
Category Theory 43
S. Breiner, E. Subrahmanian, and R. D. Sriram

Contents
Introduction . 1260
Composition and Context . 1263
A Model Is a Mapping . 1266
Isomorphism and Identity . 1271
Picturing Processes . 1276
Nondeterminism . 1280

Possibility . 1281
Probability . 1282

State . 1284
Visual Reasoning . 1288
Duality . 1290
Further Study . 1292
Conclusion . 1294
References . 1296

Abstract

Category theory (CT) is a branch of mathematics concerned with the representa-
tion and composition of structured relationships. Recent interest in systems
engineering (SE) stems from the possibility that CT might provide a principled
mathematical foundation that SE currently lacks. The case is bolstered by a broad

S. Breiner (*) · R. D. Sriram
Information Technology Lab, National Institute of Standards and Technology, Gaithersburg, MD,
USA
e-mail: spencer.breiner@nist.gov; ram.sriram@nist.gov

E. Subrahmanian
Information Technology Lab, National Institute of Standards and Technology, Gaithersburg, MD,
USA

Engineering Research Accelerator/Engineering and Public Policy, Carnegie Mellon University,
Pittsburgh, PA, USA
e-mail: sub@cmu.edu

© Springer Nature Switzerland AG 2023
A. M. Madni et al. (eds.), Handbook of Model-Based Systems Engineering,
https://doi.org/10.1007/978-3-030-93582-5_85

1259

array of applications in probability, computing, data, and dynamics, as well as a
track record of unification in science and mathematics. However, the tools and
methodology for applying CT within engineering are mostly prototypes and
proofs-of-concept. This chapter introduces the key ideas and terminology needed
to engage with this emerging research area.

Keywords

Category theory · Systems engineering · Mathematical modeling · Composition

Introduction

This chapter gives an informal introduction to some of the core ideas and methods
from category theory (CT), a branch of mathematics concerned with the represen-
tation of compositional systems. It offers an extension of traditional set-based
mathematics that emphasizes structural relationships (arrows X!Y) rather than
internal structure (elements x � X).

CT is a topic of growing interest within systems engineering (SE) because it
offers the possibility of a principled foundation that would justify and sharpen SE
approaches in the same way that Newton and Maxwell’s equations underwrite
mechanical and electrical engineering. Despite early recognition of the potential
[1], serious consideration of categorical foundations has long required a doctorate in
mathematics or a related field. However, recent years have seen a substantial effort to
increase CT’s accessibility through friendlier introductions and domain-focused use
cases and examples. This has revealed that “abstract” categorical ideas are often
quite intuitive, at least once they are specialized to a familiar context.

For the practicing engineer, CT offers an extremely powerful modeling toolkit for
managing structured information of all kinds, with precise, expressive mechanisms
for specification, transformation, composition, and abstraction (generalization).
Composition encourages us to separate point solutions into reusable components
and relationships, leaving behind a computational infrastructure that can be reused,
audited, and extended to solve new problems in the future. As we deepen our
understanding of the system, CT guides the model evolution process, making it
easier to substitute and recombine these pieces into new forms. Such an approach is
potentially relevant at every stage of the SE process, from requirements and design
through operation and retirement.

Categories provide a universal framework to organize and evolve the diverse
collection of models and methods that go into answering important questions about
cost, risk, safety, and other critical concerns. In her popular science book How to
Bake π [2], Eugenia Cheng describes CT as “the mathematics of mathematics,” and
“[w]hatever mathematics does for the world, category theory does it for mathemat-
ics.” CT describes all manner of mathematical phenomena, from geometry and
dynamics to data and computation, in terms of a small collection of abstract
concepts, which we can compose in different ways to represent different types of

1260 S. Breiner et al.

systems. Crucially, deep connections to computing, data science, probability, and
physics can help engineers manage the ongoing transition to pervasive computing,
sensing, and actuation.

However, significant work is needed to establish the methodology and develop
the tools needed to create such a vision. For most of its history, research in CT has
focused on developments in mathematics, theoretical physics, and computer science.
The last decade, though, has seen the rise of a new community of researchers
devoted to Applied Category Theory (ACT), including more substantial interaction
with engineering and related fields. Although reduced, the barriers to entry for CT
remain substantial; much of the literature is extremely technical, and even “basic”
examples may assume background knowledge (topology, group theory) that engi-
neers lack. Our goal in this chapter is to provide a “travel guide” that will help
systems engineers who are interested in exploring this emerging field to engage with
the technical literature.

Practical applications of CT (see section “Further Study”) usually involve an
interaction between several technical concepts, and the resulting presentation is often
inscrutable or top-heavy, depending on whether the author merely cites the necessary
definitions and results or takes the time to explain. Of course, any application would
feel top-heavy if it required the introduction of basic concepts like matrix algebra or
differential equations. These methods are generic – context independent – and their
reuse throughout science and engineering entails substantial savings in cognitive
overhead and computer implementation. CT is similarly generic, but the value of
reuse is invisible when the concepts are unfamiliar.

In this chapter, we have opted for readability over breadth, putting practical SE
examples beyond our reach. The systems we do consider are very simple: labeled
graphs to introduce categorical data structures, stepping and counting for process
representation, and resistor equations to illustrate CT’s visual logic. The methods
themselves apply much more broadly – any database schema, Bayes net, or matrix
derivation can be modeled with the tools we introduce – but the added complexity of
a sophisticated example would obscure the method itself and provide an additional
barrier for readers who lack that context. Instead, we encourage the reader to follow
along with parallel examples from their own domain of expertise. (Understanding
CT requires active reading, and the reader should be prepared with pen and paper to
write down additional diagrams, calculations, and examples in parallel with the text.)

To situate CT within the SE landscape, we can triangulate against existing
technologies. We will position CT as a general-purpose modeling language, compa-
rable to something like the Systems Modeling Language (SysML) or Object Process
Methodology (OPM) [3]. These are themselves rather different, and the comparisons
highlight different features of the categorical approach. The profusion of diagram
types and elements found in SysML emphasizes CT’s comparative parsimony,
covering the same breadth of application by composing and recomposing the same
small set of core concepts.

On the other hand, OPM shares this parsimonious worldview and has a similar set
of core concepts (objects and processes). Since OPM models and categories look
broadly similar, this comparison points out differences at the level of metamodels.

43 Category Theory 1261

CT is self-referential – there is a category of categories – and this allows us to
structure and manage our modeling activities themselves. Indeed, this supports a
multimodel perspective that OPM lacks. Moreover, the object-level features inside a
model and the metalevel relationships between them interact, especially when we
shift the context of analysis. CT provides a language to understand these subtleties.

As a modeling language, CT’s general-purpose usage is complemented by exten-
sive applications in formal methods, suggesting further comparison to a range of
domain-specific modeling languages. When we build system models from compo-
nent descriptions in Simulink or Modelica, the composition takes place in a category
of dynamical systems [4]. When we analyze statistical trends in SAS or estimate
probabilities from a Bayes net, we compose probabilistic relationships [5]. Graphs
[6], Petri nets [7], temporal logic [8], gradient descent [9], and fuzzy logic [10] can
all be profitably analyzed in terms of categorical structure, and the “shared DNA” of
categorical structure helps to fit all these different methods together, especially when
they are used to analyze different facets of the same system.

The remainder of the chapter is organized around three extended examples in
sections “Composition and Context, A Model Is a Mapping, Isomorphism and
Identity, Picturing Processes, Nondeterminism, State, Visual Reasoning and Dual-
ity,” summarized below, followed by a brief review of the ACT literature and a guide
for further study in section “Further Study.”

We will begin in section “Composition and Context” with a brief introduction to
the language of categories, using labeled graphs to motivate the concept of categor-
ical composition. Section “A Model Is a Mapping” looks at a more explicit repre-
sentation for the graphs in the previous section, using categorical mappings called
functors for data specification and transformation. Because functors compose, CT is
strongly self-referential – there is a category of categories – and this allows us to
distinguish internal structure (relationships inside a category) and external structure
(relationships between categories). Section “Isomorphism and Identity” introduces
two categorical concepts, an internal notion of equivalence (isomorphism) and an
external relationship between functors (natural transformation), and puts them
together to consider the way that model equivalence changes as we transform
between the representations introduced in section “A Model Is a Mapping.”

Much of the interest in ACT over the past decade has been driven by applications
of string diagrams, a graphical syntax that relates to process models in the same way
that schemas relate to data structures. Section “Picturing Processes” introduces the
diagrammatic method and uses it to model the interaction between two simpler
processes, a stepper, and a counter. Section “Nondeterminism” introduces non-
determinism into the previous example, including both possibility and probability,
and shows how composition spreads this nondeterminism throughout the system,
even to components that are deterministic when viewed in isolation. Section “State”
layers on a further complication by introducing internal (hidden) state for the
components. Here we reuse the machinery introduced in sections “Composition
and Context” and “A Model Is a Mapping” for a different purpose, using functors
and natural transformations to transform component representations from one
semantic context to another.

1262 S. Breiner et al.

Where informal diagrams support only intuitions, formal syntax supports rigor-
ous analysis. Section “Visual Reasoning” introduces the equational logic of string
diagrams, which allows us to reason about process equivalence using picture proofs.
We introduce a process-theoretic interpretation of matrix algebra and use it to derive
the classical equation for serial resistance. Section “Duality” introduces the concept
of network duality, which allows us to “reverse” systems of spatial networks, in a
way that does not make sense for temporal processes. Using this, we interpret Ohm’s
laws and derive the formula for parallel resistance, as well.

Notation We use bold italics to indicate the introduction of a new technical term.
For mathematical variables, we use italicized font for elements inside a category
(objects and arrows X, Y, f), and bold font for categorical structures (categories,
functors, and natural transformations C, f, α). We also use (upper/lower) case to
distinguish objects (X, Y, Z) from arrows (f, g, h), as well as categories (C, D, L)
from functors (f, g, h). Natural transformations are written in bold and distinguished
by lower-case Greek letters (α, β, γ).

Another set of conventions governs the use of arrow notation. The most important
is a distinction between type-level relationships, indicated by an ordinary arrow !,
and element-level relationships, which use a tailed arrow 7!. For example, squaring
defines a function ℝ!ℝ+, which maps the set of all decimal numbers ℝ into the set
of positive numbers ℝ+. At the level of elements, the squaring function relates 27! 4
and �37! 9.

Composition and Context

One road into category theory is via graphs. Like graphs, categories focus on the
relationships between entities as much as the entities themselves. In graphs, we call
the entities and relationships vertices and edges; in a category, the entities are objects
(Readers with an object-oriented background (e.g., Java, SysML, etc.) should be
aware that “objects” in CT do not represent individuals, as in object-oriented
terminology. They are more like classes, i.e., collections of individuals.) or types
and the (directed) relationships are called arrows, maps, or morphisms.

Arrows in a category are like edges in a directed graph. Every arrow has a source
object X and a target object Y, specified by writing h: X!Y. The key difference
between categories and graphs is a composition operation (There are conflicting
notations for composition. We prefer the diagrammatic order of composition h¼ f � g
(also written as f; g) in this chapter. However, composition is traditionally written in
applicative order, so that h¼ g ∘ f (note the reversed order). Applicative order arises
from the case where f and g are functions, and the composite function is defined by
the formula h(x) ¼ g(f(x)).) h � k which allows us to combine a sequence of arrows
X!Y!Z into a single map X!Z.

An example helps to fix ideas, so consider the directed, labeled graph g shown in
Fig. 1a, with six vertices and 11 edges. Although g has no direct relationship A!C, it
does contain a path that connects the two vertices. Paths compose by concatenation;

43 Category Theory 1263

if h is the two-step blue path A!B!C in Fig. 1a and k is the three-step red path
C!F!E!D, then the composite h � k is a five-step path A!D.

Thus, every graph g defines an associated category of paths called the free
category generated by g. All the features of g (e.g., connectivity) are reflected in
the free category, so we lose nothing in the move from graphs to categories. Without
labels, this would be the end of the story; these add an extra layer of complexity that
allows us to encode some additional context from the domain.

When we compose edges in a labeled graph, we are led to ask how labels
compose. Write e1 and e2 for the blue edges in Fig. 1a, labeled by 2 and 3, respec-
tively, and h for the two-step path e1 � e2. Given that label(e1) ¼ 2 and label(e2) ¼ 3,
how should we assign label(h)? Labeling is a semantic question because its answer
depends on what the labels mean. Suppose the vertices of g are locations, and the
edges are routes between them. If the labels represent distances (say, in kilometers),
then the labels should combine by addition: The distance from A!C (along the
given path) is

dist hð Þ ¼ dist e1ð Þ þ dist e2ð Þ ¼ 2 kmþ 3 km ¼ 5 km:

Alternatively, the labels might represent a clearance height (in meters) along the
route, in which case we should take the minimum:

hgt hð Þ ¼ min hgt e1ð Þ, hgt e2ð Þf g ¼ min 2 m, 3 mf g ¼ 2 m:

Similarly, in electrical networks, series resistance combines by addition, but capac-
itance requires a more complicated formula

res hð Þ ¼ res e1ð Þ þ res e2ð Þ ¼ 2 Ωþ 3 Ω ¼ 5 Ω,

cap hð Þ ¼ cap e1ð Þ�1 þ cap e2ð Þ�1
�1

¼ 2 μFð Þ�1 þ 3 μFð Þ�1
�1

¼ 6=5 μF:

Fig. 1 (a) A directed graph with labeled edges. (b) Composition of labeled edges must specify a
composition operation for labels

1264 S. Breiner et al.

These examples show how composition forces us to confront the semantics of our
representations. The same considerations apply to more complicated semantic labels,
for example, we might label a link in a communications network with a vector
incorporating speed, distance, latency, and noise, and these quantities might interact
in the composite if, e.g., increased noise along a single link might lead to increased
latency for multiple hops as the system waits for repeated messages. However, if we
do not know the appropriate semantics, there is also a “free” option, where we
combine the labels into a list, just like we combined edges into paths

label hð Þ ¼ ⟨label e1ð Þ, label e2ð Þ⟩ ¼ ⟨2, 3⟩:

It is important to recognize that CT does not proscribe the composition operation;
this is at the user’s discretion. Instead, CT establishes two rules that such a compo-
sition must satisfy. The first and most important is associativity:

h � kð Þ � l ¼ h � k � lð Þ

Associativity is important computationally because it replaces a
nested composite like (h1�h2)�(h3�(h4�h5)) with the simpler term
h1�h2�h3�h4�h5. This exchanges a tree representation for a list, so
only the order matters. Concatenation of paths in a free category is
automatically associative, as are the composition operations given
above for distance, height, resistance, and capacitance.

The second requirement for a category is that every object X must have an arrow
idX: X!X called the identity on X, which has no effect under composition: for any
f: X!Y,

idX � f ¼ f ¼ f � idY :
We usually just write id, omitting the subscript, since the objects X and Y are already
known from f.

The identities in a free category are the paths of length zero. For labels, we have
no choice but to assign id to the unit for the composition operation. For distance, this
is the expected result: a path with no steps has length zero:

dist fð Þ ¼ dist f � idð Þ ¼ dist fð Þ þ dist idð Þ) dist idð Þ ¼ 0 km

Similarly, an identity in a resistor network has res(id) ¼ 0 Ω, corresponding to a short
circuit (ideal wire). Clearance height and capacitance also have unit elements, as long
as we allow infinite values. An infinite clearance height represents “no restriction,”
while an infinite capacitor again approximates an ideal wire (at least for AC circuits).

While serial composition allows us to consider individual paths, we need some-
thing more to analyze the network as a whole. For instance, we are usually interested
in the shortest route or the maximum clearance between two locations. To model the

43 Category Theory 1265

impact of multiple paths, we introduce a second operation h � k to combine paths
with the same source and target. Just like serial composition, this operation is
determined from the semantics.

For example, when the path labels represent distances, we usually want to find the
minimum distance between nodes. In fact, g contains a second path k¼ e1 � e3 that is
shorter than h since dist(e3) ¼ 1 km. Hence,

dist A, Cð Þ ¼ dist hð Þ � dist kð Þ � dist A ! F ! E ! D ! Cð Þ � . . .
¼ min 2þ 3 km, 2þ 1 km, 6þ 4þ 3þ 3 km, . . . ¼ 3 km

There are other paths, but none shorter than k, so the distance from A to C is 3 km.
Alternative clearances, on the other hand, combine with max rather than min: If

we want to move a large item, it only needs to clear one of the available paths. In this
case, the four-step path A!F!E!D!C is important because of the restrictive
height constraint on e1: A!B.

hgt A, Cð Þ ¼ hgt hð Þ � hgt kð Þ � hgt A ! F ! E ! D ! Cð Þ � . . .

¼ max min 2, 3f g, min 2, 1f g, min 6, 4, 3, 3f g, . . . m ¼ 3 m

Parallel paths in electrical network have a different character than the transpor-
tation examples above. When we are interested in a “best” alternative, we join paths
with order-theoretic operations like max and min, but analyzing concurrent flows
requires algebra rather than ordering. For resistors and capacitors, these come from
the familiar operations of parallel composition:

res hð Þ � res kð Þ ¼ res hð Þ�1 þ res kð Þ�1
�1

cap hð Þ � cap kð Þ ¼ cap hð Þ þ cap kð Þ
Adding algebra makes this case somewhat more complicated, and we use it to
motivate the rest of our discussion. We will return to the resistor equations in section
“Visual Reasoning,” but for now we look at CT’s approach to combinatorial data
structures like directed and undirected graphs, and the relationships between them.
With this, we can transform the data presented in Fig. 1a into a more appropriate
format for resistor networks.

A Model Is a Mapping

This section discusses the categorical approach to data and semantic modeling as one
might typically encounter in formal ontologies, relational databases, or object-
oriented class diagrams. In particular, we focus on the way that CT represents

1266 S. Breiner et al.

relationships between different data structures, with directed and undirected graphs
as our motivating example.

One unique feature of categorical modeling is an explicit separation of “syntactic”
and “semantic” model elements. In slogan form, “a model is a mapping,”

model : Syntax ! Semantics:

As indicated by the bold type, the source and target are categories, and the mapping
is a categorical relationship called a functor. There is a category Cat where the
objects and arrows are categories and functors. The category of categories introduces
an element self-reference into CT, a powerful feature of categorical analysis.

In modeling terms, one should think of the elements of this mapping as follows:

• Syntax specifies the numbers and types of system components, and their
arrangement.

• Semantics define explicit representations for component structures or behaviors,
and algorithms for composing them.

• Functors assign semantic representations to syntactic components, and calculate
system semantics according to the specified algorithms.

Rather than implementing a model “by hand” in the target technology, we can
provide a high-level description of the system in terms of its components and their
interactions, and then evaluate the semantic functor to construct the desired
implementation.

For combinatorial data structures like graphs, the target semantics is Set, the
category of sets and functions. The objects are sets X, Y; ℝh: X!Y is a function
assigning every element x � X to a unique element y ¼ h(x) � Y. Semantic
categories are usually defined a priori, based on preexisting formal methods. Other
important classes of semantics include categories of relations (Rel), matrices (Vect),
probability distributions (Prob), and dynamical systems (Dyn). (In fact, each has
many variants, e.g., finite versus continuous probabilities or dynamics.)

For now, though, our object of focus is the syntax of the model, which we call a
schema. We start with a simple schema containing only two objects and two arrows

The symbols in the schema are mnemonic for source, target, Edge, and Vertex,
and the schema’s name stands for Directed graph.

The objects and arrows in the schema represent placeholders or variables that
range over sets and functions. To model the graph g drawn in Fig. 1a, we would
substitute {A, B, C, D, E, F} for the objectV, and a set {e1,. . ., e11} forE. For example,
if e7 is the bottom edge of the graph g, labeled 4, then s: e7 7! F and t: e7 7! E. The full
assignment of source and target for a smaller graph is shown in Fig. 2.

43 Category Theory 1267

We formalize this substitution process as a mapping D!Set. In general, an
arrow f: C!D between categories is called a functor. Every functor involves two
functions, fob and far, that map objects to objects and arrows to arrows, respec-
tively. These mappings must preserve connectivity, just like a graph homomor-
phism: Given an arrow h: X!Y in C, the image far(h) is an arrow fob(X)!fob(Y)
in D. In practice, we omit the decorations and rely on context to distinguish
applications f(X) and f(h).

Now we can represent a specific directed graph as a functor g: D!Set, which is
called an instance of the schema D. More importantly, the same style of represen-
tation generalizes to any database or formal ontology. In a relational database, the
tables are objects, the arrows are columns, and a functor maps each table to its set of
rows. In logic, objects are formulas, arrows are proofs, and a functor sends each
formula to the set of elements that satisfy a property. Part of the value of the
categorical approach is to unify superficially different representations.

Next, we need to add labels to our graphs, and more generally data attributes to
the objects of our schemas. In this case, we add a new arrow l: E!R (mnemonics:
label, Real number):

The only distinction between the attribute l and any other arrow like s or t is that we
always assign the target object R to the same set; every model L!Set sends R 7! ℝ.
Consequently, the function g(l) will always assign numeric labels. If E and Vact like
variables over sets, R acts like a constant.

We now have two schemas D and L, and their relationship defines a second
functor i: D!L. Functors are built from functions, and they compose in the same
way – f � g sends X to g(f(X)) – so we can define a categoryCat, where the objects are
categories, and the arrows are functors.

Functors between schemas create transformations between the associated
instances. The simplest takes a labeled graph and “forgets” the labels, returning
the underlying directed graph. In categorical terms, this is just the composite functor
i � g:D!L!Set. This situation occurs frequently in programming, whenever a class
C extends an abstract interface A. The class C “inherits” any method f � A by first

Fig. 2 The representation of a directed graph (left) with five numbered edges and five colored
vertices. We can encode this data as a pair of functions or, equivalently, a database table with two
columns

1268 S. Breiner et al.

expanding f in terms of C and then expanding again according to the implementation
of C, corresponding to a pair of functors A!C!PrLang.

Alternatively, wemay start from an unlabeled graph g and ask for a lift of g along i,
as shown in the diagram on the right. In this case, each lift corresponds is a different
assignment of labels for the same underlying graph. Lifting problems are often
underdetermined; there is no way to guess the “right” labels for g. Nonetheless, CT
provides a “free approximation” that lifts without any additional data. The left Kan
extension, denoted Σi, extends the unlabeled graph by inserting dummy variables
(labeled nulls) for any unknown information. Even if we do not know their values,
these variables can still carry logical constraints and inferences.

As categories, the schemas D and L are a bit lacking: They involve no compo-
sition. To remedy this, we introduce the schema for undirected graphs. The idea is to
model an undirected edge X — Y as a pair of directed edges X ⇆ Y. Here is the
schema:

There are several elements to note. First, we added a loop r: E!E, allowing for
composition with s and t, and of r with itself. Next, we have two path equations that
formalize semantic constraints of the representation. The first says that the source of
the reverse is the target. The second says that reversing twice is the same as doing
nothing at all. We can use ordinary equational logic to derive further consequences:
The target of the reverse is the source

r � t ¼ r � r � sð Þ ¼ r � rð Þ � s ¼ id � s ¼ s

In addition to the schema itself, we also get a second schema functor j:D!U. Just
like before, we can compose with j to get the “underlying” directed graph of u:
U!Set, noting that j � u has two directed edges for each undirected edge in u. Since
most directed graphs are not of this form, the free lift Σj “fixes” this by doubling
every edge X!Y to a pair X ⇆ Y. For example, the graph g from Fig. 1a has 11 edges,
Σj(g) would have 22.

CT also provides formal mechanisms for integrating schemas that are developed
independently. The initial data is a pair of functors L ⟵ D!U with the same
arrangement as i and j.L andU are the schemas to be integrated, whileD defines their
conceptual overlap. (CT neither provides nor restricts the mechanisms used to
identify the overlap. This is a hard problem, in part because it may depend on the

43 Category Theory 1269

intent of the schemas’ authors.) Given this data, the pushout is a new schema LU
along with two functors L!LU⟵ U that complete the left-hand square in Fig. 3a.
Intuitively, we produce LU by “gluing” L to U along D. The two functors show how
the original schemas sit inside the joint context, and when we restrict these embed-
dings to D, they agree.

Now we can use the functor L!LU to transform the labeled, directed
graph g: D!Set into a labeled, undirected graph u0: LU!Set. The transformation
doubles each edge, just like Σj, and the labels in L come along for the ride. However,
we are not quite done because we need to set the label values for the reversed
edges.

It frequently happens that the pushout schema is incomplete, in the sense that there
are natural semantic constraints between L and U that cannot be inferred from the
schemas themselves. In this case, we know that resistance labels (coming from L)
should be symmetric under reversal (coming fromU). This symmetry corresponds to
an unstated equational constraint r � l¼ l. (Note that these constraints are semantically
motivated and cannot be derived from the schemas themselves. We could use the
same schemas to model a network of batteries, but, in that case, we should set r � l ¼
� l to reflect the fact that voltage is oriented.) Adding this constraint to the pushout
creates a sixth schema R as well as a comparison functor k: LU!R.

In the final step of the transformation, we apply Σk to u0. This adds in the new
constraint and closes the data structure under logical inference. This will automat-
ically fill the reverse resistances needed to complete our network.

Let us review what we have done. We started by representing data schemas as
categories, and the associated data structure as Set-valued functors. This provides
three important mechanisms for formal data manipulation:

1. Functors express relationships between schemas.
2. Functors between schemas create data transformations using composition and

lifting.
3. Pushouts combine schemas based on conceptual overlap.

Fig. 3 (a) Transforming a labeled directed graph into an undirected resistor network; (b) the
resistor network Σj �k(g)

1270 S. Breiner et al.

We started with a directed, labeled graph g: L!Set. First, we related L to a
second schema U based on a shared subschema D. Next, we pushed out this
relationship to construct a joint schema LU. Then we extended LU with additional
semantic constraints (resistance values are symmetric) to obtain a final schema R.
With all the schemas in place, we then lifted g twice, first from L!LU to double the
edges, then from LU!R to fill in the missing resistance values.

The categorical treatment is a bit top-heavy for directed graphs; the effort to
establish the mathematical machinery out-weighs its value when applied to such tiny
schemas. Amortizing the up-front cost over a larger project improves that cost-
benefit comparison. Our solution also leaves behind a compositional infrastructure
of schemas and functors that can be reused and extended for future problems.
Additionally, functorial transformations track how a model is built, rather than
what is inside, and we can view this as a very explicit form of traceable
documentation.

Isomorphism and Identity

In the last section, we spent some effort converting a directed graph of resistor values
into an undirected graph. Why? What makes one representation better than another
for a given purpose? In this section, we consider one important answer that is both
intuitive and historically important: The choice of representation helps us understand
whether two things are “the same.” CT can help us to give precise answers to fuzzy
questions like this, often by sharpening the concepts in play in a way that distin-
guishes conflicting interpretations.

What does it mean for two things to be the same? This is a problem not only for
philosophers, but also for programmers, who must decide whether to compare two
data structures by their location in memory (reference equality) or by the data stored
there (structural/value equality). Identity turns out to be a surprisingly slippery
question.

It is also an important question in practice: If we want to optimize over all
structures of a given type or test against all possible failures of a certain kind, we
must be able to recognize whether two of these are the same. Failure to recognize an
equivalence leads to extra work; the resistor network in the previous section has
2048 different representations as a directed graph, and analyzing the resistance of all
these would be a waste of time. Even worse, asserting a false or unjustified
equivalence may lead us to ignore cases that are meaningfully different, invalidating
our attempted optimization or assurance.

To get a sense of the problem, let us ask which of the following three graphs are
the same?

43 Category Theory 1271

If we ask the printer, the answer is none, since all three look different on the page.
On the other hand, we usually want to think of graphs as combinatorial structures, so
that positioning on the page is irrelevant, and in that case, g1 and g2 are identical.

For g3, the answer is even less clear. We need to ask whether the labels “A” and
“B” are semantically meaningful or “just names.” If the labels are meaningful, then
g1 and g3 are meaningfully distinct, and otherwise, all three graphs are equivalent.

To make sense of this, CT combines two formal constructions: isomorphism and
natural transformation. The first is an internal concept, in the sense that it refers to
relationships (between objects) inside a category C. The second is external, because
it involves relations between categories (inside Cat). Self-reference allows us to
combine these to define the concept of natural isomorphism, which provides a
context-relative definition of sameness for any schema C. As we will see, the
interplay between internal and external concepts provides a rich language for
expressing subtle concepts and intuitions.

An isomorphism (iso) in a category C is an arrow that can be reversed. Iso-
morphisms come in pairs, so that any iso i: X!Y is matched with an inverse j ¼ i�1:
Y!X, and together these satisfy

i � j ¼ idχ j � i ¼ idγ:

We can “undo” the composition with i by composing with j, and vice versa.
An iso in Set is a function h: X!Y that is bijective, meaning that for every y there

is exactly one x such that h(x)¼ y. The function exp(x)¼ ex. is a bijectionℝ!(0,1),
and it is an isomorphism because there is an inverse function log: (0,1)!ℝ. It is
also an algebraic isomorphism between plus and times, because

exþ y ¼ ex � ey log x � yð Þ ¼ log xð Þ þ log yð Þ:
However, it is not a metric isomorphism because it does not preserve distance

dist x, yð Þ 6¼ dist ex, eyð Þ:
We say objects X and Y are isomorphic and write X ffi Y if there is at least one

isomorphism relating the two objects. Two sets are isomorphic if they have the same
number of elements, in which case we can construct a bijection by pairing them off
one by one. Two vector spaces are isomorphic if they have the same dimension, and
an isomorphism ℝn!ℝn is an invertible n � n matrix.

Isomorphism is an equivalence relation, meaning that it satisfies all the usual
rules for equality. The reflexive and transitive laws follow directly from identity and
composition:

X ¼ X X ¼ Y) Y ¼ X X ¼ Y & Y ¼ Z) X ¼ Z

X ffi X X ffi Y) Y ffi X X ffi Y & Y ffi Z) X ffi Z

id h 7!h�1 (h, k)7!h � k

1272 S. Breiner et al.

Functions preserve equality – if x ¼ y, then f(x) ¼ f(y) – by the substitution
property of equals for equals. In much the same way, a functor f: C!D preserves
inverses and isomorphism:

h : X ffi Y �C) f hð Þ�1 ¼ f h�1

f hð Þ � f h�1 ¼ f h � h�1 ¼ f idXð Þ ¼ idf Xð Þ

Now we have a well-behaved notion of structural equality inside of any category.
We would like to use isomorphisms to analyze the data structures from the last

section. Since instances are mappings (functors), the relationships between them,
called natural transformations, are mappings between mappings. In diagrams, they
are represented by two-dimensional cells, as in Fig. 4 (top), and we also use a
double-shafted arrow (Not to be confused with implication arrow) used above.))
to help distinguish natural transformations from other kinds of arrows.

Given functors f and g as shown in Fig. 4, a natural transformation α: f) g is a
family of arrows αC fromD indexed by objects C � C. Natural transformations raise
dimension: Each object X � C is sent to an arrow αX: f(X)!g(X) in D, called the
component of α at X, and every arrow h: X!Y is assigned an equational constraint
called a naturality square: f(h) � αY ¼ αX � g(h), as shown on the bottom right of
Fig. 4.

Specializing to directed graphs f, g: D!Set, a natural transformation α: f) g is
just a graph homomorphism. Because the schema has two objects V and E, the
transformation involves two functions: αV sends vertices to vertices, and αE sends
edges to edges. The naturality squares ensure that the homomorphism preserves
incidence in the graph: If αE sends e 7! e0, then αV should send s(e) 7! s(e0) and
t(e) 7! t(e0).

Fig. 4 A natural transformation α between two functors f, g: C!D

43 Category Theory 1273

Now suppose f and g are labeled graphs L!Set. The
interpretation of the label set R � L is the same for every
graph: f(R) ¼ g(R) ¼ ℝ. In this case, the naturality square
reduces to a triangle, with the resulting equation

g lð Þ αE eð Þð Þ ¼ f lð Þ eð Þ
This is not very easy to parse. When working with natural transformations, we

often simplify notation by omitting the indexing object. This is usually clear from
context; if v is a vertex, then α(v) is an application of αV, not αE. We can also drop
f and g from the notation, and simply write l for any of the label functions f(l), g(l),
. . .. We already used this convention above, when we wrote s(e) 7! s(e0) rather than
f(s)(e) 7! g(s)(e0). With lighter notation, the new equation is much easier to read

l α eð Þð Þ ¼ l eð Þ:
It says that α cannot change the labels on the edges and, more generally, natural
transformations cannot modify attribute values.

Putting these two ideas together, we obtain the definition of a natural isomor-
phism: an invertible natural transformation. Equivalently, a natural transformation α
where each component αD is an isomorphism in the target category. By this
definition, a graph isomorphism is a homomorphism that is bijective on vertices
and on edges, the same as the usual definition. For labeled graphs, the isomorphism
is not allowed to modify edge labels.

If we model the graphs above as functors L!Set, then all three are isomorphic.
The first isomorphism g1 ffi g2 is just the identity, since the graphs have the same
vertices, edges, sources, targets, and edge labels. On the other hand, the iso g1 ffi g3
has a nontrivial vertex function that sends A 7!B and B 7!A.

Suppose we extend L by adding a new attribute n: V!Str. This generates a new
schema L0 as well as a schema inclusion functor ℓ: L!L0. Once n internalizes the
names A and B into the schema, an isomorphism is no longer allowed to permute
them: As L0-instances, we have g1 ffi g2, but g1 ≇ g3. Similarly, we could attach
coordinates x, y: V!R to each vertex in order to distinguish g1 from g2. Since
schemas carry equations, we can also attach relative constraints to distinguish the
two, even when we do not know their exact values:

x Að Þ ¼ x Bð Þ � 1 cm� g1,g3 x Að Þ ¼ x Bð Þ þ 1 cm� g2

Whatever we include in the schema is regarded as semantically meaningful and must
be preserved by all natural transformations; anything left out, we can scramble.

To ask whether two data structures are the same, we should first ask “For what?”
The context of the problem determines which features are semantically relevant.

1274 S. Breiner et al.

Once we know the right question, we can use functorial transformations to recon-
textualize our structures before asking about equivalence.

As an example, consider the four edge- and node-labels graphs shown in Fig. 5.
Regarded as functors L0!Set, none of them are isomorphic. If we compose with ℓ,
this “forgets” the node labeling, introducing a new isomorphism

ℓ � g1 ffi ℓ � g2:
If we ignore the edge labels as well (e.g., reachability analysis), we pick up another
iso

i � ℓ � g1 ffi i � ℓ � g2 ffi i � ℓ � g4:
Finally, we can ignore direction by lift along j. This makes all four of the graphs
isomorphic

Σj i � ℓ � g1ð Þ ffi Σj i � ℓ � g2ð Þ ffi Σj i � ℓ � g3ð Þ ffi Σj i � ℓ � g4ð Þ:

Alternatively, we can imagine that the node labels are semantically meaningful.
In that case, we can integrate L0 with the resistor schema R by pushing out the
semantic overlap R⟵L!L0. This produces a new schema RL0 as well as a functor
m: L0!RL0. Lifting a graph along m symmetrizes the edges and edge labels, so in
this case only g4 is distinct

Fig. 5 (a) Four similar graphs that are distinct in L0, but isomorphic in other contexts; (b) the
schemas and functors involved in our comparison

43 Category Theory 1275

Σm g1ð Þ ffi Σm g2ð Þ ffi Σm g3ð Þ:
We begin to see some benefits of a principled compositional approach. We could

have easily defined (directed) graph isomorphism directly, but then we would have
needed another definition for labeled graphs, another for undirected graphs, and
another for undirected, labeled graphs, and each of these would have been trivial on
its own, but the need for constant tweaking, refactoring, and updating existing
methods is a burden that grows with a code base.

Instead, we defined a general notion of equivalence phrased internally in the
language of objects and arrows. Natural transformations, maps between functors,
allowed us to use it. Both concepts are independently useful, but we can mix them to
generate new and more refined concepts. Critically, we exploit the uniform descrip-
tion of schemas and functors to define these relationships all at once, rather than one
data structure at a time. Then we were able to reuse the schemas and functors from
the previous section to explore this concept in a specific example.

Picturing Processes

Section “A Model Is a Mapping” introduced the idea that a model is a mapping and
showed how we could use this approach to represent and transform combinatorial
structures like graphs. Now we want to generalize this story to other classes of
models from probability, dynamics, and more. The syntax and semantics of these
models are called string diagrams and process categories, respectively.

String diagrams are a formal picture language describing networks of interacting
processes. Such diagrams are ubiquitous throughout engineering, ranging from
informal flow charts to fully formal computational models like circuit diagrams or
Bayes nets. String diagrams provide a uniform approach to a wide range of analytic
techniques, helping to link models of different kinds through common reference. The
very simple diagram D that will guide the discussion is shown in Fig. 6.

Fig. 6 A string diagram D represents a composite process. The outer box q0 represents the
environmental boundary, while q1 and q2 are the interfaces for (black-box) subprocesses

1276 S. Breiner et al.

A process interface q is a pair of sets (A; B). We call the elements of A and B ports
and think of them as the inputs and outputs of some process. In many cases, we have
different types of ports (e.g., electrical vs. mechanical), corresponding to a pair of
functions (A!T; B!T) for some set of interaction types T.

A string diagram is specified by

• One external interface q0 (the environment)
• Any number of internal interfaces q1, q2, . . ., qk (the components)
• A set of interactions (the strings or wires) matching compatible ports to one

another

Explicitly, the diagram above has types T ¼ {X, Y, Z}, external interface q0 ¼
({x1, y1}; {x2, y2}), and internal interfaces q1 ¼ ({x1}; {x2, z}) and q2 ¼ ({y1, z};
{y2}). The combinatorial representation of the interactions is sensitive to our
assumptions about the problem: Does it makes sense for strings to split and
merge? Is feedback allowed? There are many flavors of string diagrams tuned to
support different answers to these and other questions. See [11] for an extensive
survey.

A model for a string diagram starts with the choice of a target category S that
encodes the semantics of the model. Arrows in S model individual processes; we
might use tensors in Vect, stochastic process in Prob, or smooth flows in Dyn,
among many other alternatives. We can also construct tailor-made semantic catego-
ries, like the data structures and natural transformations in sections “A Model Is a
Mapping” and “Isomorphism and Identity.”

Once the target category is selected, we assign an object to every string and an
arrow to every interface. For this to work, we must make sense of multiple inputs
and outputs, so we assume that S carries a second operation X�Y that represents
parallel (noninteracting) composition. (The use of tensor notation in CT does not
depend on other uses in mathematics and physics, though it does apply to those
cases.) With this, we can model the internal interfaces as arrows q1: X!X�Z and
q2: Z�Y!Y.

Now we use the diagram D as a recipe to construct a new arrow q0: X�Y!X�Y,
noting that the construction requires parallel composition for arrows in addition to
objects (e.g., q�q0). We use the term (The usual term is symmetric monoidal
category, but the concept is too important for such dense jargon.) process category
for a category together with a chosen operation of parallel composition. Unpacking
the abstract definition of q0 depends on which category S we have chosen for the
target semantics. We will spend some time in the next few sections working out the
details in a few concrete cases.

The canonical process category is Set, using the Cartesian product X�Y for
parallel composition. To interpret the diagram D, we start by assigning each type
in T ¼ {X, Y, Z} to a set, and each component qi to a function with the appropriate
interface. For our first model, we set

43 Category Theory 1277

X7!ℝ (q1: X!X � Z) 7!(f1: ℝ!ℝ � )
f1(x: ℝ) ¼ (x + 0.1, cos(x) > .5)

Y7!ℕ

(q2: Z � Y!Y)7!(f2:  � ℕ!ℕ)

Z7! ¼ {T, F} f2(b: , n: ℕ) :¼ if b then n+1 else n

In this model, f1 executes some very simple dynamics on X and sends a Boolean
measurement of the input to f2, which simply increments a running count of the
positive outcomes. The composite process is a function

f 0 : ℝ� ℕ ! ℝ� ℕ

f 0 x : ℝ, n : ℕð Þ≔ xþ 0:1, if cos xð Þ > :5ð Þ then nþ 1 else nð Þ : ℝ� ℕ

We can iterate f0, since it has the same inputs and outputs, and when we do (Fig. 7,
top), we see that x rises steadily while n starts and stops as x enters and leaves the
measured region.

Of course, if we choose different functions, we get different dynamics. The string
diagram places no constraints on how wild the component functions might be. What
we can see, though, is that the dynamics on n will never influence the dynamics on x,
because there is no channel from the n input to the x output. And, if we replace the
assignment q2 7! f2 with some more complicated dynamics, (Here m % k is the
modulus operation, or the remainder of m when divided by k. The equation n % 3 ¼
0 says that n is divisible by 3.) we can see that this is the case (Fig. 7, bottom):

f 3 b : ; n : ℕð Þ ¼ if b OR n%3 ¼ 0ð Þ then nþ 1 else n� 2

Fig. 7 Iterated dynamics defined by two process functors f1 (top) and f2 (bottom)

1278 S. Breiner et al.

We would like to think of this construction in light of the earlier principle that “a
model is a mapping.” The first step is to construct P ¼ P(D), the free process
category associated with the diagram D. An arrow in P is a string diagram that
involves only the components in D, called generators, noting that a particular
component might appear several times within the same diagram, or not at all. Serial
composition p � p0 matches the output strings of p to the input strings of p0, where we
require the types on the strings agree. For parallel composition p � p0, we just place
the two diagrams side by side.

Rather than a representation of our system, P is a context for representation. We
should think of P as a universe of possibility; it describes all possible interactions
between the components of D, without regard to how they are arranged. In partic-
ular, P contains a special arrow q0: X � Y!X � Y that represents the diagram D
itself in terms of an explicit sequence of serial and parallel composition:

q0 ¼ q1 � idYð Þ � idX � q2ð Þ:
When we defined serial composition, we required two properties: associativity

and identity. These are also requirements for parallel composition, but now we
weaken the restrictions to isomorphisms. For example, in Set we have two different
products

X � Y � Zð Þ 6¼ X � Yð Þ � Z

because elements on the left have the form (•, (•, •)), while those on the right look
like ((•, •), •). However, there is an obvious bijection (x, (y, z)) $ ((x, y), z). More
generally, in any process category we have an isomorphism

X � Y � Zð Þ ffi X � Yð Þ � Z:

In practice, this means we can drop the parentheses, just like we did for serial
composition, though the justification for this claim is more involved [12].

The identity for parallel composition involves a special object I, called the unit
object, which satisfies

I � X ffi X ffi X � I

In Set, the unit object is a chosen singleton 1 ¼ {*}, corresponding to bijections
(*, x) $x $ (x, *). More generally, it represents “no objects” in the same way that
X � Y � Z represents “three objects.” In a formal sense, it represents the white space
behind the string diagram and can be generalized to allow diagrams with colored
regions [13].

Unit objects are important for defining states, arrows with no inputs, and effects,
which have no outputs. We usually emphasize this in string diagrams by drawing
states and effects as triangles.

43 Category Theory 1279

In Set, a state x: 1!X picks out a single element x0 ¼ x(*) � X, and once we
associate states with elements, function application is just a special case of compo-
sition: f(x0) ¼ x � f. We can often think of states in an arbitrary process category as
some sort of “element” in the target object.

A functor f: (P, �)!(Set, 3) is called a process functor if it preserves parallel
composition (in addition to identity and serial composition):

f idXð Þ ¼ idf Xð Þ f p � p0ð Þ ¼ f pð Þ � f p0ð Þ

f p� p0ð Þ ¼ f pð Þ � f p0ð Þ:
To define f, all we need is a set f(X) for each type X � T and a function f(qi) for each
component. This is the same information we provided for the models above, so we
have already defined two process functors: f1: q1 7!f1, q2 7!f2 and f2: q17!f1, q2 7!f3.

Once the component functions are specified, we can use them as building blocks
to construct a new function f(p) for any diagram p � P. In particular, we can
compose a model for the system of interest by applying f to the distinguished arrow
q0 that represents D. This provides the recipe needed to construct the functions
displayed in Fig. 7:

f1 p0ð Þ ¼ f 1 � idf Yð Þ � idf Xð Þ � f 2

f2 p0ð Þ ¼ f 1 � idf Yð Þ � idf Xð Þ � f 3 :

The principal limitation of functions is that they are deterministic – once we know
the inputs, the outputs are fully determined – and this is not always how life works.
Fortunately, the syntax of string diagrams is flexible enough to interpret in other
contexts. In the next section, we show how to model nondeterministic processes
using the same framework.

Nondeterminism

In this section, we introduce two more process models illustrating different types of
nondeterminism: possibility and probability. String diagrams let us describe and
reason about our processes at a high level, while process functors attach these to
concrete computations and analyses. In all the examples we consider here, the
objects will be sets, emphasizing the importance of relationships in defining the
semantic context.

1280 S. Breiner et al.

Possibility

A relation (We use a special arrow ↛ to denote relations. We also violate our usual
convention of using lower-case names for arrows because a relation is itself a set.) R:
X ↛ Y is a subset R � X � Y. We can visualize a relation as a bipartite graph, with
vertices X and Y and an edge x —y whenever (x, y) � R. We can also think of a
relation as a truth function R: X � Y!, and we write R(x, y) � {T, F} for the
associated truth value. Relations compose serially using an existential quantifier and
in parallel using Cartesian product

(x, z) � R � S , ∃y. (x, y) � R & (y, z) � S

(x1, x2, y1, y2) � R � S , (x1, y1) � R & (x2, y2) � S

Unlike functions, relations can also be flipped around. Every R: X↛ Y has a dual
relation R*: Y ↛ X defined by R*(y, x) , R(x, y).

A network category (As before, we prefer this to the more common term compact
closed category.) is a process category with duals. The arrows in a process categories
are inherently directed, often along the flow of time, whereas arrows in a network
category can be composed either front-to-back or back-to-front. This often gives
network categories a spatial, rather than temporal, orientation. The definitions above
assemble sets and relations into a network categoryRel. We will return to the topic of
network duality in section “Duality.”

However, we can also think of a relation R: X ↛ Y as a nondeterministic process.
Rather than a single output, R associates each input x � X with a set of possible
outputs R(x) � Y. This allows us to represent relations as ordinary functions (in Set)
that map into the power set P, i.e., the set of subsets:

R: X!P(Y) R*: Y!P(X)

R(x) ¼ {y | (x, y) � R} � Y R*(y) ¼ {x | (x, y) � R} � X

Viewed as nondeterministic functions, composition of relations R: X ↛ Y and
S: Y ↛ Z is given by a union over intermediate y

R � S : x�X 7! [S yð Þ j y�R xð Þf g
By “non-deterministic” process, we actually mean “not necessarily deterministic”

process, because the deterministic processes – functions – are relations, too. For any
function f: X!Y, we can define a relation {(x, y) | f(x) ¼ y} called the graph of f.
(This sense of “graph” is unrelated to the earlier discussion of combinatorial graphs.
You may remember the “vertical line test” from high school algebra that distin-
guishes this type of graph from other relations.) This representation preserves serial
and parallel composition, so it defines a process functor rel: Set!Rel.

Now we are ready to attach a relational model R: P!Rel to the string diagramD
from the previous section. We will not change the types, the Boolean test applied to
x, or the counting function f2: � ℕ!ℕ. However, we will modify the dynamics on

43 Category Theory 1281

x to include a small tolerance. Since there is now a set of possible outputs, this
defines a relation

R1 x : ℝð Þ ¼ xþ :1	 :01, cos xð Þ > :5ð Þ � ℝ� 

Our model R sends q1 7! R1 and q2 7! rel(f2). When we run the dynamics, we see
(Fig. 8, right) that the nondeterminism on x feeds into nondeterminism on n through
the Boolean channel, even though the relation operating on n is deterministic.

As we can see in the Fig. 8, the states inRel are subsets rather than values. We did
not change the parallel product, so 1 is still the unit object, but now an arrow 1↛ X is
given by R � 1 � X ffi X. We can still see an echo of the original dynamics in the
shape on the right, but the gap between best- and worst-case scenarios compounds
more for n than for x.

Probability

Next, we turn to probability. We can model a stochastic process that transforms
X into Y as an ordinary function p: X!D(Y), where D(Y) is the set of probability
distributions over Y. The distribution p(x) is a function Y![0, 1], and its values are
conditional probabilities; we emphasize this by writing p(y | x) rather than the double
application p(x)(y).

Probabilistic functions, which we write X ⟿ Y, form a process category Prob.
We continue with the Cartesian product for parallel composition, so 1 is the unit.
Consequently, a state x: 1 ⟿ X is just a probability distribution over X, which we
think of as a random variable of type X. Parallel composition of arrows p � p0: X �
X0!Y � Y0 uses the product distribution to encode probabilistic independence

p� p0 y, y0 j x, x0ð Þ ¼ p y j xð Þ � p0 y0 j x0ð Þ:
In particular, a product of states x � x represents a pair of independent, identically
distributed (i.i.d.) random variables.

For the serial composition, we compose two arrows p: X ⟿ Y and q: Y ⟿ Z by
marginalization, summing over the intermediate y’s

Fig. 8 Relational dynamics of a process functor R: P!Rel

1282 S. Breiner et al.

p � qð Þ z j xð Þ ¼
γ
p y j xð Þ � q z j yð Þ:

This is similar to the definition of relational composition given above, with sums
replacing unions. There is also a corresponding functor prob: Set!Prob that
associates each ordinary function with a probabilistic function that has zero variance.
Both the inclusion and the composition arise from a more general categorical pattern
called a monad, a core concept in functional programming that helps to manage
interaction logic in the presence of nondeterminism. Monads isolate the key features
of aggregation (, �) and inclusion (rel, prob) that are needed to define well-
behaved compositional systems.

Now we are ready to build our model p: P!Prob. Just like before, we leave the
types, the counting dynamics and the Boolean test unchanged. This time, we add a
Gaussian error term ϵ ~ N(0,0.03) to the dynamics on x, rather than a fixed tolerance:

p1 x : ℝð Þ ¼ xþ :1þ ϵ, cos xð Þ > :5ð Þ�D ℝ� Þð
Then we define p by sending q1 7!p1 and q2 7!prob(f2). This yields p(p0): ℝ�ℕ⟿
ℝ� ℕ, and we can examine the resulting dynamics using a Monte Carlo simulation,
as shown in Fig. 9.

Even though the standard deviation in p is significantly larger than the relational
tolerance in R, these trajectories are much more tightly bunched because probabi-
listic errors can cancel out in a way that possibilistic error cannot. This corresponds
to the fact that the relational tolerance grows / t, whereas the standard deviation
grows / t10 [2]. As before, we can also see that randomness on x feeds into
variability on n, even though the process operating on n is deterministic.

Stepping back from the details of the example, what can we say about the role of
CT? Worst-case and Monte Carlo analyses are nothing new, so what does the
mathematics do for us? String diagrams formalize the sorts of pictures that engineers
already like to draw. They enable high-level reasoning about a system, but they also
crystalize that intuitive understanding into a combinatorial structure that can be used
to parameterize more concrete analyses. In doing so, the diagrams knit these models
together through shared reference to the underlying abstract system (Fig. 10),
improving traceability and supporting many day-to-day engineering activities such
as change propagation and model comparison.

Fig. 9 Monte Carlo dynamics of a process functor p: P!Prob

43 Category Theory 1283

State

In the last two sections, we considered categorical representations of deterministic
and nondeterministic processes. Stateful behavior lies somewhere between the two,
since it can appear nondeterministic “from the outside” even if it is perfectly
predictable “on the inside” with access to the hidden state.

For this example, we equip our counter f2 with a hidden state variable u with two
states: up and down. At each time step, the counter will increment n either up or
down according to the state, and the state itself will evolve according to the
following finite state machine.

A finite-state machine that takes input and produces output is called a Mealy
machine, and these machines form the arrows in a category State. To define a Mealy
machine s: X ⇴ Y, we must provide three elements: a state space U and two
functions, an update u, and an output o

u : X � U ! U o : X � U ! Y

Equivalently, we can provide a single function s: X � U!Y � U.
The description above corresponds to a Mealy machine s2:  � ℕ⇴ ℕ with state

space U ¼ {", #}. Explicitly, the update and output functions are given by

u b : ; n : ℕ, u : Uð Þ ¼ if b then u else switch uð Þ
o b : ; n : ℕ, u : Uð Þ ¼ if u ¼" then nþ 1 else n� 1

We can think of a Mealy machine as a stream transformer. Given an initial state u0
and a sequence of input values x0, x1, x2, . . ., we get a new sequence of output values
as follows

Fig. 10 A summary of
categories, process models
(vertical), and semantic
relationships (horizontal)
involved in our discussion

1284 S. Breiner et al.

State spaces for separate subprocesses do not interact directly, so the joint state
space of a composite process (serial or parallel) is the product of the component state
spaces. For the composite operations themselves, we can write down explicit
formulas, but we find a string-diagrammatic definition easier to read (Fig. 11).

Now we are ready to build a stateful process model. For the q1 process, we go
back to our original dynamics f1. This uses the fact that any function is a Mealy
machine with a trivial (singleton) state space U ¼ {*}. As we have seen before, this
kind of inclusion is modeled by a functor state: Set!State. Then we define our
process functor s: P!State by mapping q1 7! state(f1) and q2 7! s2, the Mealy
machine defined above.

When we compute the dynamics for the composite process s(p0) (Fig. 12, top),
the result is essentially the same as the original plot. We can see the state oscillation
on the plateaus, but the behavior is broadly similar. This remains true for over a
thousand timesteps, but if we zoom out far enough, we begin to see new regimes
where the down state takes over, with dramatic departures from the previous
behavior (Fig. 12, bottom). Hidden interactions like this are one of the central
challenges in testing and verification of modern systems.

The variable behavior would be easier to see if we could compose s0 with the
nondeterministic dynamics from the previous section. This would avoid the unlucky
tuning that causes problems for the deterministic analysis.

In order to compose our Mealy machine s2 � State with a relation R1 � Rel or a
probabilistic function p1 � Prob, we need to transform them into a common
context. To do so, we observe that the construction of the State category is
essentially diagrammatic. For any process category P, a stateful arrow s: X ⇴ Y in

Fig. 11 String diagrams and traditional notation for stateful composition

43 Category Theory 1285

just an ordinary arrow s: U � X!U � Y. Serial and parallel composition are defined
by the same diagrams given above. This defines a new process category State(P).

Every function is a relation; because of this, every stateful function is a stateful
relation.

s: U�X!U�Y 7! rel(s): U�X ↛ U�Y

s(u1, x) ¼ (u2, y) $ (u1: U, x: X, u2: U, y: Y) � State(s)

State sends categories to categories and functors to functors, preserving compo-
sition. In other words, this is a functor at the meta-metalevel, relating PCat, the
category of process categories and functors, with itself.

Similarly, we observed earlier that every function can be regarded as a Mealy
machine with a trivial state space. There is a similar construction in any process
category P using the unit object I for trivial state

f : X ! Y 7!id � f : I � X ! I � Y

This defines a functor stateP: P!State(P), and all these components assemble
into a natural transformation state: id) State, again at the meta-metalevel. The
naturality square (You, reader, should draw it right now.) for rel says that relations
and stateful functions “mean the same thing” when they talk about ordinary
functions.

Figure 13a shows how to put these constructions together to compose our stateful
counter s2 with the nondeterministic dynamics R1 and p1 from the previous section.
The individual components correspond to functors with domains and ,
representing single-component string diagrams (free process categories). The top

x n
n

t

t ≤ 1000 t ≤ 1000

t

n

Fig. 12 Iterated dynamics for a stateful process functor s: P!State. Long-term dynamics (bottom
right) reveal new interactions with markedly different behavior

1286 S. Breiner et al.

squares import R1 and p1 using the state transformation, while the bottom squares
import s2 using the State functor. Once we transport them to a common context, we
can put the components together using the ambient composition defined in Fig. 11.
When we plot the iterated dynamics of Rs(p0) or ps(p0) in Fig. 13b, the variable
behavior of the counter is much easier to see.

In sections “A Model Is a Mapping” and “Isomorphism and Identity,” we
represented models as mappings, and used functors between schemas to define
model transformations. In the last few sections, we have taken the opposite
approach, leaving the syntax of the system unchanged and using semantic functors
to relate different modeling contexts. Thus, let us compose components modeled in
different formalisms by placing them into a common category.

In this section, we also saw an interaction between the “lower level” categorical
structure that describes the processes we are modeling, and the “higher level”
categorical structure that describes categories and functors themselves. By framing
the State construction in purely categorical terms, we could apply the same defini-
tion in Set, in Rel, and in Prob, without further modification.

Functoriality and naturality of the construction encode two different types of
“simple” stateful processes. These are not complicated constructions. Indeed, lay-
ered abstractions like these are often quite intuitive. Categorical language helps us to
untangle these intuitions by framing them in a rich vocabulary of explicit formal
relationships, and self-reference lets us use the same toolbox at all levels of
abstraction.

Fig. 13 (a): Functors (bottom) and natural transformations (top), let us put together stateful
functions with relations (left), and probabilistic functions (right); (b): the iterated dynamics of the
composed processes

43 Category Theory 1287

Visual Reasoning

In this section and the next, we return to the resistor networks from earlier, with an
eye toward their semantic representation. The linear algebra that sits underneath
electrodynamics has a process interpretation in terms of the interaction between
adding, scaling, and copying. For the string diagram shown in Fig. 5, the compo-
nents q1 and q2 represented arbitrary processes, but here we have a very precise
meaning for each component. These can be described axiomatically, in terms of
diagrammatic equations, allowing for rigorous picture proofs and calculations.

Our starting point is the matrix equation that governs a resistor R ¼ R Ω, which
translates directly into a string diagram

Each end of the resistor is characterized by a current and a voltage, viewed as
objects (We use the traditional symbol I for current, although it conflicts with our
notation for the unit object.) Iffi V ffi ℝ. Even though these objects are “the same” in
some sense, distinction in naming and color helps to keep things in order. The blue
dot is a copy, the red bull’s-eye is an add, and the orange R is a scaling operation
(plus units). The entire diagram represents a linear function I � V!I � V.

Linear algebra is a mechanism to understand the interaction of the four atomic
operations shown in Fig. 14a: copy, delete, plus, and zero. These come in sets, with
copy matched to delete (⚫) and plus with zero (Å). The two are mirror images of one
another, satisfying a set of dual equations shown in Fig. 14b, which we summarize
by saying that zero and plus form a commutative monoid, while copy and delete
define a cocommutative comonoid. (More generally the prefix “co-” always indi-
cates reversal of direction (cf. limits and colimits).)

The (co)commutative (co)monoid rules let us “comb” any tree that involves only
⚫ or only Å into a normal form, which is entirely determined by the number of
leaves in the tree representation. Since any two diagrams with the same normal form
are equal, this licenses various diagrammatic substitutions that we will use in our
arguments.

The following diagrams show what happens when ⚫ and Å meet. If we copy and
then add, we double the original value: x + x ¼ 2x. Similarly, we can construct a
scaling operator n: ℝ!ℝ for each integer n
 0. Operator addition has a similar
flavor: We copy the inputs, scale both sides, and then add the results. More generally,
any diagram with⚫s on the left andÅs corresponds to a k� ‘matrix of nonnegative
integers, where k and ‘ are the number of output and input strings, respectively. The
entries in the matrix count the number of paths connecting each input-output pair.

1288 S. Breiner et al.

Units like Ohms (Ω) are similar to scaling operators, except that they connect
quantities of different types.

Finally, we need to consider addition on the left and copy on the right. The
bialgebra rule, shown in Fig. 15a, says that we can replace this pattern with a
complete bipartite graph connecting all inputs to all outputs. The Hopf rule allows us
to “push addition through copy,” noting that this leaves the path count between
inputs and outputs unchanged. Since we can always move ⚫s to the left and Ås to
the right, this is enough to get a matrix normal form for any diagram involving⚫ and
Å. Using the Hopf rule, we can show that scaling composes by multiplication, as
shown in Fig. 15b, and that arbitrary diagrams compose by matrix multiplication.

With all that machinery in place, let us revisit the resistor diagram from above.
The absence of a connection v0—i1 corresponds to the matrix entry 0, and the

Fig. 14 (a): The generators of linear algebra: copy, delete, plus, and zero; (b): the dual axioms of a
(co)commutative (co)monoid

Fig. 15 (a) The Hopf rule pushes copy through add by inserting a complete bipartite graph; (b)
scaling operations compose by multiplication

43 Category Theory 1289

unmarked lines across correspond to the 1 s on the diagonal. The orange box R Ω
incorporates the resistance as a scaling factor and a unit.

We can use the visual logic to analyze a composite system. For the serial
composite of resistors R Ω and S Ω (Fig. 16), we first rearrange the red and blue
wires to equivalent normal forms. The rearranged diagram exhibits the composition
as a sum, so the serial resistance is R þ S Ω. This is a special case of composition as
matrix multiplication.

Of course, calculating serial resistance is not an impressive result. The main point
is that string diagrams support an equational logic based on graph matching and
transformation. We can attach rigorous arguments to pictures that allow us to prove
and calculate entirely diagrammatically. We close out this line of argument in the
next section with a consideration of parallel resistance, but for this, we need one
more ingredient: the network structure of reversibility.

Duality

The first step in understanding parallel resistance is to recognize that this is not a
parallel composition in the sense of process categories. The parallel composition
f � g should map X � X0!Y � Y0, with separate inputs and outputs for both
components. On the other hand, when we compose resistors in parallel, we split
the inputs and merge the outputs.

Kirchoff’s laws govern current flows at junctions. These are rendered diagram-
matically as split and merge operations on I � V, as shown in Fig. 17a; in slogan
form, “currents add, voltages copy.” To make this work, we need a way to reverse
copy and plus, so we view the functions as relations and take their dual, as described
in section “Nondeterminism.”

None of the reversed generators are functions. The duals of addition and deletion
are multivalued, as indicated by the set braces {} and the introduction of new
variables (degrees of freedom) in Fig. 17b. The duals of copy and zero are partial
functions; the result is deterministic, but the process may fail to return a value
(degree reduction).

Fig. 16 The (co)monoid laws allow us to derive the formula for serial resistance

1290 S. Breiner et al.

Reversing the generators allows them to interact in new ways. Caps and cups,
(The names make more sense when diagrams are drawn vertically.) which are
defined by plugging, delete into copy; let us turn inputs into outputs and vice
versa. For example, flipping the input of a scaling operator defines a linear subspace
in two dimensions (Fig. 18a). Playing the same game with plus and zero introduces
negative numbers, since two elements that sum to zero must be equal and opposite
(Fig. 18b).

Even though the new generators are not functions themselves, we can still use
them to build composites that are. For example, if we reverse a scaling operator n,
the result is another scaling, this time by 1/n. This is a function because there is
exactly one way to divide a quantity into n equal pieces. Nondeterminism and
partiality cancel out, leaving a single value. Consequently, the equational theory
now supports fractional scalings in any of our diagrams.

Figure 19 puts these elements together to derive the formula for parallel resis-
tance. The first diagram unpacks the diagrammatic form of the parallel circuit. The
first isomorphism uses caps and cups to move currents to the left of the diagram and
voltages to the right. After factoring the negatives, we apply the Hopf rule on each
side to group the scaling factors. On the next line, we reverse the entire diagram; this
inverts the scaling factors and introduces a sum in the center. Finally, we rearrange
the diagram back into normal form, including another inversion and the insertion of
some negatives, which cancel to yield the result.

Of course, graph transformations are nothing new to electrical engineers; the
YΔ-transform is a graph transformation on resistor networks that eliminates an

Fig. 17 (a) Split and merge operations on I � V; (b) reversed addition and deletion are multi-
valued. Reversed copy and zero are partial

Fig. 18 (a) Composing with a cup transforms a scaling operator into a linear subspace; (b) caps
and cups built from plus and zero introduce negative scaling

43 Category Theory 1291

“internal” node (the center of the Y), without changing resistance through the rest of
the network. What CT provides is a general framework for expressing arguments
like these in any domain, and for attaching arguments from different domains to the
same system. By specifying “the rules of the game,” CT provides a rigorous
framework to guide our exploration through the space of formal models.

Further Study

In this section, we close with a short guide to additional resources. We organize the
discussion by topic: computer science, natural science, formal methods, applica-
tions, and resources for learners.

By far the most well-developed application of CT is in functional programming.
A large and growing community of software engineers explicitly use categorical
structures like monads to structure and simplify the design and analysis of large
software projects [14], and especially in programming language design [15]. The
nondeterministic process categories presented in section “Nondeterminism” are
based on these methods. For engineers with programming experience, functional
programming can be an excellent introduction CT because it provides a sandbox to
play with the mathematical structures. We recommend Milewski’s Programming
Cafe [16] as an introduction to this circle of ideas, or a search for “Functional
programming in. . .” your favorite language.

There are also a number of applications in other areas of computer science,
though these are less developed. Our discussion in sections “Composition and
Context” and “A Model Is a Mapping,” where we presented schemas as categories
and data structures as functors, draws from the literature on categorical databases
[17]. For a more detailed discussion of these ideas, along with working code, see the
AlgebraicJulia blog [18]. AlgebraicJulia [6] is an open-source project developing CT
tools for scientific computing, including a core library (Catlab) as well as a variety of
domain-specific extensions in relational algebra, Petri nets, multiphysics, and more.

Fig. 19 A diagrammatic derivation of parallel resistance

1292 S. Breiner et al.

Another area of research, closely related to CT but somewhat distinct, is the
area of topological data analysis [19], which provides methods to extract
robust combinatorial structures from data clouds in continuous space. The
analysis turns on the fact that the “shape” of a data set depends on the scale;
the point-cloud on the right may appear zero-dimensional, one-dimensional,
or two-dimensional depending on the level of resolution.
Other applications of CT in computer science include a formal analysis of
machine learning via gradient descent in [20], techniques for extracting
structure from high-dimensional data [10], concept mining, and methods for
integrating grammar and statistics in natural language processing [21].

There is also an established community of practice applying CT to mathematical
physics, especially in quantum mechanics. Many of the ideas in our discussion of
process and network categories were developed to understand the relationship
between quantum theory and computation. Picturing Quantum Processes [22] is
an excellent introduction to these methods, even for those who are not interested in
quantum mechanics per se. Baez and Stay’s Rosetta Stone paper [23] is also a nice
introduction to these ideas, and their relationship with other areas of mathematics.

Resistor networks have been an important motivating example for the use of
functorial semantics in the analysis of other physical phenomena. Baez and collab-
orators developed the theory of structured cospans (The original formulation of the
idea as decorated cospans [25] had a technical defect that was later corrected in [73].)
[24] to analyze the behavior of open systems, networks whose dynamics depend on
boundary states and flows. The methods described here are easily extended to other
linear circuit components by introducing a time derivative [25], and related research
considers similar phenomena for Markov processes [26, 27], reaction networks
[28, 29], Petri nets [30], and control theory [31]. More recently, these ideas have
been used to construct software for epidemiological modeling [32].

In addition to modeling scientific phenomena directly, CT also helps us manage
other math. The material presented in sections “Duality” and “Further Study” is part
of a broader effort to develop diagrammatic interpretations for many classes of
formal methods. For a gentle but thorough introduction to this approach, see the
Graphical Linear Algebra blog [33]. The graphical approach can also be applied to
study the relational [34, 35] and probabilistic [5, 36, 37] nondeterminism from
section “Nondeterminism” as well as the dynamical systems from section “State”
(and their continuous counterparts) [4, 38]. Other topics include vector calculus [39],
delay and feedback [40], and the theory of computation [41–43].

Today, CT for engineering is a niche topic, but new applications and use cases
have led to growing interest. The theory of codesign [44–47] models system
components as open optimization problems, which can be composed (with feed-
back) to study global optima. Operads are structures to represent and analyze the
nesting of components and subsystems in hierarchical structures [48–50]. Robotics
researchers have used CT to construct new stability analyses for hybrid dynamical

43 Category Theory 1293

systems [51], among other applications that were presented (and recorded) at a
recent workshop at the International Conference on Robotics and Automation
[52]. Bidirectional transformation (Bx) studies the problem of maintaining consis-
tency in distributed data systems, often using categorical structures called lenses and
optics that model bidirectional information flow [53, 54].

Those who want to learn more will benefit from many excellent resources for
further study. In section “Introduction,” we quoted from Eugenia Cheng’s How to
Bake π [2], a popular nonfiction book on modern mathematics, in general, and CT,
specifically. We also recommend her keynote address at the LambdaWorld confer-
ence [55]. Other recommended short works include What is Applied Category
Theory [56] and the Rosetta Stone [23] paper mentioned above.

For a more systematic introduction, we recommend several textbooks which take
an applied perspective and try to avoid traditional mathematical prerequisites (e.g.,
topology, abstract algebra). Spivak’s Category theory for the Sciences [57] and
Perrone’s Notes on Category Theory [58] both introduce the “standard sequence”
of introductory CT topics: categories, functors and natural transformations, limits
and colimits, adjunctions, and monads. Spivak and Fong’s Invitation to Applied
Category Theory (7 Sketches) [59] uses applications like categorical databases and
codesign to introduce more advanced topics like enriched categories and
profunctors.

Alongside these formal resources, CT benefits from a vibrant online community.
The n-Category Cafe [60] is a group blog covering many CT topics in a (relatively)
friendly and informal manner; its archive and comments supply deep dives into
many topics in pure and applied CT. Other good online resources include Math3ma
[61] and the Graphical Linear Algebra blog mentioned above [33]. The
AlgebraicJulia project also hosts a blog [6] to discuss methods and use cases for
their CT-based software.

Alongside written sources, there are also a growing number of video resources
available for both learning and advanced study. These include recordings of
Milewski [62] and Fong and Spivak [63] lecturing on the texts mentioned above,
as well as online archive of a course at ETH Zurich on Applied Compositional
Thinking for Engineers [64]. For more advanced topics, one can consult the pro-
ceedings of the last few conferences on Applied Category Theory (ACT) [65, 66],
many of which include video recordings due to the pandemic [67]. The Topos
Institute, a CT-focused nonprofit, also hosts an online colloquium series [68] as
well as other meetings and events [69].

Conclusion

Our foray into CT has touched on many topics briefly, favoring breadth over depth.
We introduced categories vis-a-vis labeled graphs, asking what it might mean to
compose the edges, and found that our answer depended on the semantic context.
From there, we moved on to the explicit representation of combinatorial data
structures as functors, and transformations of that data using composition and lifting.

1294 S. Breiner et al.

Then we introduced isomorphisms and used this to show how two data structures
might be “the same” in one context, but different in another.

The next set of topics focused on process categories, particularly the use of string
diagrams to represent interacting processes. We constructed a sequence of models
based on functions, relations, probability, and state and saw how nondeterminism
leaks into deterministic functions via composition. We defined state in purely
diagrammatic terms, allowing us to compose stateful processes with relations and
probabilistic functions.

Finally, we looked at the two-dimensional logic of string-diagrammatic equa-
tions, where proofs are pictures based on graph matching and transformation. We
looked at the equations that generate matrix algebra from the interaction of copy and
plus, and we used them to generate the classical equations for serial and parallel
resistors.

What is lacking, so far, are the tools and tacit knowledge necessary to apply these
ideas out in the world. Mathematicians, computer scientists, and physicists have
developed a well-honed toolbox of formal techniques for modeling systems of
various kinds, but outside of functional programming, we do not yet know how to
match these to the appropriate engineering applications. Research in this area is
essentially greenfield, which readers should take as both a warning and an invitation.

The first deficit is in methodology. SE is a broad subject, with many processes,
practices, and concerns; CT is similarly broad, providing many tools, constructions,
and methods. Mapping the two fields requires us to identify which mathematical
tools are relevant for each engineering analysis. Nor is this relationship one-to-one:
A given engineering problem will often require a mix of several CT constructions.
This is particularly difficult to navigate for new learners, so it may be helpful to
partner engineers with knowledge of the problems with theoreticians that are able to
recognize the abstract patterns that sit beneath.

Tool support is another substantial obstacle. It is still difficult to construct and
manipulate categorical models on a computer. The exception here is functional
programming, which has a relatively well-developed ecosystem of tooling and
support. We have already mentioned AlgebraicJulia [18], an open-source project
developing CT software for scientific computing, with applications in several areas.
There are also some tools for categorical data [70] and string diagrams [71]. See [72]
for a list of other software projects. However, there is currently nothing that supports
intuitive style of dynamic argument that we used in our discussion: combing,
pushing, flipping, and mixing.

Learning resources for engineers are also in need of improvement, although the
situation has improved dramatically in the last decade. However, most texts are
focused on explicit knowledge – definition and proof – rather than the tacit knowl-
edge needed to recognize and take advantage of these structures. Engineers require
less proof and more demonstration, based on examples that are more than toys.
Better tool support would help significantly, providing new users an opportunity to
learn about these structures dynamically, through direct interaction, rather than fixed
on the page. Better resources for producing diagrammatic syntax would speed up the
production of expository materials by an order of magnitude.

43 Category Theory 1295

In our vision, the model of a system is a system of models. Each model is unique,
designed to understand different properties of different systems, leading to different
methods, different assumptions, and different levels of fidelity. But models are also
tied together. Models for the same system share an architecture and parameters;
changes to system design impact them all. On the other hand, models for different
systems rely on the same tools and formal methods, and improvements should
benefit all of them. Any time we use the same architecture to parameterize a range
of analyses, or apply the same analysis to study multiple architectures, we reap the
benefits of a compositional infrastructure, and doubly so for changes to an existing
system.

Systems engineers interact with categories, functors, and natural transformations
on a daily basis, though they might not know it. CT offers an organizing principle
that can help us understand a system better – any kind of system – by helping to
systematically express the relationships between different views of the system, and
further relationships between those. Recognizing the shared calculus of information
that sits beneath the tremendous heterogeneity of SE will unify existing methods,
provide the basis for new approaches, and help to manage the ongoing transition to a
more deeply connected society.

To develop such a vision will require a deep conversation between mathemati-
cians and engineers, between academics and industry, and between theory and
practice. It is not only a grandiose vision, but also a unifying one, with CT playing
the role of a lingua franca, binding together the myriad threads of systems engineer-
ing, across disciplines, across phases, and across companies, helping to organize and
connect the individuals, the infrastructure, and the data that drive the modern world.

Disclaimer Commercial products are identified in this chapter to adequately specify the material.
This does not imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply the materials identified are necessarily the best available for the
purpose.

References

1. A. Wayne Wymore, “The tricotyledon theory of system design,” 1975, pp. 224–230. https://doi.
org/10.1007/3-540-07142-3_87.

2. Eugenia Cheng, How to Bake Pi. Basic Books, 2015.
3. D. Dori, Model-based systems engineering with OPM and SysML. 2016. https://doi.org/10.

1007/978-1-4939-3295-5.
4. David Jaz Myers, “Categorical Systems Theory,” http://davidjaz.com/Papers/DynamicalBook.

pdf, 2022.
5. Bart Jacobs, “Structured Probabilistic Reasoning,” http://www.cs.ru.nl/B.Jacobs/PAPERS/

ProbabilisticReasoning.pdf.
6. AlgebraicJulia, “AlgebraicJulia Blog,” https://www.algebraicjulia.org/blog.
7. J. C. Baez, F. Genovese, J. Master, and M. Shulman, “Categories of Nets,” in Proceedings -

Symposium on Logic in Computer Science, 2021, vol. 2021-June. https://doi.org/10.1109/
LICS52264.2021.9470566.

8. B. Fong, A. Speranzon, and D. I. Spivak, “Temporal Landscapes: A Graphical Temporal Logic
for Reasoning,” Apr. 2019.

1296 S. Breiner et al.

9. G. S. H. Cruttwell, B. Gavranović, N. Ghani, P. Wilson, and F. Zanasi, “Categorical Founda-
tions of Gradient-Based Learning,” 2022. https://doi.org/10.1007/978-3-030-99336-8_1.

10. L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approximation and Projec-
tion for Dimension Reduction,” Feb. 2018.

11. P. Selinger, “A Survey of Graphical Languages for Monoidal Categories,” 2010, pp. 289–355.
https://doi.org/10.1007/978-3-642-12821-9_4.

12. nLab, “Coherence theorem for monoidal categories,” https://ncatlab.org/nlab/show/coherence
+theorem+for+monoidal+categories.

13. M. Stay and J. Vicary, “Bicategorical Semantics for Nondeterministic Computation,” Electronic
Notes in Theoretical Computer Science, vol. 298, pp. 367–382, Nov. 2013, https://doi.org/10.
1016/j.entcs.2013.09.022.

14. Haskell.org, “Haskell,” https://www.haskell.org/.
15. Wikipedia, “Comparison of functional programming languages,” https://en.wikipedia.org/wiki/

Comparison_of_functional_programming_languages.
16. Bartosz Milewski, “Category Theory for Programmers,” https://bartoszmilewski.com/2014/10/

28/category-theory-for-programmers-the-preface/.
17. P. Schultz, D. I. Spivak, C. Vasilakopoulou, and R. Wisnesky, “Algebraic databases,” Theory

Appl. Categ., vol. 32, pp. 547–619, Paper No. 16, 2017.
18. AlgebraicJulia, “Catlab.jl,” https://www.algebraicjulia.org/.
19. Robert Ghrist, Elementary Applied Topology. CreateSpace, 2014.
20. G. S. H. Cruttwell, B. Gavranović, N. Ghani, P. Wilson, and F. Zanasi, “Categorical Founda-

tions of Gradient-Based Learning,” Mar. 2021.
21. B. Coecke, M. Sadrzadeh, and S. Clark, “Mathematical Foundations for a Compositional

Distributional Model of Meaning,” Mar. 2010.
22. B. Coecke and A. Kissinger, Picturing quantum processes. Cambridge University Press, 2017.
23. J. Baez and M. Stay, “Physics, topology, logic and computation: A Rosetta Stone,” Lecture

Notes in Physics, vol. 813, 2011, https://doi.org/10.1007/978-3-642-12821-9_2.
24. J. C. Baez and K. Courser, “Structured Cospans,” Nov. 2019.
25. B. Fong, “The Algebra of Open and Interconnected Systems,” Sep. 2016.
26. J. C. Baez and K. Courser, “Coarse-Graining Open Markov Processes,” Oct. 2017.
27. B. Pollard, “Open Markov Processes: A Compositional Perspective on Non-Equilibrium Steady

States in Biology,” Entropy, vol. 18, no. 4, p. 140, Apr. 2016, https://doi.org/10.3390/
e18040140.

28. J. C. Baez and B. S. Pollard, “A compositional framework for reaction networks,” Reviews in
Mathematical Physics, vol. 29, no. 09, p. 1750028, Oct. 2017, https://doi.org/10.1142/
S0129055X17500283.

29. J. C. Baez, B. S. Pollard, J. Lorand, and M. Sarazola, “Biochemical Coupling Through
Emergent Conservation Laws,” Jun. 2018.

30. J. C. Baez and J. Master, “Open Petri nets,”Mathematical Structures in Computer Science, vol.
30, no. 3, pp. 314–341, Mar. 2020, https://doi.org/10.1017/S0960129520000043.

31. J. C. Baez and J. Erbele, “Categories in Control,” May 2014.
32. S. Libkind, A. Baas, M. Halter, E. Patterson, and J. Fairbanks, “An Algebraic Framework for

Structured Epidemic Modeling,” Feb. 2022.
33. Pawel Sobocinski, “Graphical Linear Algebra,” https://graphicallinearalgebra.net/.
34. F. Bonchi, D. Pavlovic, and P. Sobocinski, “Functorial Semantics for Relational Theories,”

Nov. 2017.
35. E. Patterson, “Knowledge Representation in Bicategories of Relations,” Jun. 2017.
36. T. Fritz and P. Perrone, “Bimonoidal Structure of Probability Monads,” Electronic Notes in

Theoretical Computer Science, vol. 341, pp. 121–149, Dec. 2018, https://doi.org/10.1016/j.
entcs.2018.11.007.

37. T. Fritz, T. Gonda, P. Perrone, and E. F. Rischel, “Representable Markov Categories and
Comparison of Statistical Experiments in Categorical Probability,” Oct. 2020.

38. D. I. Spivak, “The operad of wiring diagrams: Formalizing a graphical language for databases,
recursion, and plug-and-play circuits,” arXiv preprint https://arxiv.org/abs/1305.
0297arXiv:1305.0297, 2013.

43 Category Theory 1297

39. J.-H. Kim, M. S. H. Oh, and K.-Y. Kim, “Boosting vector calculus with the graphical notation,”
American Journal of Physics, vol. 89, no. 2, pp. 200–209, Feb. 2021, https://doi.org/10.1119/
10.0002142.

40. E. di Lavore, A. Gianola, M. Román, N. Sabadini, and P. Sobociński, “A Canonical Algebra of
Open Transition Systems,” 2021, pp. 63–81. https://doi.org/10.1007/978-3-030-90636-8_4.

41. D. Pavlovic, “Monoidal computer I: Basic computability by string diagrams,” Aug. 2012.
42. D. Pavlovic, “Monoidal computer II: Normal complexity by string diagrams,” Feb. 2014.
43. D. Pavlovic and M. Yahia, “Monoidal computer III: A coalgebraic view of computability and

complexity,” Apr. 2017.
44. A. Censi, “A Mathematical Theory of Co-Design,” Dec. 2015.
45. A. Censi, “A Class of Co-Design Problems With Cyclic Constraints and Their Solution,” IEEE

Robotics and Automation Letters, vol. 2, no. 1, pp. 96–103, Jan. 2017, https://doi.org/10.1109/
LRA.2016.2535127.

46. G. Zardini, A. Censi, and E. Frazzoli, “Co-Design of Autonomous Systems: From Hardware
Selection to Control Synthesis,” in 2021 European Control Conference (ECC), Jun. 2021,
pp. 682–689. https://doi.org/10.23919/ECC54610.2021.9654960.

47. G. Zardini, N. Lanzetti, M. Salazar, A. Censi, E. Frazzoli, and M. Pavone, “On the Co-Design of
AV-Enabled Mobility Systems,” in 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), Sep. 2020, pp. 1–8. https://doi.org/10.1109/ITSC45102.2020.
9294499.

48. S. Breiner, O. Marie-Rose, B. Pollard, and E. Subrahmanian, “Modeling Hierarchical Systems
with Operads,” in Applied Category Theory 2019, 2020.

49. J. D. Foley, S. Breiner, E. Subrahmanian, and J. M. Dusel, “Operads for complex system design
specification, analysis and synthesis,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 477, no. 2250, p. 20210099, Jun. 2021, https://doi.
org/10.1098/rspa.2021.0099.

50. S. Libkind, A. Baas, E. Patterson, and J. Fairbanks, “Operadic Modeling of Dynamical Systems:
Mathematics and Computation,” May 2021.

51. A. D. Ames, P. Tabuada, and S. Sastry, “On the Stability of Zeno Equilibria,” 2006, pp. 34–48.
https://doi.org/10.1007/11730637_6.

52. ICRA2021, “Compositional Robotics: Mathematics and Tools,” https://idsc.ethz.ch/research-
frazzoli/workshops/compositional-robotics.html, 2021.

53. F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, and P. Stevens, “Introduction to Bidirec-
tional Transformations,” 2018, pp. 1–28. https://doi.org/10.1007/978-3-319-79108-1_1.

54. Mario Román, “Composing Optics,” 2020.
55. Eugenia Cheng, “Category Theory in Life,” https://www.youtube.com/watch?

v¼ho7oagHeqNc, 2017.
56. T.-D. Bradley, “What is Applied Category Theory?,” Sep. 2018.
57. D. I. Spivak, Category theory for the sciences. MIT Press, Cambridge, MA, 2014.
58. P. Perrone, “Notes on Category Theory with examples from basic mathematics,” Dec. 2019.
59. B. Fong and D. I. Spivak, “Seven Sketches in Compositionality: An Invitation to Applied

Category Theory,” Mar. 2018.
60. Multiple authors, “The n-Category Cafe,” https://golem.ph.utexas.edu/.
61. Tae-Danae Bradley, “Math3ma,” https://www.math3ma.com/.
62. Bartosz Milewski, “Category Theory,” https://www.youtube.com/user/DrBartosz/playlists.
63. David I. Spivak and Brendan Fong, “Applied Category Theory,” https://ocw.mit.edu/courses/

18-s097-applied-category-theory-january-iap-2019/pages/lecture-videos-and-readings/.
64. Andrea Censi, Jonathan Lorand, and Gioele Zardini, “Applied Compositional Thinking for

Engineers,” https://applied-compositional-thinking.engineering/.
65. D. I. Spivak and J. Vicary, Eds., “Applied Category Theory 2020,” in https://act2020.mit.edu/.
66. K. Kishida, Ed., “Applied Category Theory 2021,” in https://www.cl.cam.ac.uk/events/act2021/,

2021.
67. Conference recording, “Applied Category Theory,” https://www.youtube.com/channel/

UC1Kxtc6DOexi4JT-t57Ey9g/playlists.
68. “The Topos Institute Colloquium,” https://topos.site/topos-colloquium/.

1298 S. Breiner et al.

69. “Topos Institute YouTube Playlists,” https://www.youtube.com/c/ToposInstitute/playlists.
70. Ryan Wisnesky and David I. Spivak, “Categorical Databases,” https://www.categoricaldata.net/.
71. et al. Jamie Vicary, “Homotopy.io,” https://homotopy.io/.
72. S. Breiner, B. Pollard, and E. Subrahmanian, “Workshop on applied category theory:,” Gai-

thersburg, MD, Feb. 2020. https://doi.org/10.6028/NIST.SP.1249.
73. J. C. Baez, K. Courser, and C. Vasilakopoulou, “Structured versus Decorated Cospans,” Jan. 2021.

Dr. Spencer Breiner is a mathematician at the US National Institute for Standards and Technology,
working in the Software & Systems Division of the Information Technology Lab. His research
focuses on applications of category theory to problems in systems modeling and interoperability.
Dr. Breiner received his Ph.D. from Carnegie Mellon University in 2013 before joining NIST in
2015.

Dr. Eswaran Subrahmanian is a research professor at the Engineering Research Accelerator and
Engineering and Public Policy at Carnegie Mellon University. He is also an associate at the National
Institute of Standards and Technology. He has held visiting professorships at the Faculty of
Technology and Policy Management at TU-Delft (Netherlands), the University of Lyon II, and
the International Institute of Information Technology, Bangalore. His research is in the areas of
socio-technical systems design, decision support systems, engineering informatics, design theory
and methods, and engineering design education. He has worked on designing design processes and
collaborative work support systems for Westinghouse, ABB, Alcoa, Bombardier, Boeing, and
Robert Bosch. He has been a consultant to a number of organizations, including ABB, Bosch,
and Lytix, and is a co-founder of a Bangalore-based non-profit simulation and gaming startup called
Fields of View. He has published extensively in several disciplines; co-edited three books on
Empirical Studies in Engineering Design, Knowledge Management, and Design Engineering; and
co-authored a book on ICT for Development. He is the co-author of the book ‘We are not Users:
Dialogues, Diversity, and Design,’ MIT Press. He was awarded the Steven Fenves Award for
contributions to Systems Engineering at CMU. He is a Distinguished Scientist of the ACM and a
Fellow of the American Association of Advancement of Science.

Dr. D. Sriram is currently a division chief of the Software and Systems Division with the National
Institute of Standards and Technology, Gaithersburg, MD, USA. Prior to joining NIST, he was on
the engineering faculty (1986–1994) at the Massachusetts Institute of Technology (MIT) and was
instrumental in setting up the Intelligent Engineering Systems Laboratory. He is a distinguished
alumnus of the Indian Institute of Technology and Carnegie Mellon University, Pittsburgh, PA,
USA. He has co-authored or authored nearly 250 papers, reports, and several books. His current
research interests include developing knowledge-based expert systems, natural language interfaces,
machine learning, object-oriented software development, life-cycle product and process models,
geometrical modelers, object-oriented databases for industrial applications, healthcare informatics,
bioinformatics, and bioimaging. Dr. Sriram was a recipient of the NSF’s Presidential Young
Investigator Award in 1989, the ASME Design Automation Award in 2011, the ASME CIE
Distinguished Service Award in 2014, and the Washington Academy of Sciences’ Distinguished
Career in Engineering Sciences Award in 2015. Sriram is a Fellow of the American Society of
Mechanical Engineers (ASME), the American Association for the Advancement of Science
(AAAS), the Institute of Electrical and Electronics Engineers (IEEE), the Solid Modeling Associ-
ation (SMA), International Council on Systems Engineering (INCOSE), and the Washington
Academy of Sciences (WAS). He is also a Distinguished Member (life) of the Association for
Computing Machinery (ACM) and a Senior Member (life) of the Association for the Advancement
of Artificial Intelligence (AAAI). He is the President-Elect of the Washington Academy of Sciences
and federal representative to ONC’s Health IT Advisory Committee.

43 Category Theory 1299

