

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond
the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights
reserved. Copyright ©2022 by IEEE.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

AI Assurance for the Public -- Trust but Verify,
Continuously

Phil Laplante
Engineering
Penn State

Malvern, USA
plaplante@psu.edu

Rick Kuhn
Computer Security Division

NIST
Gaithersburg, USA

kuhn@nist.gov

Abstract— Artificial intelligence (AI) systems are increasingly

seen in many public facing applications such as self- driving land
vehicles, autonomous aircraft, medical systems and financial
systems. AI systems should equal or surpass human performance,
but given the consequences of failure or erroneous or unfair
decisions in these systems, how do we assure the public that these
systems work as intended and will not cause harm? For example,
that an autonomous vehicle does not crash or that intelligent credit
scoring system is not biased, even after passing substantial
acceptance testing prior to release.

In this paper we discuss AI trust and assurance and related
concepts, that is, assured autonomy, particularly for critical
systems. Then we discuss how to establish trust through AI
assurance activities throughout the system development lifecycle.
Finally, we introduce a “trust but verify continuously” approach
to AI assurance, which describes assured autonomy activities in a
model based systems development context and includes post-
delivery activities for continuous assurance.

 Keywords—artificial intelligence, zero trust, explainable AI

I. INTRODUCTION
Artificial intelligence (AI) systems are increasingly seen in

many domains that interact directly with the public, such as self
-driving delivery and passenger vehicles, autonomous
maintenance equipment (e.g. vacuums and lawnmowers), and
medical systems (e.g. expert diagnosis or robotic surgery). AI
systems should equal or surpass human performance, but given
the consequences of failure in these systems, how do we gain
and maintain the support of the public that these systems are
safe?

In a 2021 poll of 2200 American adults conducted by
Stevens Institute of Technology, 48% of respondents felt that the
positives of greater AI adoption in everyday life outweighed the
negatives [1]. But 29% believe the opposite that the negatives
outweighed the positive. A majority of respondents also believe
that in the future AI should play a greater role in technology,
manufacturing, logistics and retail applications. It seems that the
public wants to trust AI systems, but this trust is subject to

continuous reevaluation and could be withdrawn if a significant
disaster or series of disasters further expose the risks. Therefore
a trustworthy, widely applicable and repeatable approach for AI
assurance will be an important driver for adoption and continued
support of AI systems by the public.

II. TRUST IN AI
Trust in an autonomous system has been defined as “the

degree to which there is confidence that the system will behave
as intended”[2]. Some would say “the system could pass the
Turing test” – that is, the system should behave like a rational
human. We suspect it will be demanded that autonomous
systems work much better than humans doing the same task. For
example, an accident rate associated with self-driving cars that
is as high as human traffic accident rates would probably
bankrupt the carmaker. Unfortunately, the tort and liability
issues are as challenging as the technical ones.

There are several contributors to trust that are a superset of
the key elements of AI assurance. These include:.

• Reliability˲
• Safety˲
• Security,
• Privacy,
• Availability,
• Usability, and
• Explainability.

Consistent with the goal of AI assurance, trust building is a
dynamic process that needs to be established at the outset of
system use and maintained continuously. We therefore seek an
AI system development and assurance process that both
establishes trust at the outset and maintains that trust over long
periods of usage of the system.

III. WHAT IS AI ASSURANCE?
AI assurance is a process that is applied at all stages of the

AI engineering lifecycle to ensure that any intelligent system is
producing outcomes that are valid, verified, data–driven,
trustworthy and explainable to the layman, ethical in the context

174

2022 IEEE 29th Annual Software Technology Conference (STC)

978-1-6654-8864-8/22/$31.00 ©2022 IEEE
DOI 10.1109/STC55697.2022.00032

of its deployment, unbiased in its learning and fair to its users
[3].

An important question related to assurance is: how do we
assure that AI systems are safe in a complex and rapidly
changing environment when conventional test coverage and
formal verification methods are insufficient or cannot be
applied? Achieving assurance of function in any environment
requires showing that the test environments adequately cover
real-world conditions that may be encountered. Although some
statistical and structural coverage metrics are relevant they are
usually Inadequate for many of the challenges in autonomous
systems assurance. AI assurance also involves answering the
question: how do we determine that the data gathered to train an
AI system is suitably representative of the real world?

Another natural question to ask is: what kinds of guidance
can we get from standards for AI assurance trust and so on with
respect to AI testing and assurance? A partial answer is there are
many standards related to AI including several IEEE sponsored
AI assurance standards that are either developed or in
development and include standards for transparency, bias, and
ethics; including:

• IEEE P7001 - Transparency Of Autonomous Systems,
• IEEE P7003 - Algorithmic Bias Considerations,

• IEEE P7006 – Personal Data AI Agent Working
Group,

• IEEE P7007 – Ontological Standard for Ethically
driven Robotics and Automation Systems,

• IEEE P7008 - Standard for Ethically Driven Nudging
for Robotic, Intelligent and Autonomous Systems.

• IEEE P7009 - Standard for Fail-Safe Design of
Autonomous and Semi-Autonomous Systems,

• IEEE Std 7010 – Recommended Practice for Assessing
the Impact of Autonomous and Intelligent Systems on
Human Well-Being,

• IEEE P7014 – Standard for Ethical considerations in
Emulated Empathy in Autonomous and Intelligent
Systems.

Most of these standards mention the importance of testing
and assurance but give little operational guidance. Clearly, more
standards are needed.

IV. CRITICAL VERSUS NONCRITICAL AI
There is a difference between AI used in critical

infrastructure systems versus non-critical systems and this
difference probably impacts public trust. Table I shows
application domains for various kinds of critical systems and
some examples of those systems.

TABLE I. APPLICATION DOMAINS FOR CRITICAL SYSTEMS, SYSTEM EXAMPLES AND POSSIBLE USES FOR AI (ADAPTED FROM [4]

Application Domain System Examples Typical Al Uses
Telecommunication infrastructure Public telephone network, local branch exchange ID, FA
Water supply systems Water treatment plant, dam control FA, FS, PHM
Electric power systems Nuclear power plant, regional electrical grid FA, FS, PHM, PO
Oil and gas generation and distribution Gas pipeline, gas-powered power plant FA, FS, PHM, PO
Roadway transportation systems Smart interstate highway, traffic monitoring and control FA, FS, PHM, PO
Railway transportation systems High-speed train line, metropolitan train network control FA, FS, PHM, PO
Air transportation systems Air traffic control system network, passenger aircraft autopilot FA, FS, PHM, PO
Banking and financial services Pension fund management, stock market management FD, ID
Public safety services Air passenger screening, police dispatch FD, ID, PO
Health-care systems Robotic surgery, health record management FD, ID, PO
Administration and public services Employee personnel database, retirement management FD, ID
FA: failure analysis; FD: fraud detection; FS: fail-safe operation; ID: intrusion prevention and detection; PHM: system prognostics

and health management; PO: performance optimization.

The far right column of Table I indicates some of the ways
that AI can be used in those systems, for example, in failure
analysis, fault detection, and so on [4].

AI is also used in many noncritical applications for example
in entertainment, shopping, and convenience based systems. But
even though noncritical applications may seem harmless they
could interact with critical systems or could be through misuse
or abuse become dangerous to the user. Therefore, it is important
to consider AI assurance for every system that utilizes AI.

To further the discussion of AI assurance issues going
forward, consider three classes of consumer-facing AI systems.
The first class consists of robotic convenience systems, for
example, AI based delivery, vacuum cleaners or lawn cutting
systems. The second class of systems comprise autonomous
vehicles, such as self-driving cars and delivery vehicles. The
third class of AI systems includes various AI guided health care
systems, for example for disease detection, diagnosis and

treatment planning. We will refer to these classes or instances
going forward.

V. CRITICAL VERSUS NONCRITICAL A HAZARDS AND FAILURE
IN AI SYSTEMS

Bad things can happen to AI enabled systems, which is
probably why the public is so wary. First, there are various types
of adversarial attacks that can degrade or corrupt system
performance. Examples include:

• Trojan or backdoor attacks involving injection of
certain data to the AI system causing it to give a
specific incorrect response.

• Model inversion, i.e. extracting private or proprietary
model information from the AI system by strategic
introduction of data.

• Tampering, i.e. causing AI system to fail by providing
false data, e.g. by obscuring cameras or injecting
corrupted data into collection points.

175

The AI system could also experience a “payload”
degradation, which can result in decreased performance or
increased errors in the outputs of the system. Or there could be
a mission change say from a system that was designed for
military purposes being converted to civilian use, or vice versa,
which could lead to unwanted even dangerous consequences.

Consider the exemplar systems previously introduced -- all
kinds of bad things could happen to them. For example, a robot
vacuum cleaner could get trapped behind a door or tangled in
the carpet. It could get snagged on a lamp cord, toppling the
lamp and starting a fire. It could run over something dirty, sticky
or oily making a mess or slip hazard. It could also suck up
something valuable or important like a diamond earring or
contact lens. The autonomous vehicle could drive on the wrong
side of the road or fail to avoid a collision. The medical
diagnosis system could miss important symptoms that could
produce an incorrect diagnosis or lead to a faulty treatment plan.

Here is where AI assurance is paramount because the public
needs to know that these kinds of threats have been anticipated
and precluded via deliberate design, by testing and by
continuous external monitoring or self-monitoring.

VI. KEY ASPECTS OF AI ASSURANCE AND GOALS
According to the NIST AI Risk Management Framework,

trustworthy AI is “valid and reliable, safe, fair and bias is
managed, secure and resilient, accountable and transparent,
explainable and interpretable, and privacy-enhanced [5].
Explainability is a key aspect of AI validation [6].

 The need for explainability and transparency can be driven
the distrust in AI systems created by potential system bias. In
social domains, for example, healthcare or finance, bias may
result in unfair and unethical decisions.

 In a NIST sponsored workshop participants identified
nearly 40 types of AI bias including behavioral, exclusion,
historical and institutional [7]. Some examples of bias in
technical domains include an autonomous vehicle driving on the
wrong side of the road, a robot floor cleaner setting the height
incorrectly and a disease diagnosis algorithm detecting one
particular disease too often. Whether we are concerned with
social or technical domains, a common source for the problem
is that the AI was not trained on an appropriate set of data.

In addition to the use of training datasets and/or practices that
are inadequate or inherently biased or non- representative, bias
problems may result from lack of testing, and deployment of
technology that is either not fully tested, potentially oversold, or
based on questionable or non-existent science. Bias can also
include statistical anomalies such as overfitting or underfitting
or due to skewing or incomplete data in the environment.

Bias can be identified and mitigated through a number of
means including data collection best practices, analysis of
contextual awareness, statistical measures, analysis of variance,
outlier detection, causal inference, and many other techniques.
The workshop participants noted that bias is not unique to AI
systems, and that while it is impossible to eliminate bias
completely, the goal in AI assurance is to find ways to identify,
understand, measure, manage and reduce bias. To achieve these

goals industry specific standards and guidelines can help. An
overarching issue in bias problems is the need for a rigorous
formal definition of what is meant by ‘bias’, in order to measure
and detect it. Different users or organizations may have different
definitions, so a necessary step is an agreed upon definition for
the particular field of use, or specific application, where the AI
will be used.

VII. MODEL BASED SYSTEMS ENGINEERING
Now we examine a process model for AI assurance. There

are many that could be used but we chose Model-Based Systems
Engineering. According to INCOSE Model-based systems
engineering (MBSE) is “the formalized application of modeling
to support system requirements, design, analysis, verification
and validation activities beginning in the conceptual design
phase and continuing throughout development and later life
cycle phases.”. MBSE focuses on domain models rather than on
document- based information exchange. MBSE’s effectiveness
is largely based on the effectiveness of coupling models,
machines and teams for increased collaboration, improved
communication and shared understanding.

MBSE makes systems engineering more rigorous, precise
and repeatable through the use of multiple, interconnected
systems models. These models support system requirements,
design, analysis, verification and validation, from the conceptual
design phase and continuing throughout development and later
life- cycle phases. MBSE is well-known to manage complexity,
provide quality and productivity improvements and lower risk
through use of rigor and precision fostering better
communications between the development team and customers.
Model Based Systems Engineering is widely used all over the
world and it’s an excellent system development paradigm for AI
system assurance, which we will further elaborate.

MBSE includes models for:

• requirements, hardware and software architectures,
• design elements (including hardware drawings and

software design documents),
• embodiments of those designs (including circuit

diagrams and code),
• test cases from unit tests through acceptance tests

(manual and automated),
• and maintenance documentation and information.

In all cases these models provide opportunities for
explainability and transparency.

To further the understandability of these models, each
should use a domain appropriate mix of natural languages,
graphical notations, formal syntax and semantics. Storing these
under strict configuration management helps to preserve the
integrity and trust in these models. Some MBSE notations and
design languages are sufficiently rigorous for formal
specification, and could be effective in achieving AI assurance.

VIII. MSBE AND V&V
The classic V model is often used in MBSE because it

recognizes that verification and validation is a done throughout
the systems lifecycle (Fig. 1).

176

Fig. 1. Classic V model for systems engineering

The V model closely ties the forward engineering sequence
of modeling and development activities with the downstream
activities that provide for verification and validation.

In Fig. 1 we start with requirements modeling on the far
left– which we already noted is very important for capturing
context along with all other required behaviors of the AI
system. The model created in this process is tested in the
acceptance testing phase, shown on the right, just prior to
delivery. This is both a verification and validation activity as
validation for the user requirements has to occur early. We will
discuss some techniques for this shortly.

A similar process occurs for the system requirements and
design specification models – which embody the architectural
and detailed design of the system. These models are verified
through integration testing and unit testing respectively. These
occur in reverse order after components of the system have
started to be built. But validation of the system requirements
and system design models have to occur at the time of their
development. The V-model represents one paradigm for
systems development, but in our case we’ll use it as a
framework to discuss appropriate lifecycle AI Assurance
activities.

A. Requirements V&V Techniques for AI Assurance
There are many techniques that are appropriate for

requirements elicitation, verification, and validation of complex
systems. But for AI systems, a smaller subset of techniques is
also appropriate. These techniques include might include
systematic manual analysis of the requirements, group reviews
and inspections, for example, those found in the Joint
Application Development method and Quality Function
Deployment (QFD). Prototyping – both executable and
nonexecutable is also appropriate. Using an executable model of
the system test-case generation (for testability and
completeness) are also recommended. Both automated
consistency analysis and other formal methods (for example, for
model and consistency checking) are highly appropriate.
Finally, viewpoint resolution and task analysis (often via user
stories and use cases) are highly recommended. Of course the

mix of techniques to be used depends on many factors and must
be carefully chosen.

B. Design V&V Techniques for AI Assurance
Many traditional techniques are recommended for both high-

level architectural and detailed design of AI systems. These
include large-scale requirements engineering approaches such
as Joint Application Development. Continuous prototyping,
including the kind used in agile and lean agile development
methods are also useful. In Quality Function Deployment (QFD)
the “house of quality” can be used to compare alternative
designs. QFD emphasizes the “what’s” and “how’s” which
fosters a high level of explainability and transparency.

Designer as apprentice is another widely used technique that
can be used to uncover the details when automating human
behaviors. Finally, rigorous consensus building techniques such
as wideband Delphi and the analytical hierarchy process (or
AHP) can be used to provide transparency for and to validate
and verify different design choices.

C. Testing for AI Assurance
When it comes to testing in the AI assurance world, there

needs to be a strong focus on software testing. Even though
many of the underlying AI and machine learning algorithms can
be implemented in firmware or hard-wired, the same testing
techniques can be used.

Referring back to the V model, we can divide the testing
types into unit, integration and acceptance testing. Traditional
software testing includes various techniques for unit testing,
subsystem testing, system testing and acceptance testing. But
traditional approaches do not necessarily address the unique
needs of AI testing. Menzies suggests that AI systems testing
should include static analysis, runtime verification and model
checking [8]. Another problem associated with testing AI
systems is: do you have enough data and the right data for
training? Testing should be focused on answering this question.

But greater questions lurk for AI assurance. Namely, how
much and what kind of unit testing is needed to reach acceptable
levels of assurance? How much testing coverage is needed, for

177

example, All-Paths? How much integration testing is enough?
How much acceptance testing is enough? The unique nature of
opaque neural networks and the inapplicability of traditional test
adequacy criteria loom here and answers to these questions can
only be found by careful examination of the system objectives,
context, application domain and so on.

D. Dealing with Uncertainty
A well-known problem in AI systems is that they do not

always deal well with uncertainty. For example what does the
robot vacuum cleaner do when encountering an object of
unknown type, for example, something sticky? What does the
autonomous vehicle do if it somehow veers off its navigational
map? And how does the medical diagnosis system deal with
symptoms that are not in its database?

There are many frameworks for dealing with uncertainty
including: probabilistic reasoning, possibility theory, Dempster-
Shafer theory, fuzzy logic, rough sets, intelligent agents,
captured expert opinion and many more [9].

The problem of uncertainty needs to be dealt with in every
AI system or else high levels of assurance are not achievable.

IX. SPECIAL V&V CONSIDERATIONS FOR AI ASSURANCE
We have already noted that conventional V&V is not

enough. Testing for AI should include appropriate kinds of
traditional testing plus testing to address explainability,
transparency and bias. So it stands to reason that conventional
approaches to V&V at each stage are not enough. We need
additional tools. Two tools that can help address these special
problems are combinatorial testing and formal methods.

A. Combinatorial Coverage Measurement for AI
The main difference between conventional SW and AI

algorithms is that the latter are often opaque box functions,
where only the input changes. For example, with neural nets of
all types, performance is dependent on the input training set,
which is used in establishing the connections and weights in the
network. Conventional structural coverage measures, such as
branch or condition coverage, have little practical value in these
problems, because the code for the neural net processing is the
same across applications, only the connections and weights are
different. Therefore, measures of input space coverage are
needed, to show that the input set used to train the AI/ML system
is sufficiently representative of objects and environments that
will be seen in practice.

Measurement methods derived from combinatorial testing
can be used to evaluate the degree to which combinations of
input parameter values are included in a training set [10], [11].
These methods are related directly to attributes of the training
set that are significant for AI, because they measure the level of
inclusion of every t-way combination of input values.
Combinations of input values are used either directly or
indirectly in most AI systems, for example the inclusion or
absence of various trait combinations are the basis for
classifying animals and plants into different species, and
consequently are essential in AI processing of images or
property databases.

Combinatorial methods are also very effective for
explanations and justifications of decisions in AI/ML systems,
which are essential not only in operation but also in validation
phases of assurance. If the AI behavior cannot be explained, then
it will be difficult to trust its conclusions, and if the training
inputs do not adequately represent the real environment, then we
cannot have confidence that it works correctly across all inputs
that may occur in practical use.

B. Formal Methods
Formal methods are necessary for V&V of AI systems but

not sufficient, and others agree with this assessment [2]. Formal
methods can be used throughout the system lifecycle, for
example, to write parts of the requirements specifications using
a formal notation, or to apply formal proving techniques to
various representations of the design and implementation of the
system, which fosters a high degree of explainability,
transparency and can expose bias.

Formal proving techniques can be used to validate those
specification. Other kinds of automated consistency analysis or
theorem proving can be used at various times. The formality of
the models helps communicate with domain experts more
concisely. In some cases semantics-preserving transformations
can be used to convert the specification directly into code. And
formal methods can be used for some verifications, for example
to verify that the implementation matches the specification
(testing).

SysML comprises a set of modeling languages that are an
essential enabler to MBSE. SysML is essentially a subset of the
UML with some extensions. SysML can be classified as
semiformal since all of its meta models have precise
mathematical equivalents. These need to be augmented with
semantics in order to enable their use for formal analysis of
specifications.

X. A “TRUST BUT VERIFY” PROCESS MODEL
Wing notes that “The set of trustworthiness properties for AI

systems, needs to be extended beyond reliability, security,
privacy, and usability to include properties such as probabilistic
accuracy under uncertainty, fairness, robustness, accountability,
and explainability” [2]. This observation, which has been
consistent with many of the ideas presented in this white paper,
are reminiscent of the zero trust security architecture.

The Zero-trust cybersecurity architecture was introduced by
Forrester Research in 2010, and it means that the system is
continuously evaluated for security properties. That is there is
no such thing as testing the system, deploying it and assuming it
is always secure.

The same has to be done with respect to AI assurance. Even
after robust verification and validation for all of the key
assurance properties, the system must never be regarded as
always safe. The system must be continuously evaluated and
challenged. This is reminiscent of the famous “trust but verify”
observation attributed to many individuals, which has a more
encouraging ring to it for the public than “zero trust” (though in
reality, this is a zero trust AI). Therefore we choose to use the
former phrase, not the latter.

178

XI. “TRUST BUT VERIFY” AI SYSTEMS DEVELOPMENT MODEL

Now consider the “Trust but Verify” AI systems
development model shown in Fig. 2, which is adapted from a
suggestion found in [12].

Fig. 2. AI Assurance lifecycle development model

It consists of the traditional V model where the call out boxes
indicate a few of the assurance activities at each phase of the
lifecycle, which we have already discussed as being appropriate
for AI systems. For example, using viewpoints and various kinds
of prototyping for user requirements elicitation and various
kinds of reviews at other phases of the lifecycle.

To the traditional V systems development model we add
continuous assurance activities which occur after system
deployment. These activities are conducted in response to
certain events over the lifespan of the AI system. For example,
if the system mission or context changes, then machine learning
algorithms will need to be reevaluated and possibly updated.

Through continuous monitoring of the system, it may be
determined that performance is degrading. In this case, new fault
detection and mitigation algorithms may need to be deployed,
and combinatorial testing may be needed to determine the weak
spots in the existing algorithms. Finally, through continuous
monitoring if it is determined that some form of attack has
occurred then new, more resilient machine learning algorithms
and enhanced intrusion detection monitoring may be needed.

XII. CONTINUOUS MONITORING – A “TRUST BUT VERIFY
CONTINUOUSLY” AI ARCHITECTURE

Continuous monitoring of the AI system is an important part
of the post-deployment assurance process model just described.
It therefore makes sense that this continuous self-monitoring
would be built into the system. Embedded critical systems use
built-in self-testing, that is, real-time periodic self-diagnostics to
monitor critical hardware components and report failures. We
expect self-diagnostics to be performed in critical AI systems to
be performed at start up and continuously during operations.

But internal self-diagnoses is not trustable because of self-
gaslighting – if a system reports that a component or algorithm
hst but verify” AI architecture.

Fig. 3 Model “Trust but Verify Continuously” AI Architecture

In this architecture the trust evaluator has external access to
the AI system controlling the critical system. The trust evaluator
could be another AI system, a human monitor, a panel of human
monitors or some other kind of system. The trust evaluator
continuously monitors the inputs to and outputs from the AI
system, as well as those to and from the system under control.
The trust evaluator also processes contextual information from
the real world, including legal and political factors. A decision

179

table structure is updated with time-stamped values of certain
parameters (variables) from system under control, AI control
system, environment and context the trust decisions made by the
trust evaluator at that time. This information is used for
reflection by the trust evaluator and for later analysis including
post mortem analysis (black box recording analysis). The
Collins/Kestral runtime assurance architecture is an instance of
this approach and they have demonstrated its effectiveness on a
collision avoidance use case [13].

A primary function of the trust evaluator is to act as a referee
that can stop the system at any time if it exceeds some
trustworthiness boundaries, for example, making more than n>1
minor or one major decision trust violation. The question of
what certifications/evaluations there needs to be for the trust
evaluation system (in whatever form) is an open one.

XIII. CONCLUSIONS
In this paper we discussed the issue of trust and AI assurance

in public facing systems, especially those that are critical. We
have covered some of the activities that need to occur at each
stage of the development lifecycle, and we have introduced a
“trust but verify continuously” philosophy and architecture for
AI assurance.

We have raised more questions pertaining to AI assurance
than we have answered. But on aggregate, AI assurance relates
to the standard approach of assuring the system development
process, the system itself, and the people building the system.
We have discussed the process and product but have deliberately
left out the discussion of the people involved. That discussion
involves setting forth the necessary education,
certification/licensing and background checking for all involved
and is a discussion for another day. Further development of best
practices for AI assurance that incorporate trust but verify
continuously are also needed.

REFERENCES
[1] J. Corso, “Americans’ Attitudes Toward AI,” Stevens TechPulse

Report, https://www.stevens.edu/news/stevens-techpulse-report, 2021.
[2] J. M.. Wing, "Trustworthy AI." Communications of the ACM vol. 64, no.

10, 2021, pp. 64-71.
[3] L. Freeman, A. Rahman, and F. Batarseh. "Enabling Artificial

Intelligence Adoption through Assurance" Social Sciences, vol. 10. , no.
9, 2021, p. 322.

[4] P. Laplante, D. Milojicic, S. Serebryakov and D. Bennett, "Artificial
Intelligence and Critical Systems: From Hype to Reality," Computer, vol.
53, no. 11, 2020, pp. 45-52.

[5] NIST AI Risk Management Framework: Second Draft, August 18, 2022.
[6] NIST, Combinatorial Testing for Autonomous Systems,

https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-
software/autonomous-systems-assurance/autonomous-vehicles, accessed
8/20/2022.

[7] NIST “Proposal for Identifying and Managing Bias in Artificial
Intelligence,” SP 2170, https://www.nist.gov/artificial-
intelligence/proposal-identifying-and-managing-bias-artificial-
intelligence-sp-1270.

[8] T. Menzies and C. Pecheur. "Verification and validation and artificial
intelligence." Advances in computers vol. 65, 2005, pp. 153-201.

[9] J. George and M. Wierman, “Uncertainty-based information: elements of
generalized information theory,” vol. 15. Physica, 2013.

[10] R. Kuhn and R. Kacker, “An application of combinatorial methods for
explainability in artificial intelligence and machine learning (draft).,”
NIST, May 2019,

[11] E. Lanus, L. Freeman, R. Kuhn and R. Kacker,. “Combinatorial Testing
Metrics for Machine Learning,” IEEE International Conference on
Software Testing, Verification and Validation Workshops, 2021, pp. 81-
84.

[12] E. Lanus, I. Hernandez, A. Dachowicz, L. Freeman, M. Grande, A. Lang,
J.. Panchal, A. Patrick, and S. Welch. 2021, “Test and evaluation
framework for multi-agent systems of autonomous intelligent agents,” .
arXiv, arXiv:2101.10430. 2021.

[13] D. Cofer, “Machine Learning and the Unknown Unknowns,” High
Confidence Software and Systems Conference Series, virtual, May 16,
2022.

180

