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Abstract— Artificial intelligence (AI) systems are increasingly 

seen in many public facing applications such as self- driving land 
vehicles, autonomous aircraft, medical systems and financial 
systems. AI systems should equal or surpass human performance, 
but given the consequences of failure or erroneous or unfair 
decisions in these systems, how do we assure the public that these 
systems work as intended and will not cause harm? For example, 
that an autonomous vehicle does not crash or that intelligent credit 
scoring system is not biased, even after passing substantial 
acceptance testing prior to release.  

In this paper we discuss AI trust and assurance and related 
concepts, that is, assured autonomy, particularly for critical 
systems. Then we discuss how to establish trust through AI 
assurance activities throughout the system development lifecycle. 
Finally, we introduce a “trust but verify continuously” approach 
to AI assurance, which describes assured autonomy activities in a 
model based systems development context and includes post-
delivery activities for continuous assurance. 
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I. INTRODUCTION 
Artificial intelligence (AI) systems are increasingly seen in 

many domains that interact directly with the public, such as self 
-driving delivery and passenger vehicles, autonomous 
maintenance equipment (e.g. vacuums and lawnmowers), and 
medical systems (e.g. expert diagnosis or robotic surgery). AI 
systems should equal or surpass human performance, but given 
the consequences of failure in these systems, how do we gain 
and maintain the support of the public that these systems are 
safe? 

In a 2021 poll of 2200 American adults conducted by 
Stevens Institute of Technology, 48% of respondents felt that the 
positives of greater AI adoption in everyday life outweighed the 
negatives [1]. But 29% believe the opposite that the negatives 
outweighed the positive. A majority of respondents also believe 
that in the future AI should play a greater role in technology, 
manufacturing, logistics and retail applications. It seems that the 
public wants to trust AI systems, but this trust is subject to 

continuous reevaluation and could be withdrawn if a significant 
disaster or series of disasters further expose the risks. Therefore 
a trustworthy, widely applicable and repeatable approach for AI 
assurance will be an important driver for adoption and continued 
support of AI systems by the public. 

II. TRUST IN AI 
Trust in an autonomous system has been defined as “the 

degree to which there is confidence that the system will behave 
as intended”[2]. Some would say “the system could pass the 
Turing test” – that is, the system should behave like a rational 
human. We suspect it will be demanded that autonomous 
systems work much better than humans doing the same task. For 
example, an accident rate associated with self-driving cars that 
is as high as human traffic accident rates would probably 
bankrupt the carmaker. Unfortunately, the tort and liability 
issues are as challenging as the technical ones. 

There are several contributors to trust that are a superset of 
the key elements of AI assurance. These include:. 

• Reliability˲ 
• Safety˲ 
• Security, 
• Privacy, 
• Availability,  
• Usability, and 
• Explainability. 

Consistent with the goal of AI assurance, trust building is a 
dynamic process that needs to be established at the outset of 
system use and maintained continuously. We therefore seek an 
AI system development and assurance process that both 
establishes trust at the outset and maintains that trust over long 
periods of usage of the system. 

III. WHAT IS AI ASSURANCE? 
AI assurance is a process that is applied at all stages of the 

AI engineering lifecycle to ensure that any intelligent system is 
producing outcomes that are valid, verified, data–driven, 
trustworthy and explainable to the layman, ethical in the context 
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of its deployment, unbiased in its learning and fair to its users 
[3]. 

An important question related to assurance is: how do we 
assure that AI systems are safe in a complex and rapidly 
changing environment when conventional test coverage and 
formal verification methods are insufficient or cannot be 
applied? Achieving assurance of function in any environment 
requires showing that the test environments adequately cover 
real-world conditions that may be encountered. Although some 
statistical and structural coverage metrics are relevant they are 
usually Inadequate for many of the challenges in autonomous 
systems assurance. AI assurance also involves answering the 
question: how do we determine that the data gathered to train an 
AI system is suitably representative of the real world? 

Another natural question to ask is: what kinds of guidance 
can we get from standards for AI assurance trust and so on with 
respect to AI testing and assurance? A partial answer is there are 
many standards related to AI including several IEEE sponsored 
AI assurance standards that are either developed or in 
development and include standards for transparency, bias, and 
ethics; including: 

• IEEE P7001 - Transparency Of Autonomous Systems, 
• IEEE P7003 - Algorithmic Bias Considerations, 

• IEEE P7006 – Personal Data AI Agent Working 
Group, 

• IEEE P7007 – Ontological Standard for Ethically 
driven Robotics and Automation Systems, 

• IEEE P7008 - Standard for Ethically Driven Nudging 
for Robotic, Intelligent and Autonomous Systems.  

• IEEE P7009 - Standard for Fail-Safe Design of 
Autonomous and Semi-Autonomous Systems, 

• IEEE Std 7010 – Recommended Practice for Assessing 
the Impact of Autonomous and Intelligent Systems on 
Human Well-Being, 

• IEEE P7014 – Standard for Ethical considerations in 
Emulated Empathy in Autonomous and Intelligent 
Systems. 

Most of these standards mention the importance of testing 
and assurance but give little operational guidance. Clearly, more 
standards are needed. 

IV. CRITICAL VERSUS NONCRITICAL AI 
There is a difference between AI used in critical 

infrastructure systems versus non-critical systems and this 
difference probably impacts public trust. Table I shows 
application domains for various kinds of critical systems and 
some examples of those systems. 

TABLE I.  APPLICATION DOMAINS FOR CRITICAL SYSTEMS, SYSTEM EXAMPLES AND POSSIBLE USES FOR AI (ADAPTED FROM [4] 

Application Domain System Examples Typical Al Uses 
Telecommunication infrastructure  Public telephone network, local branch exchange ID, FA  
Water supply systems  Water treatment plant, dam control  FA, FS, PHM  
Electric power systems  Nuclear power plant, regional electrical grid FA, FS, PHM, PO  
Oil and gas generation and distribution  Gas pipeline, gas-powered power plant FA, FS, PHM, PO  
Roadway transportation systems  Smart interstate highway, traffic monitoring and control FA, FS, PHM, PO  
Railway transportation systems  High-speed train line, metropolitan train network control FA, FS, PHM, PO  
Air transportation systems  Air traffic control system network, passenger aircraft autopilot  FA, FS, PHM, PO  
Banking and financial services  Pension fund management, stock market management  FD, ID  
Public safety services  Air passenger screening, police dispatch  FD, ID, PO  
Health-care systems  Robotic surgery, health record management  FD, ID, PO  
Administration and public services  Employee personnel database, retirement management  FD, ID  
FA: failure analysis; FD: fraud detection; FS: fail-safe operation; ID: intrusion prevention and detection; PHM: system prognostics 

and health management; PO: performance optimization. 

The far right column of Table I indicates some of the ways 
that AI can be used in those systems, for example, in failure 
analysis, fault detection, and so on [4]. 

AI is also used in many noncritical applications for example 
in entertainment, shopping, and convenience based systems. But 
even though noncritical applications may seem harmless they 
could interact with critical systems or could be through misuse 
or abuse become dangerous to the user. Therefore, it is important 
to consider AI assurance for every system that utilizes AI. 

To further the discussion of AI assurance issues going 
forward, consider three classes of consumer-facing AI systems. 
The first class consists of robotic convenience systems, for 
example, AI based delivery, vacuum cleaners or lawn cutting 
systems. The second class of systems comprise autonomous 
vehicles, such as self-driving cars and delivery vehicles. The 
third class of AI systems includes various AI guided health care 
systems, for example for disease detection, diagnosis and 

treatment planning. We will refer to these classes or instances 
going forward. 

V.  CRITICAL VERSUS NONCRITICAL A HAZARDS AND FAILURE 
IN AI SYSTEMS 

Bad things can happen to AI enabled systems, which is 
probably why the public is so wary. First, there are various types 
of adversarial attacks that can degrade or corrupt system 
performance. Examples include: 

• Trojan or backdoor attacks involving injection of 
certain data to the AI system causing it to give a 
specific incorrect response. 

• Model inversion, i.e. extracting private or proprietary 
model information from the AI system by strategic 
introduction of data. 

• Tampering, i.e. causing AI system to fail by providing 
false data, e.g. by obscuring cameras or injecting 
corrupted data into collection points. 
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The AI system could also experience a “payload” 
degradation, which can result in decreased performance or 
increased errors in the outputs of the system. Or there could be 
a mission change say from a system that was designed for 
military purposes being converted to civilian use, or vice versa, 
which could lead to unwanted even dangerous consequences. 

Consider the exemplar systems previously introduced -- all 
kinds of bad things could happen to them. For example, a robot 
vacuum cleaner could get trapped behind a door or tangled in 
the carpet. It could get snagged on a lamp cord, toppling the 
lamp and starting a fire. It could run over something dirty, sticky 
or oily making a mess or slip hazard. It could also suck up 
something valuable or important like a diamond earring or 
contact lens. The autonomous vehicle could drive on the wrong 
side of the road or fail to avoid a collision. The medical 
diagnosis system could miss important symptoms that could 
produce an incorrect diagnosis or lead to a faulty treatment plan. 

Here is where AI assurance is paramount because the public 
needs to know that these kinds of threats have been anticipated 
and precluded via deliberate design, by testing and by 
continuous external monitoring or self-monitoring. 

VI. KEY ASPECTS OF AI ASSURANCE AND GOALS 
According to the NIST AI Risk Management Framework, 

trustworthy AI is “valid and reliable, safe, fair and bias is 
managed, secure and resilient, accountable and transparent, 
explainable and interpretable, and privacy-enhanced [5]. 
Explainability is a key aspect of AI validation [6]. 

 The need for explainability and transparency can be driven 
the distrust in AI systems created by potential system bias. In 
social domains, for example, healthcare or finance, bias may 
result in unfair and unethical decisions. 

 In a NIST sponsored workshop participants identified 
nearly 40 types of AI bias including behavioral, exclusion, 
historical and institutional [7]. Some examples of bias in 
technical domains include an autonomous vehicle driving on the 
wrong side of the road, a robot floor cleaner setting the height 
incorrectly and a disease diagnosis algorithm detecting one 
particular disease too often. Whether we are concerned with 
social or technical domains, a common source for the problem 
is that the AI was not trained on an appropriate set of data. 

In addition to the use of training datasets and/or practices that 
are inadequate or inherently biased or non- representative, bias 
problems may result from lack of testing, and deployment of 
technology that is either not fully tested, potentially oversold, or 
based on questionable or non-existent science. Bias can also 
include statistical anomalies such as overfitting or underfitting 
or due to skewing or incomplete data in the environment. 

Bias can be identified and mitigated through a number of 
means including data collection best practices, analysis of 
contextual awareness, statistical measures, analysis of variance, 
outlier detection, causal inference, and many other techniques. 
The workshop participants noted that bias is not unique to AI 
systems, and that while it is impossible to eliminate bias 
completely, the goal in AI assurance is to find ways to identify, 
understand, measure, manage and reduce bias. To achieve these 

goals industry specific standards and guidelines can help. An 
overarching issue in bias problems is the need for a rigorous 
formal definition of what is meant by ‘bias’, in order to measure 
and detect it. Different users or organizations may have different 
definitions, so a necessary step is an agreed upon definition for 
the particular field of use, or specific application, where the AI 
will be used. 

VII. MODEL BASED SYSTEMS ENGINEERING 
Now we examine a process model for AI assurance. There 

are many that could be used but we chose Model-Based Systems 
Engineering. According to INCOSE Model-based systems 
engineering (MBSE) is “the formalized application of modeling 
to support system requirements, design, analysis, verification 
and validation activities beginning in the conceptual design 
phase and continuing throughout development and later life 
cycle phases.”. MBSE focuses on domain models rather than on 
document- based information exchange. MBSE’s effectiveness 
is largely based on the effectiveness of coupling models, 
machines and teams for increased collaboration, improved 
communication and shared understanding. 

MBSE makes systems engineering more rigorous, precise 
and repeatable through the use of multiple, interconnected 
systems models. These models support system requirements, 
design, analysis, verification and validation, from the conceptual 
design phase and continuing throughout development and later 
life- cycle phases. MBSE is well-known to manage complexity, 
provide quality and productivity improvements and lower risk 
through use of rigor and precision fostering better 
communications between the development team and customers. 
Model Based Systems Engineering is widely used all over the 
world and it’s an excellent system development paradigm for AI 
system assurance, which we will further elaborate. 

MBSE includes models for: 

• requirements, hardware and software architectures, 
• design elements (including hardware drawings and 

software design documents), 
• embodiments of those designs (including circuit 

diagrams and code), 
• test cases from unit tests through acceptance tests 

(manual and automated), 
• and maintenance documentation and information. 

In all cases these models provide opportunities for 
explainability and transparency. 

To further the understandability of these models, each 
should use a domain appropriate mix of natural languages, 
graphical notations, formal syntax and semantics. Storing these 
under strict configuration management helps to preserve the 
integrity and trust in these models. Some MBSE notations and 
design languages are sufficiently rigorous for formal 
specification, and could be effective in achieving AI assurance. 

VIII. MSBE AND V&V 
The classic V model is often used in MBSE because it 

recognizes that verification and validation is a done throughout 
the systems lifecycle (Fig. 1). 
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Fig. 1. Classic V model for systems engineering 

 

The V model closely ties the forward engineering sequence 
of modeling and development activities with the downstream 
activities that provide for verification and validation. 

In Fig. 1 we start with requirements modeling on the far 
left– which we already noted is very important for capturing 
context along with all other required behaviors of the AI 
system. The model created in this process is tested in the 
acceptance testing phase, shown on the right, just prior to 
delivery. This is both a verification and validation activity as 
validation for the user requirements has to occur early. We will 
discuss some techniques for this shortly. 

A similar process occurs for the system requirements and 
design specification models – which embody the architectural 
and detailed design of the system. These models are verified 
through integration testing and unit testing respectively. These 
occur in reverse order after components of the system have 
started to be built. But validation of the system requirements 
and system design models have to occur at the time of their 
development. The V-model represents one paradigm for 
systems development, but in our case we’ll use it as a 
framework to discuss appropriate lifecycle AI Assurance 
activities. 

A. Requirements V&V Techniques for AI Assurance 
There are many techniques that are appropriate for 

requirements elicitation, verification, and validation of complex 
systems. But for AI systems, a smaller subset of techniques is 
also appropriate. These techniques include might include 
systematic manual analysis of the requirements, group reviews 
and inspections, for example, those found in the Joint 
Application Development method and Quality Function 
Deployment (QFD). Prototyping – both executable and 
nonexecutable is also appropriate. Using an executable model of 
the system test-case generation (for testability and 
completeness) are also recommended. Both automated 
consistency analysis and other formal methods (for example, for 
model and consistency checking) are highly appropriate. 
Finally, viewpoint resolution and task analysis (often via user 
stories and use cases) are highly recommended. Of course the 

mix of techniques to be used depends on many factors and must 
be carefully chosen. 

B. Design V&V Techniques for AI Assurance 
Many traditional techniques are recommended for both high-

level architectural and detailed design of AI systems. These 
include large-scale requirements engineering approaches such 
as Joint Application Development. Continuous prototyping, 
including the kind used in agile and lean agile development 
methods are also useful. In Quality Function Deployment (QFD) 
the “house of quality” can be used to compare alternative 
designs. QFD emphasizes the “what’s” and “how’s” which 
fosters a high level of explainability and transparency. 

Designer as apprentice is another widely used technique that 
can be used to uncover the details when automating human 
behaviors. Finally, rigorous consensus building techniques such 
as wideband Delphi and the analytical hierarchy process (or 
AHP) can be used to provide transparency for and to validate 
and verify different design choices. 

C. Testing for AI Assurance 
When it comes to testing in the AI assurance world, there 

needs to be a strong focus on software testing. Even though 
many of the underlying AI and machine learning algorithms can 
be implemented in firmware or hard-wired, the same testing 
techniques can be used. 

Referring back to the V model, we can divide the testing 
types into unit, integration and acceptance testing. Traditional 
software testing includes various techniques for unit testing, 
subsystem testing, system testing and acceptance testing. But 
traditional approaches do not necessarily address the unique 
needs of AI testing. Menzies suggests that AI systems testing 
should include static analysis, runtime verification and model 
checking [8]. Another problem associated with testing AI 
systems is: do you have enough data and the right data for 
training? Testing should be focused on answering this question. 

But greater questions lurk for AI assurance. Namely, how 
much and what kind of unit testing is needed to reach acceptable 
levels of assurance? How much testing coverage is needed, for 
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example, All-Paths? How much integration testing is enough? 
How much acceptance testing is enough? The unique nature of 
opaque neural networks and the inapplicability of traditional test 
adequacy criteria loom here and answers to these questions can 
only be found by careful examination of the system objectives, 
context, application domain and so on.  

D. Dealing with Uncertainty 
A well-known problem in AI systems is that they do not 

always deal well with uncertainty. For example what does the 
robot vacuum cleaner do when encountering an object of 
unknown type, for example, something sticky? What does the 
autonomous vehicle do if it somehow veers off its navigational 
map? And how does the medical diagnosis system deal with 
symptoms that are not in its database? 

There are many frameworks for dealing with uncertainty 
including: probabilistic reasoning, possibility theory, Dempster-
Shafer theory, fuzzy logic, rough sets, intelligent agents, 
captured expert opinion and many more [9]. 

The problem of uncertainty needs to be dealt with in every 
AI system or else high levels of assurance are not achievable. 

IX.  SPECIAL V&V CONSIDERATIONS FOR AI ASSURANCE 
We have already noted that conventional V&V is not 

enough. Testing for AI should include appropriate kinds of 
traditional testing plus testing to address explainability, 
transparency and bias. So it stands to reason that conventional 
approaches to V&V at each stage are not enough. We need 
additional tools. Two tools that can help address these special 
problems are combinatorial testing and formal methods. 

A. Combinatorial Coverage Measurement for AI 
The main difference between conventional SW and AI 

algorithms is that the latter are often opaque box functions, 
where only the input changes. For example, with neural nets of 
all types, performance is dependent on the input training set, 
which is used in establishing the connections and weights in the 
network. Conventional structural coverage measures, such as 
branch or condition coverage, have little practical value in these 
problems, because the code for the neural net processing is the 
same across applications, only the connections and weights are 
different. Therefore, measures of input space coverage are 
needed, to show that the input set used to train the AI/ML system 
is sufficiently representative of objects and environments that 
will be seen in practice. 

Measurement methods derived from combinatorial testing 
can be used to evaluate the degree to which combinations of 
input parameter values are included in a training set [10], [11]. 
These methods are related directly to attributes of the training 
set that are significant for AI, because they measure the level of 
inclusion of every t-way combination of input values. 
Combinations of input values are used either directly or 
indirectly in most AI systems, for example the inclusion or 
absence of various trait combinations are the basis for 
classifying animals and plants into different species, and 
consequently are essential in AI processing of images or 
property databases. 

Combinatorial methods are also very effective for 
explanations and justifications of decisions in AI/ML systems, 
which are essential not only in operation but also in validation 
phases of assurance. If the AI behavior cannot be explained, then 
it will be difficult to trust its conclusions, and if the training 
inputs do not adequately represent the real environment, then we 
cannot have confidence that it works correctly across all inputs 
that may occur in practical use. 

B. Formal Methods 
Formal methods are necessary for V&V of AI systems but 

not sufficient, and others agree with this assessment [2]. Formal 
methods can be used throughout the system lifecycle, for 
example, to write parts of the requirements specifications using 
a formal notation, or to apply formal proving techniques to 
various representations of the design and implementation of the 
system, which fosters a high degree of explainability, 
transparency and can expose bias. 

Formal proving techniques can be used to validate those 
specification. Other kinds of automated consistency analysis or 
theorem proving can be used at various times. The formality of 
the models helps communicate with domain experts more 
concisely. In some cases semantics-preserving transformations 
can be used to convert the specification directly into code. And 
formal methods can be used for some verifications, for example 
to verify that the implementation matches the specification 
(testing). 

SysML comprises a set of modeling languages that are an 
essential  enabler to MBSE. SysML is essentially a subset of the 
UML with some extensions. SysML can be classified as 
semiformal since all of its meta models have precise 
mathematical equivalents. These need to be augmented with 
semantics in order to enable their use for formal analysis of 
specifications. 

X. A “TRUST BUT VERIFY” PROCESS MODEL 
Wing notes that “The set of trustworthiness properties for AI 

systems, needs to be extended beyond reliability, security, 
privacy, and usability to include properties such as probabilistic 
accuracy under uncertainty, fairness, robustness, accountability, 
and explainability” [2]. This observation, which has been 
consistent with many of the ideas presented in this white paper, 
are reminiscent of the zero trust security architecture. 

The Zero-trust cybersecurity architecture was introduced by 
Forrester Research in 2010, and it means that the system is 
continuously evaluated for security properties. That is there is 
no such thing as testing the system, deploying it and assuming it 
is always secure. 

The same has to be done with respect to AI assurance. Even 
after robust verification and validation for all of the key 
assurance properties, the system must never be regarded as 
always safe. The system must be continuously evaluated and 
challenged. This is reminiscent of the famous “trust but verify” 
observation attributed to many individuals, which has a more 
encouraging ring to it for the public than “zero trust” (though in 
reality, this is a zero trust AI). Therefore we choose to use the 
former phrase, not the latter. 
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XI. “TRUST BUT VERIFY” AI SYSTEMS DEVELOPMENT MODEL

Now consider the “Trust but Verify” AI systems
development model shown in Fig. 2, which is adapted from a 
suggestion found in [12]. 

Fig. 2. AI Assurance lifecycle development model 

It consists of the traditional V model where the call out boxes 
indicate a few of the assurance activities at each phase of the 
lifecycle, which we have already discussed as being appropriate 
for AI systems. For example, using viewpoints and various kinds 
of prototyping for user requirements elicitation and various 
kinds of reviews at other phases of the lifecycle. 

To the traditional V systems development model we add 
continuous assurance activities which occur after system 
deployment. These activities are conducted in response to 
certain events over the lifespan of the AI system. For example, 
if the system mission or context changes, then machine learning 
algorithms will need to be reevaluated and possibly updated. 

Through continuous monitoring of the system, it may be 
determined that performance is degrading. In this case, new fault 
detection and mitigation algorithms may need to be deployed, 
and combinatorial testing may be needed to determine the weak 
spots in the existing algorithms. Finally, through continuous 
monitoring if it is determined that some form of attack has 
occurred then new, more resilient machine learning algorithms 
and enhanced intrusion detection monitoring may be needed. 

XII. CONTINUOUS MONITORING – A “TRUST BUT VERIFY
CONTINUOUSLY” AI ARCHITECTURE 

Continuous monitoring of the AI system is an important part 
of the post-deployment assurance process model just described. 
It therefore makes sense that this continuous self-monitoring 
would be built into the system. Embedded critical systems use 
built-in self-testing, that is, real-time periodic self-diagnostics to 
monitor critical hardware components and report failures. We 
expect self-diagnostics to be performed in critical AI systems to 
be performed at start up and continuously during operations. 

But internal self-diagnoses is not trustable because of self-
gaslighting – if a system reports that a component or algorithm 
hst but verify” AI architecture. 

Fig. 3 Model “Trust but Verify Continuously” AI Architecture 

In this architecture the trust evaluator has external access to 
the AI system controlling the critical system. The trust evaluator 
could be another AI system, a human monitor, a panel of human 
monitors or some other kind of system. The trust evaluator 
continuously monitors the inputs to and outputs from the AI 
system, as well as those to and from the system under control. 
The trust evaluator also processes contextual information from 
the real world, including legal and political factors. A decision 
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table structure is updated with time-stamped values of certain 
parameters (variables) from system under control, AI control 
system, environment and context the trust decisions made by the 
trust evaluator at that time. This information is used for 
reflection by the trust evaluator and for later analysis including 
post mortem analysis (black box recording analysis). The 
Collins/Kestral runtime assurance architecture is an instance of 
this approach and they have demonstrated its effectiveness on a 
collision avoidance use case [13]. 

A primary function of the trust evaluator is to act as a referee 
that can stop the system at any time if it exceeds some 
trustworthiness boundaries, for example, making more than n>1 
minor or one major decision trust violation. The question of 
what certifications/evaluations there needs to be for the trust 
evaluation system (in whatever form) is an open one. 

XIII. CONCLUSIONS 
In this paper we discussed the issue of trust and AI assurance 

in public facing systems, especially those that are critical. We 
have covered some of the activities that need to occur at each 
stage of the development lifecycle, and we have introduced a 
“trust but verify continuously” philosophy and architecture for 
AI assurance. 

We have raised more questions pertaining to AI assurance 
than we have answered. But on aggregate, AI assurance relates 
to the standard approach of assuring the system development 
process, the system itself, and the people building the system. 
We have discussed the process and product but have deliberately 
left out the discussion of the people involved. That discussion 
involves setting forth the necessary education, 
certification/licensing and background checking for all involved 
and is a discussion for another day. Further development of best 
practices for AI assurance that incorporate trust but verify 
continuously are also needed. 
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