑖 ,classes of the process state represented as 𝑌	 ∈
{𝑦!, … , 𝑦#}	at an index	𝑗, and a classifier 𝐹	which predicts 𝑌 
from 𝑋; 𝐹: 𝑋 → 𝑌 

 
2.1 Classification methods 
2.1.1 Naïve Bayes 

Naive Bayes (NB) is a simple method that uses a 
probabilistic model for classification tasks [23]. Given 	𝑋 =
{𝑥!, 𝑥$, 𝑥%, … , 𝑥"}, a class probability 𝑃(𝑦&|𝑋) can be estimated 
with Bayes’ theorem as like: 
 
 

𝑃5𝑦&6𝑋7 = 	
𝑃5𝑥!, 𝑥$, 𝑥%, … , 𝑥"6𝑦&7𝑃5𝑦&7

𝑃(𝑋)  

 
(1) 

 
𝑃(𝑋) = 		8𝑃5𝑥'|𝑦&7𝑃5𝑦&7

#

&

 (2) 

𝑃5𝑦&7 and 𝑃5𝑥'|𝑦&7 can be easily estimated since they are 
the frequency of class 𝑦&  and each feature 𝑥'  for 𝑦&  in the 
training dataset respectively. For the joint probability 
𝑃5𝑥!, 𝑥$, 𝑥%, … , 𝑥"6𝑦&7 , NB utilizes “native” assumption: the 
input feature 𝑥' is independent of any other features. Then, the 
joint probability can be expressed as a product of each feature 
probability. 

 
 

				𝑃5𝑥!, 𝑥$, 𝑥%, … , 𝑥"6𝑦&7

= 𝑃5𝑥!6𝑦&7𝑃5𝑥$6𝑦&7𝑃5𝑥%6𝑦&7 ∙∙∙ 𝑃5𝑥"6𝑦&7

= 	:𝑃5𝑥!6𝑦&7
'

 
(3) 

Therefore, the class with the highest probability is chosen as 
the predicted class 𝑦;.  
 

 𝑦; 	= 	𝑎𝑟𝑔𝑚𝑎𝑥	
&

𝑃5𝑦&6𝑋7	

					= 𝑎𝑟𝑔𝑚𝑎𝑥	
&

𝑃5𝑥!, 𝑥$, 𝑥%, … , 𝑥"6𝑦&7𝑃5𝑦&7
𝑃(𝑋)  

 (4) 

 
     = 𝑎𝑟𝑔𝑚𝑎𝑥	

&
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2.1.2 Deep feedforward Neural Network 
A Deep Feedforward Neural Network (DFNN) uses a  

unidirectional (feedforward) information flow [24]. DFNN 
consists of three layers: an input layer that receives the input, an 
output layer that transmits the output, and a hidden layer that 
transforms the input into the latent representation. For the 
classification task, DFNN aims to learn a latent representation of 
a set of input 𝑋, which can be classified into different classes. 

Our DFNN consists of 𝐿 layers and that each layer	 𝑙 has 
𝑀( neurons at index 𝑛. 𝑀()! for the input layer and 𝑀()* for 
the output layer. L and M  are determined by the dimension of 
𝑋 and the number of classes 𝑐 for the classification task. 𝑌 ∈
ℝ#	can expressed as a vector with dimension 𝑚 . Then, an 
output 𝑧( of each layer can expressed as like: 
 

 
𝑧( = 𝜎(𝑤"+	𝑥"(,! + 𝑏")	

𝑓𝑜𝑟		𝑙 = 1,2, … , 𝐿, 𝑛 = 1,2, … ,𝑁(  (5) 

 argmin
-!,/!

𝐿𝑜𝑠𝑠(	𝑧')*	, 𝑦	) (6) 

where 𝑤"+  and 𝑏"  are a weight and a bias of 𝑛01  neuron in 
𝑙01 layer; 	𝑥"(,! is an input of 𝑛01 neuron in 𝑙 − 101 layer; 𝜎 
is a nonlinear, activation function in which sigmoid and relu 
function are commonly utilized. 

The optimal 𝑤"+  and 𝑏"	 are obtained by minimizing a 
𝐿𝑜𝑠𝑠 function, which means difference between the final output 
𝑧')*  and class vector 𝑦  for each input 𝑋  (Equ. 6).  The 
optimization uses back propagation of the gradient of the 𝐿𝑜𝑠𝑠 
function through the network. 

For the classification task, a softmax function is used as the 
output layer’s activation function. Softmax normalizes the 
output layer’s vectors 𝑤"+	𝑥"(,! + 𝑏& , 𝑛 = 1,2, … ,𝑀()2  to 
values of the between 0 and 1, and the sum of the values is always 
1. It 	 allows 𝑧()2 	 ∈ ℝ3"#$ 	 to be interpreted as a class 
probability. The class with the highest probability is chosen as 
the predicted class label 𝑦; based on the following 
 
 

𝑦; 	= 	𝑎𝑟𝑔𝑚𝑎𝑥	
&

𝑃5𝑦&6𝑋7 (7) 

 
2.1.3 k-Nearest Neighbor (kNN) 

The k-Nearest Neighbor (kNN) is a distance-based 
classification method [25]. The kNN classifies new unlabeled 
data based on the majority vote of its k-nearest neighbors in the 
training set. When given the value of k, the k-nearest neighbors 
in that set are identified based on a distance metric. Then, the 
class probability can be expressed as the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦&  of 
frequency of each class: 

 
𝑃5𝑦&6𝑋7 =

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦&
𝑘  (8) 

The class with the highest probability is chosen as the 
predicted class label 𝑦;, just like (7). 
 

2.2 Voting Strategies 
This section introduces three common voting strategies for 

deciding among the predictions of multiple classifiers. 
 

2.2.1 Hard Voting  
Hard voting is a simple method to select the best decision 

[4]. When the classifier 𝐹4(𝑋) predicts a class probability, most 
votes (𝑚𝑜𝑑𝑒) of predicted classes from multiple classifiers is 
chosen. 
 
 

𝐹4(𝑋) 	= 	𝑎𝑟𝑔𝑚𝑎𝑥	
&

𝑃5𝑦&6𝑋7, 𝑓𝑜𝑟	𝑝 = 1,2, … , 𝑃 (9) 

 𝑦; = 𝑚𝑜𝑑𝑒{𝐹!(𝑋), 𝐹$(𝑋), … , 𝐹4(𝑋)} 
 (10) 

 
2.2.2 Soft Voting 

Soft voting is a weighted voting based on each class 
probability [26]. When given the class probability of each 
classifier 𝑃45𝑦&6𝑋7 with classifier weight 𝑤4 , the most class 
probability from averaging the class probabilities of each 
classifier is chosen. 
 
 

𝑦; 	= 	𝑎𝑟𝑔𝑚𝑎𝑥	
&

8𝑤4𝑃45𝑦&6𝑋7
5

4

 (11) 

 𝑤4 =	
1
𝑃	 

(12) 

 
2.2.3 Soft Voting with Entropy 

Instead of using uniform weights (Equ. 12), soft voting can 
use weights that reflect the uncertainty about how confident the 
classifier is in its prediction. Here, entropy can be used to 
quantify the uncertainty [27]. When given the class probability 
of each classifier	𝑃45𝑦&6𝑋7	,	classifier weight 𝑤4  is calculated 
to entropy and is normalized with Euclidean norm ||𝑤|| 
 
 

𝑤4 =	−8𝑃45𝑦&6𝑋7 log$ 𝑃45𝑦&6𝑋7
#

&)!

, 𝑓𝑜𝑟		𝑝

= 1,2, … , 𝑃	 

(13) 

 
𝑤a4 =

𝑤4
||𝑤|| (14) 

 
3. A MULTI-MODAL, DATA-DRIVEN, DECISION 

FUSION METHOD FOR AM IN-SITU MONITORING 
The proposed, data-driven, AM, decision fusion method 

includes two major parts. The first part generates an initial 
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decision from individual classification models. The second part 
fuses those individual decisions using a new type of designed 
voting strategy, which is describe below.  

Figure 2 shows an example of that strategy based on two, 
AM sensor systems with a total of 6 individual data sources.  
Each source collects different in-situ sensor data simultaneously 
during the AM build process. Each sensor can provide multiple 
datasets with multiple instances and characteristics. For 
example, an LWI camera can provide image data using different 
flash conditions, focus areas, and exposure times. During the 
PBF process, an LWI camera can capture details of the surface 
texture based on a specific light source and scan direction.  

Unique features can be extracted from the same multi-
characteristic dataset by using different processing methods.  
For example, one method can extract physical features of the 
melt-pool images based on thermal conditions and scanning 
behaviors.  Another method can process the same images 
mathematically without any physical explanation. From even a 
single dataset, multi-algorithmic results can be derived using 
different classification methods. 

 

 
Figure 2. Workflow for a two-sensors example. 

The six decisions from the six individual sensors will go 
through the voting system resulting in two decisions (Decision A 
and Decision B) fusion. After the two individual decisions have 
been made, they will be fused to create the Decision Final.  

 
4. EXPERIMENTAL DESIGN AND BASIC DATA 

ANALYSIS 
4.1 Experimental Platform 

A 3D part was created on the Additive Manufacturing 
Metrology Testbed (AMMT) at the National Institute of 
Standards and Technology (NIST). AMMT is a fully customized 
metrology instrument that enables flexible control and 
measurement of Laser PBF processes [10, 11]. More details 
about AMMT can be found in Lane et al, 2020 [10]. 

4.2 Part Geometry 
In this experiment, the 3D part was built on a wrought nickel 

alloy 625 (IN625) substrate - 100 mm x 100 mm x 12.5 mm. The 
part has a bounding box 5 mm x 9 mm x 5 mm, a 45-degree 
overhang feature, and a cylinder cavity. The powder material is 
a mix of recycled and virgin IN625 powder. The build consists 
of 250 layers at 20 µm per layer. The build employs a constant 
speed (800 mm/s), constant power (195 W), and a striped scan 
pattern [11]. The scan direction is designed to rotate 90 degrees 
after every layer. This study focuses only on the sensor data and 
not the process parameters that created that data.  

Figure 3 shows the designed part, its dimensions, and its key 
geometric features. The part is 5 mm x 5 mm x 9 mm with 250 
layers, where the layer thickness is 20 µm. The part has four 
regions. Zone-1 represents the regular region in the middle of the 
part. This is a 5 mm x 5 mm x 3 mm volume without overhang. 
Zone-2 is a 5 mm x 5 mm x 3mm volume on the far side with a 
fixed 45º overhang growth starting from Layer 52. The near side 
has a cylinder hole with 4 mm and 3 mm depth diameter.  

 
Figure 3. Part dimensions and key geometric features. 

This part creates two, mirrored, overhang regions starting 
from Layer 126 and ending with Layer 225. Notes: Due to the 
cylinder's changing curvature, the overhang would change its 
size. Later layers would have a more intense overhang than 
earlier layers. Zone-3 and Zone-4 represent the overhang regions 
on this part. Figure 4 shows the top view (XY plane) of one mid-
layer with all geometric features. It marks the details about the 
zone-division method. 

 
Figure 4. Zone division of the part form top view (XY plane). 

4.3 Data Collection 
This experiment collected two types of in-situ data, LWI 

images and MPM images. The experiment used three LED 
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flashlights shooting from different angles, namely LED A, B, 
and C, in the building chamber for layerwise imaging. Once 
AMMT finished scanning one layer, the LWI camera captured 
one image under each flash condition. A high-speed, coaxial 
camera captured MPM images at a high frequency.  

A preprocessing step deployed the 4-point homography 
method to correct the distortion and deformation of the raw LWI. 
Four corner points of the first layer with a rectangular cross-
section were used to derive the homography matrix [28, 29]. 
Assuming that the distortion is identical for all the images - 
because the tower camera is stationary during the build process 
- the homography matrix is then applied to all the LWI images to 
align the pixels to the real-world coordinates. 

Figure 5 shows the part surface of processed LWI images 
under three flash conditions. LWI data of LED A is not included 
in the case study due to over-exposure. As shown, the same 
surface from the same part exhibits different features. For 
example, LED B is sensitive to edge and powder. LED C is more 
sensitive to the surface texture. 

 

 
Figure 5. Part surface of three LWI images from three LED 
flashlight. (a) LED A, (b) LED B, (c) LED C. 

Figure 6 shows three, sample, MPM images from the 
horizontal scan (a), the vertical scan (b), and the pre-contour scan 
(c), respectively. The white spot located at the image center is the 
laser melting area named melt pool. MPM images are measured 
120 pixels by 120 pixels, where each pixel is 8 µm x 8 µm. The 
camera collects about 6000 MPM images at each layer. The exact 
number of images depends on the scanning time. More than 1.5 
million MPM images were collected and used in this work. 

 
Figure 6. Sample MPM images at different moments. 

4.4 Layerwise Feature extraction 
This study focuses on two, layerwise, statistical features of 

each data source. MPM analysis studies the average, melt-pool 
size and its standard deviation per layer. LWI analysis focuses on 
the layerwise grayscale average value and standard deviation. 
The statistical features are extracted for the overhang and regular 
regions separately. Note, the numerical value from feature 
extraction is based on physical meanings. MPM feature directly 
represents the melt pool size behaviors, which affect by complex 

thermal conditions including energy input and heat conductivity. 
On the other hand, LWI features directly represent the surface 
texture and light sensitivity.  

Figure 7 shows the LWI and melt pool size heat map of the 
same layer. The rectangular box marks the designed overhang 
region on this layer. The open system AMMT provide detailed 
digital command of laser position. Thus, this study has the 
ground truth of the overhang and non-overhang regions. The 
figures show the overhang region has higher grayscale and lower 
melt pool size. 

 

 
Figure 7. (a) LWI image for layer 151. (b) Calculated melt pool 
size heatmap of the same layer. Rectangular box marks the 
designed overhang region of the part.  

To detect overhang features, only the melt pools and pixels 
on the edge of each layer would be included in the statistical 
analysis. That demands the feature extraction to precisely trim 
the data to the area with the strongest overhang effect. This study 
distinguished the pure overhang area based on the pixel size in 
the corrected LWI images. It analyzes the data from 1 to 4 pixels, 
where is 0.0649 to 0.2596 mm. Similarly, melt pools within this 
range are included to calculate the layerwise average and 
standard deviation for overhang and non-overhang regions. 

 
4.5 Basic Feature Analysis 

Figure 8 shows the average melt pool size from MPM and 
average grayscale value from LWI. The data exhibits clear 
difference between overhang (Zone-2 to 4) and non-overhang 
regions (Zone-1) in both data sources. Similarly, the standard 
deviation of melt pool size and grayscale value shows the same 
behavior. 
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Figure 8. (a) Average melt pool size (b) Average grayscale value. 
Zone-1 is regular region without overhang. Zone-2 to 4 are 3 
overhang regions with different degree. 

 
Figure 9. Standard deviation of melt pool size (a) standard 
deviation of LWI grayscale value (b). 

As shown Figure 9, the non-overhang region is steadier than 
the overhang regions. According to this evidence, the case study 
selected the average and standard deviation as two input 
variables for the classification method. As a result, the following 
classification only selects the features that sensitive to overhang. 

 
5. DEMONSTRATIVE CASE STUDY 

Each dataset (see Figure 7) used in this study has 649 sample 
points. There are 250 non-overhang data points from Zone-1 
(regular region). For overhang data, there are 199 data points 
from Zone-2 (45º overhang region) and 200 data points from 

Zone-3 and Zone 4 (cylinder hole overhang region). Zone-2, 3, 
4 characterize the features based on the designed width of the 
overhang, in 1-4 pixel region. 1 pixel indicates the narrowest 
overhang region near the edge. 4 pixel indicates the overhang 
region has a wider range. As a result, each dataset of specific 
pixel width feeds into the individual classifier. 

Figure 10 shows the prediction result of the three datasets in 
1 pixel width. LED-B and LED-C deploy the NB method. MPM 
deploys the KNN method.  Datasets LED B and LED C have 
two inputs: the average grayscale value and its standard 
deviation. Dataset MPM has two input variables: average, melt-
pool size and its standard deviation. The data is evenly 
distributed, 50% training and 50% testing. All classifiers were 
created by Matlab 2022a classification functions, “fitcnb” for 
NB, “fitcnet” for DFNN, and “fitcknn” for KNN. Since the study 
focuses on decision fusion, the classifiers all deployed default 
settings without further modification.  

The best algorithm for LED B is NB. The prediction 
accuracy is 97.84%, 97.22%, 96.60%, and 95.37% for pixel 1 to 
4, respectively. KNN provides MPM with the best prediction 
results 100%, 100%, 99.69%, and 98.46%. None of the candidate 
algorithms could provide accurate predictions for LED C during 
the practice. In fact, the maximal, predictive accuracy is less than 
80%. Due to the large difference to other sensorial datasets, later 
decision fusion would neglect the classifiers for LED C.  
 

 
Figure 10. Prediction result for (a) LED-B with NB, (b) LED-C with 
NB, and (c) MPM with KNN. 

Figure 11 shows the decision fusion result for Zone-3 at 
Layer 167 based on the individual decision of the 8 datasets of 
LED B and MPM. Datasets 1-4 represent the pixel 1-4 from 
sensor LED B. Datasets 5-8 are from MPM sensor. Orange color 
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indicates the decision is overhang layer and green indicates non-
overhang layer. The actual result is overhang. 

 

 
Figure 11. Decision fusion result based on hard voting and soft 
voting strategy.  

 
Figure 12. The actual LWI and melt pool size map of the same 
layer that mentioned in Figure 11. Red box marks the 4 pixels 
width overhang region at Zone-3 for LWI and MPM data. 

Classifier 1-2 predict overhang, whereas Classifier 3-4 
predict non-overhang. The fused decision of Sensor A is 50% for 
each.  In this case, the rule determines overhang for equal 
voting to avoid false negative. Classifier 5-8 all predict 
overhang. According to the hard voting rules, the final decision 
is overhang. This solution agrees with the ground truth.  

When using a soft voting strategy, the process relies on the 
probability of each prediction. Consequently, Sensor A has more 
than 50% voted for overhang when applying an equal weighting 
factor for each classifier. The final solution is the same as the 
hard voting strategy.  

The decision fusion was based on a test computer with a is 
2.9 GHz Quad-Core Intel Core i7 with 16 GB 2133 MHz 
LPDDR3 Ram. The incremental, computational cost of using 
decision fusion is negligible when compared to building 
individual models. Matlab 2021a uses averagely 0.2s to build 
individual model. Make decision from individual model for all 
test data is about 0.04s. Data fusion with soft voting strategy 
needs additional 0.1s.  
 
6. SUMMARY AND DISCUSSION 

This paper proposes a decision fusion method for AM. The 
method builds an individual data-driven model for each multi-
modal data source. Each source will have its own characteristics, 
and instances. Then, our method makes an individual decision 
based on each model.  Next, it fuses those individual decisions 
based on a voting system.   

The case study focused on whether an overhang existed on 
an AM part. Overhang and non-overhang surfaces are pre-
designed at the CAD model level. So, users have the pre-
determined ground truth of every position. Since this designed 
truth might not actually be the truth, we conducted a preliminary 
experiment, collected six sensor datasets, and made an overhang 
prediction based on those datasets. The experiment yielded two 
results. First, multi-modal data sources can avoid the limitations 
associated with using a single dataset. Second, the final, fused 
decision/prediction reduced, by as much as 5%, the errors 
associated with the individual predictions. Predictions that were 
based on individual data sources. Overhang can significantly 
affect the geometric accuracy and surface roughness.  

 Since research is still at an early stage, more experiments 
will be conducted.  Based on this experiment, the selected, 
input features may not be the optimal choices for identifying the 
surface features. Other statistical features may further improve 
the predictive accuracy. Furthermore, this study did not dive 
deeply into classification algorithms. Since the focus was 
decision making, we intentionally maintained the individual 
data-driven models at a simple default status. Future works will 
investigate the decision fusion at the algorithm level. This step 
may eliminate the bias of algorithm selection to improve the 
accuracy for more complex problems. 
 

DISCLAIMER 
Certain commercial systems are identified in this paper. 

Such identification does not imply recommendation or 
endorsement by NIST; nor does it imply that the products 
identified are necessarily the best available for the purpose. 
Further, any opinions, findings, conclusions, or 
recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of NIST or any 
other supporting U.S. government or corporate organizations. 
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