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Abstract6

Continuous biopharmaceutical manufacturing is currently a field of intense research7

due to its potential to make the entire production process more optimal for the modern,8

ever-evolving biopharmaceutical market. Compared to traditional batch manufactur-9

ing, continuous bioprocessing is more efficient, adjustable, and sustainable and has10

reduced capital costs. However, despite its clear advantages, continuous bioprocessing11

is yet to be widely adopted in commercial manufacturing. This paper provides an12

overview of the technological roadblocks for extensive adoptions and points out the re-13

cent advances that could help overcome them. In total, three key areas for improvement14

are identified: Quality by Design (QbD) implementation, integration of upstream and15

downstream technologies, and data and knowledge management. First, the challenges16

to QbD implementation are explored. Specifically, process control, process analytical17

technology (PAT), critical process parameter (CPP) identification, and mathematical18

models for bioprocess control and design are recognized as crucial for successful QbD19

realizations. Next, the difficulties of end-to-end process integration are examined, with20

a particular emphasis on downstream processing. Finally, the problem of data and21

knowledge management and its potential solutions are outlined where ontologies and22

data standards are pointed out as key drivers of progress.23

Keywords: continuous biomanufacturing; process intensification; Quality by Design;24

process integration; knowledge management;25

26
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Introduction27

Traditionally, the biopharmaceutical industry is oriented towards batch manufacturing,28

while the utilization of continuous manufacturing has been quite limited. Batch manufac-29

turing involves multiple discrete steps, where each subsequent step begins only after the30

previous one is finished. This inter-step dependency typically leads to multiple holding peri-31

ods that can significantly prolong production, especially when all steps are not performed in32

the same manufacturing facility. On the other hand, in continuous manufacturing, flow be-33

tween individual steps is uninterrupted, eliminating hold periods, which in turn may increase34

production efficacy (Figure 1).1,235

a Batch Manufacturing

b Continuous Manufacturing

Figure 1: Schematic representation of (a) batch biopharmaceutical manufacturing and (b)

continuous biopharmaceutical manufacturing.

The cause for the strong emphasis on batch manufacturing lies in the fact that the36

economic benefits within the biopharmaceutical industry have been primarily achieved by37

product rather than process development. The relatively low number of products that reach38
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the commercial stage also implies that cost control is imperative, especially in the early39

stages. In other words, the primary market driver was to minimize production development40

time and initial investments for which batch production is more suitable than continuous.341

The better suitability of batch originates from its discrete nature. Discrete operations42

can be controlled individually and, as such, require less sophisticated and precise control43

mechanisms. As a consequence, less process knowledge is required for development and44

validation, making initial process development faster and set-up investments lower.345

Since the first FDA-approved continuous perfusion product in 1993, the primary and dom-46

inant use of continuous manufacturing has been restricted to manufacturing protein products47

that undergo degradation in prolonged culture conditions (e.g., types of growth hormones48

and blood-related products). In these cases, the employment of perfusion bioreactors (a con-49

tinuous manufacturing technology) is imperative as it warrants perpetual harvesting and an50

uninterrupted purification stream, which minimizes the exposure to degradative conditions51

and thus ensures that product quality is sustained.452

Biomanufacturing has, however, come a long way from its ”humble roots” of produc-53

ing recombinant versions of natural proteins, starting with recombinant insulin approval54

in the early 1980s.5 The diversity of products has dramatically increased, along with the55

overall share in the pharmaceutical market, with global sales reaching US$ 336 billion in56

2021.6,7 The constantly growing market implies an ever-growing demand to produce larger57

product quantities. The market competition (e.g., from the advent of biosimilars) and the58

pressure to drive down product pricing are also increasing.8–10 These new market trends59

indicate that the economic benefit of many biomanufacturing processes (e.g., manufacturing60

of mAbs) is becoming more reliant on large-scale production efficiency and long-term cost-61

effectiveness, areas in which continuous manufacturing has an advantage over batch. That is,62

the integrated nature of continuous manufacturing enables a higher product quantity to be63

produced during a given time interval and lowers the manual labor required, which also leads64

to a reduction in facility footprint.3,11–14 As such, there is a growing interest in widening the65

utilization of continuous manufacturing.66

Another important trend that might enable faster adoption of continuous manufacturing67

is the shift towards platform processing. Platform processes can be defined as a collection68
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of distinct parts, components, or modules that are recurrent in the manufacturing of a set69

of products with common characteristics.15,16 The recurrent units permit efficient leveraging70

of prior knowledge when optimizing the production of a new product with those same char-71

acteristics. Thus, platform processing has the potential to reduce efforts in production de-72

velopment - one of the critical hindrances of continuous manufacturing implementation.16,1773

The adoption of continuous manufacturing is, nevertheless, proceeding slowly which can be74

attributed to three challenges: business, regulatory and technological. Business and reg-75

ulatory challenges are outside the scope of this paper and have been extensively reviewed76

elsewhere.1477

The rest of this paper focuses on the major technological challenges in shifting to con-78

tinuous manufacturing and reviews the current research to overcome them. Three areas are79

pointed out as crucial for a successful realization of continuous biomanufacturing. The first80

area represents the obstacles associated with implementing the QbD paradigm, essential for81

more flexible and cost-efficient production. The second area revolves around the integration82

of unit processes, where advances in downstream processing technologies are especially sig-83

nificant as they are lagging compared to the upstream ones and are still essentially batch84

in nature. The final area discussed is data and knowledge management and its role as an85

enabler of inter-unit communication and perpetual manufacturing improvement.86

Quality control and process monitoring87

In the early 2000s, quality control in the biopharmaceutical industry was mostly done88

by the principle of quality-by-testing (QbT). At the end of a processing step, the product is89

tested per the predefined quality criteria. In case the criteria are not met, the entire batch90

might be discarded. Consequently, any process corrections may only be introduced for future91

batches. That is, in QbT the entire manufacturing procedure is rigid, process improvements92

are slow, and significant losses may occur.1893

Process stiffness imposed by the QbT severely limits the possibility of responding to any94

variations in materials or operating conditions. The process flow in continuous manufactur-95

ing is uninterrupted, which means that, by adhering to the QbT paradigm, any significant96

5



deviations in input materials or cellular conditions can lead to extended periods of complete97

production halt. The inability to efficiently respond to changes in operating conditions pro-98

longs the time required to adapt a continuous manufacturing process to changes in product99

demand. These limitations imply that if maximal continuous manufacturing benefits are to100

be achieved, shifting from the rigid QbT paradigm becomes imperative. The rest of this sec-101

tion discusses the paradigm shift in process control from QbT and its enabling components102

to increase productivity, flexibility, and consistency.103

Quality by design104

The US FDA realized that instead of defining more constraints/tests per se, an overhaul105

of the entire process design procedure was needed, and thus a quality by design (QbD)106

paradigm was outlined.18,19 The key idea behind QbD is that process design directly stems107

from product features. To achieve this aim, attributes that determine the desired clinical108

performance first need to be identified, namely critical quality attributes – CQA and then109

connected to the influencing production parameters, namely critical process parameters -110

CPP.19–21111

Prior to CQA and CPP identification, a quality target product profile (QTPP) is estab-112

lished. QTPP is a “prospective summary of drug product quality characteristics that should113

be achieved to ensure desired quality taking into account safety and efficacy”.22 Based on114

the QTPP, CQAs are identified by risk assessment, as specified in the ICH guidance Q8 and115

Q9.23,24 The result of this step should provide a ranking of the CQAs by order of importance116

and link them to product safety and efficacy. Next, CPPs are usually elucidated by using117

mechanistic principles or through the design of experiments. CPPs are then further analyzed118

to identify acceptable operating ranges. Finally, a control strategy is established, which in-119

volves risk assessment that considers the criticality of the CQA and process capability.20 A120

successfully realized QbD pipeline enables the production process to be more cost-effective121

and flexible as changes of operating conditions within the specified ranges do not need to be122

resubmitted for regulatory approval.20,21123

While the QbD paradigm is beneficial for batch manufacturing, this approach becomes124

paramount in the case of continuous manufacturing, as detailed process knowledge is an125
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absolute necessity in creating a holistic process design. Simultaneously, continuous manu-126

facturing maximizes the benefits of the QbD paradigm as it enables integrated, real-time127

control of CPPs and continuous CQA monitoring, thereby ensuring seamless continuous128

process verification (CPV) and process improvement over a product lifecycle.18129

Therefore, intensive research is being conducted to enhance QbD application on a wide130

production scale. Main areas of focuses are the following:131

• Formulation of novel control strategies132

• Discovery of critical process parameters133

• Advancements in process analytical technology (PAT)134

• Mathematical models for process design, control and monitoring135

Quality by control136

Quality by control (QbC) is the next paradigm shift based on QbD, tailored to continuous137

manufacturing needs. It augments the QbD by placing active process control as the focal138

point to create a solid framework for integrated control of a continuous process. Active and139

integrated process control entails identifying dynamic relationships between critical material140

attributes (CMAs) and CPPs with CQAs.18,25 Such connections then allow for the design of141

control systems with quantitative and predictive capabilities that can, for instance, minimize142

the effects of upstream perturbations on downstream processing.18143

Advancement from QbD to QbC is a crucial enabler for end-to-end continuous manu-144

facturing as real-time control of CPPs and CQAs over the entire process would be permit-145

ted. Accordingly, this enables the possibility of real-time release testing (RTRT).26 RTRT146

leverages real-time measurement data, integrated control systems, and enhanced product147

understanding for real-time process correction.18,27 RTRT has the potential to minimize the148

need for end-product testing, thereby ensuring a faster product release.27 Although RTRT149

is also possible for batch processes, this notion can truly be perfected in continuous manu-150

facturing. The integrated nature of the process ensures a holistic approach to control and151
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enables a more precise controlling mechanism, thus ensuring sustainable production quality152

over prolonged periods.153

In summary, QbC introduces three critical advantages: 1) reduction of process cycle154

times, 2) higher process reliability and 3) increase in process robustness (insensitivity to155

variation in process inputs or process parameters).18 However, the advantages of adopting156

such a principle in biopharmaceutical manufacturing have not been fully realized. Most157

operations in continuous processes are controlled individually, their interconnections remain158

limited, and utilization of dynamic control strategies is low.18,28159

Dynamic control strategies are able to handle significant process perturbations with mini-160

mal manual intervention and production interruption, consequently reducing labor costs and161

increasing productivity and system robustness. The key idea behind dynamic control strate-162

gies is that the control system adapts to the changing environment based on feedback from163

process measurements.29 Nevertheless, despite these advantages being demonstrated in other164

industries (e.g., chemical industry), the adoption of dynamic control in biomanufacturing is165

still in its infancy.166

The primary challenges of implementing dynamic control in biomanufacturing stem from167

insufficient process understanding and overall process complexity, lack of regulatory clarity168

on control validation, and in some cases, potentially high computational costs.30 However,169

there has been a surge in publications that indicate the feasibility and high future adoption170

benefit of dynamic control. For example, neural network-based control has demonstrated its171

effectiveness under system perturbations and parametric uncertainties.31,32 Different vari-172

ations of model predictive control have also shown excellent performance for various unit173

operations.29,33–36 Additionally, several methodologies for reducing computation burdens are174

emerging such as model linearization, and reinforcement learning.37–39175

To fully implement the QbC, an additional requirement is to develop a systematic frame-176

work that enables the integration of operation control based on hierarchical process automa-177

tion principles. An example of a 3-level hierarchical control structure is shown in Figure178

2.18 Level 0 usually controls single unit processes, while level 1 encompasses several of them179

and enables feedforward/feedback control to minimize process disturbance. Finally, level 2180

contains mathematical models that validate measurements, predict the effect of the CPPs181
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on the CQAs, detect faults and intensify process operations. Potential advantages of imple-182

menting this system are better production robustness, rapid perturbation response, a high183

degree of automation, and continuous process improvement.184

Figure 2: Schematic representation of a simplified three-level hierarchical control architec-

ture for a part of a continuous biomanufacturing process. Abbreviations depicted: PAT –

Process Analytical Technology, PLC – programmable logic controller, DCS – distributed

control system, A&E–alarm and emergency, DR – data reconciliation, MBC – model-based

control.

Feidl et al. demonstrated an implementation encompassing level 0 and level 1 of the185

control system for end-to-end manufacturing of antibodies.40 Supervisory control and data186

acquisition (SCADA) system was used to collect and store data from unit operations, and187

a monitoring and control system was developed in MATLAB. Level 2 has not been imple-188

mented. Nevertheless, over the tested time, the system demonstrated robustness to per-189

turbation, stable production performance, and consistent product quality. Specifically, the190

control system demonstrated that even though the inherent instability of the cell line caused191

a 30% titer decrease over the run time, the control system was able to adjust the loading192

length of the Capture step such that constant mass loading was achieved. This resulted in193

optimal resin utilization without yield loss and constant input for subsequent units. The194

system could also respond to pH disturbances in the viral inactivation step and reduce the195
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amount of High Molecular Weight species(from roughly 11% to less than 1%) in the subse-196

quent polishing steps. Thus, during the entire integrated run-time, the system kept the yield197

constant at 75% and maintained satisfactory product quality requirements under process198

disturbances.40199

An implementation case study of a full 3-level hierarchical QbC system has been pre-200

sented in Su et al. 2019.18 The case study (although about producing tablets, a non-201

biopharmaceutical product) demonstrated that the hierarchical control system could reach202

the targeted weight set points steadily and automatically. Additionally, the control system203

was able to shorten the period of diversion of off-spec products under set point changes and204

process disturbances, thus achieving higher process robustness. This case study also showed205

that Process Analytical Technology (PAT) and the proper identification of CPPs played206

essential roles in enabling the paradigm. Next, we discuss CPP discovery and PAT in the207

context of biopharmaceutical production.208

Discovery of critical process parameters209

Identification of CPPs is one of the fundamentals of QbD and QbC. Compared to batch210

manufacturing, active and holistic process control capability is significantly increased in211

continuous manufacturing. As such, more parameters can be actively influenced to ensure212

consistent product quality in response to media and processing conditions variation. While213

physical and chemical parameters are mainly elucidated, understanding how media com-214

pounds affect certain CQAs is still an ongoing effort.41–43 Understanding media compound215

impact is challenging yet vital, as it could improve the product yield and make the process216

more robust.1 The challenge stems from the inherent intricacy of living systems, making a217

thorough understanding of the mechanisms and inner cell regulatory strategies that affect218

product formation quite difficult. Understanding media component impact is even more219

vital in media optimization for perfusion processes as media utilization is one of the signifi-220

cant contributors to perfusion operational costs and footprint. That is, a perfusion process221

warrants the enabling of the growth of a high-density and high-viability cell culture while222

minimizing the amount of perfusion media.44,45223

Recent studies showed the importance of regulating the concentrations of trace metals. In224
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particular, Markert et al. demonstrated the effects of a mix of trace metals and their specific225

concentration ranges on antibody N-glycosylation patterns, titer, and biomass formation in226

a series of high-throughput screening experiments.46 Radhakrishnan et al. demonstrated the227

importance of also understanding the components’ temporal effects, as MnCl2 has a varying228

influence on mAb glycosylation patterns during different growth stages.47229

Other small molecules can also influence the product quality. An extensive study across230

multiple scales and different cell lines by Lobrich et al. showed the effect of nine small231

molecule media compounds (cytidine, galactose, glucosamine, uridine, fucose, manganese,232

ManNAc, glycerol, NANA) as well as copper on the glycosylation pattern in monoclonal an-233

tibody production.48 The impacts of pyruvate on glycosylation profile as well as cell diameter234

drift, have also been recently explored.49235

While determining the optimal CPP operating ranges is a primary concern, gaining a236

better understanding of the mechanism by which CPP affects a specific CQA is crucial for237

ensuring consistent product quality. For example, a case study demonstrated that glucose238

predominantly impacts charge heterogeneity by extracellular glycation and not by changing239

glycosylation patterns or cellular metabolism alterations.50240

Finally, it is important to note that most research regarding CPPs has been conducted241

on fed-batch reactors and that further optimization on continuous reactors needs to be242

performed to achieve an effective QbD and/or QbC. Currently, progress is being made to243

create efficient transfer protocols from fed-batch platforms to continuous systems. Namely,244

Janocheck et al. developed a protocol whereby a fed-batch process is used as a basis for semi-245

perfusion shake flask process development and optimization, which was then transferred to a246

small-scale bioreactor.51 The reported transfer to a semi-perfusion process implies that cell247

culture dynamics of truly continuous perfusion are not fully captured by such an approach.248

Thus, the approach is primarily applicable for initial screenings and establishing acceptable249

parameter ranges.250

In addition to transfer protocols from fed-batch to continuous, dedicated scale-down251

systems are required for perfusion process development and optimization. Due to batch252

dominance in the biopharmaceutical industry, historically, scale-down perfusion systems have253

been lacking. With the increasing interest in continuous manufacturing, specialized high254
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throughput methodologies, and systems are being created to screen operating parameters255

and media formulations for continuous culture systems.52,53 It is important to note that256

experiments in the cited literature were performed in pseudo-perfusion or semi-perfusion. As257

previously noted, this limits their utility in fully understanding the cell culture dynamics.258

For a detailed overview of the challenges of semi-perfusion systems, see Schwarz et al.54259

Microbioreactors connected to cell retention devices at up to several hundred mL scale260

are also becoming available for optimization and screening. As an example, the ambr® 250261

perfusion system was demonstrated to be an adequate scale-down model in terms of viable262

cell density and volumetric productivity.55 Also, DASbox bioreactor coupled with a hollowed263

fiber filter, was demonstrated to be able to support stable culturing of HEK293 at high cell264

density over a period of several weeks.54 In terms of downstream processing, dedicated high265

throughput systems are also emerging. A detailed overview of the current state of the art of266

downstream high throughput scale down model availability and challenges is given in Silva267

et al. and São Pedro et al.56,57268

For an effective control system, the identification of CPPs and their relationship with269

CQAs is vital. Additionally, the system needs to have an efficient monitoring strategy of the270

CQAs throughout the process such that well-timed adjustments of CPPs can be performed.271

Conversely, the CPPs themselves need to be monitored (e.g., the concentration of amino272

acids and glucose in the media). This is enabled by the employment of various process273

analytical technology analyzers, which are outlined next.274

Process analytical technology analyzers275

Process analytical technology (PAT) is defined as “a system for designing, analyzing, and276

controlling manufacturing through timely measurements (i.e., during processing) of critical277

quality and performance attributes of raw and in-process materials and processes, with the278

goal of ensuring final product quality.”58 In addition to process understanding, there are three279

critical components to successful PAT implementation: 1) reliable and timely analyzers, 2)280

signal deconvolution and data analysis methods, and 3) integration with process control281

systems.58,59 Control strategies were reviewed in the QbC section, and signal deconvolution282

and data analysis will be covered in the next section. As such, the rest of this section will283
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focus on PAT analyzers.284

PAT is applicable to both batch and continuous manufacturing. However, the latter285

can really maximize PAT’s potential.60 Batch manufacturing is driven by tight, predefined286

recipe specifications as well as acceptance criteria evaluation. Therefore, there is limited287

opportunity for the utilization of measurement data for real-time integrated process opti-288

mization. On the other hand, continuous manufacturing has the potential to replace tight289

recipe bounds with proactive and holistic control whose success is highly dependent on reli-290

able process monitoring.18 By being run in a ”quasi-steady state,” continuous manufacturing291

also has comparatively more time-invariant properties,61 thereby making the usage of PAT292

for process monitoring and control more amenable than in batch manufacturing. However,293

the very nature of continuous processing imposes additional requirements for PAT analyzers:294

1. Compared to batch manufacturing, continuous manufacturing processes are run over295

extended periods. Hence, employed PAT analyzers need to have long-term stability.296

Long-term stability is particularly vital for on-line sensors as they directly interface297

with the bioprocess and, thus, must be resilient to fouling.61,62298

2. Continuous flow necessitates alignment of scale and throughput between unit opera-299

tions. As a consequence, PAT analyzers employed for measuring process parameters300

related to mass and volume flow need to be robust and have a high degree of quantifi-301

cation accuracy.63302

Most physical and chemical parameters (e.g., pH, conductometry, UV, oxygen levels) are303

reliably monitored in upstream and downstream processing. On the other hand, monitoring304

of the quality attributes of biopharmaceuticals (e.g., glycosylation, glycation aggregation,305

oxidation) is limited chiefly to offline testing, which limits its utilization in dynamic con-306

trol and poses difficulties for RTRT.59 Developing analyzers that could accurately monitor307

these attributes on-line or in-line is thus paramount. Alternatively, sterile sampling cou-308

pled with at-line1 rapid analysis represents another option, given that it can provide data309

1On-line monitoring: measurement where the sample is diverted from the manufacturing process, and

may be returned to the process stream.

In-line monitoring: measurement where the sample is not removed nor diverted from the process stream
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sufficiently fast for the control system in place. The upstream unit processes usually have310

a larger timeframe, which makes this part of the process more tractable for at-line PAT311

implementation.59312

The most promising sensor technologies include spectroscopic sensors, and in-situ biosen-313

sors.64,65 With the advancements in automatic sterile sampling, on-line process monitoring314

with High- or Ultra-Performance Liquid Chromatography (HPLC/UPLC) columns coupled315

with a PDA (Photodiode-Array Detection) or UV-Vis detector have become another feasi-316

ble option, especially in downstream processing, where reaction times need to be faster.70317

Several examples of emerging technologies have been summarized in Table 1. Nevertheless,318

industrial-scale utilization is still lacking mainly because of stringent documentation needed319

for analytics in the Good Manufacturing Practice (GMP) environment, lack of highly-trained320

personnel, high cost of some of the equipment, and the relative newness of most biosensor321

technology. For a detailed review of this topic, see Gargalo et al.64322

Mass spectrometry (MS) is a very attractive measurement tool to be incorporated into at-323

line and on-line monitoring. Its main advantages are excellent sensitivity, speed of analysis,324

the possibility of simultaneous analysis of multiple components and attributes of a heteroge-325

neous biomolecule, and the feasibility of coupling to different separation techniques. Several326

different mass spectrometry coupled to LC or HPLC systems are currently in development327

for monitoring different aspects of antibodies.72 One of the difficulties with MS protein anal-328

ysis at the upstream stage of the process is that, unless adequately purified, compounds329

present in the cell media might lead to noisy measurements. Thus, rapid protein purification330

and sample clean up step prior to the analysis would improve measurement reliability. High331

throughput protein A purification system coupled with LC-MS has recently been tested on332

a small-scale to monitor glycation and glycosylation antibody profiles, with the protein pu-333

rification step contributing to increased sensitivity and the robustness of the procedure.42334

Another promising strategy is the peptide mapping approach based on digestion followed by335

LC-MS/MS analysis, as it demonstrates good performance on multiple bioreactor scales and336

and can be invasive or non-invasive.

At-line: Measurement where the sample is removed, isolated from, and analyzed in close proximity to the

process stream.
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Table 1: Examples of emerging analyzer technologies for monitoring product-related

attributes and their reported application area

Analyzer Monitored Product-related

Attribute

Process

Phase

References

Raman spectroscopy N-glycosylation of

bispecific antibodies

Upstream
66

Water proton NMR Flow parameters

(concentration and aggregation)

Downstream
67

Near-infrared

spectroscopy (NIRS)

Antibody concentration Downstream
68,69

Ion-exchange Liquid

Chromatography

(IEX LC)

Charge heterogeneity Downstream
71

types.73337

Besides having information about the actual product, monitoring media compounds is338

also of fundamental importance as they directly or indirectly affect the product itself or the339

biomass viability and yield.74,75 Several electrochemical and optical sensors for on-line and340

in-line analysis show promise for the monitoring of small molecules.75,76 For at-line analysis341

Rebel analyzer is a promising solution as it is able to analyze over 30 media components342

(amino acids, vitamins and biogenic amines).77 Despite the outlook of current technologies,343

further improvement is needed as the problems of small molecule analysis are similar to those344

previously mentioned for product characterization sensors.65,76345

Mathematical models for process design, control and monitoring346

Connecting process parameters to critical quality attributes is indispensable for a robust347

process design that ensures product quality over time.78 The standard approach for discov-348

ering these relationships is the design of experiments (DoE). DoE is defined as ”a structured349

and organized method for determining the relationships between input factors affecting one350
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or more output responses, through the establishment of mathematical models.” Experimen-351

tal designs can be further divided into screening designs where the goal is to find which352

of the selected parameters affect the quality attribute and optimization designs where the353

goal is to find the range of effect on a specific CQA outcome.79 While several different DoE354

methodologies have been created79,80, factorial, central composite or Doehlert designs are355

still predominantly used in practice because of their ease of handling.46,81–84356

DoE methodologies are a powerful approach for an initial systematic exploration of the357

design space, especially in cases where prior process knowledge is low. Nevertheless, the358

experimental effort could be potentially high for process optimization based solely on a359

DoE approach.85 Batch manufacturing is discrete, and as such, optimizing unit operations360

independently of each other is a feasible strategy. On the other hand, the holistic nature361

of continuous manufacturing implies that to achieve the optimal results the individual units362

must be optimized together. Holistic process optimization implies that the experimental363

burden needed with DoE is even higher in continuous manufacturing, leading to prolonged364

development times and high capital investments.62 Moreover, a higher number of process365

parameters in continuous manufacturing makes it extremely challenging to find an optimal366

set of operating conditions by a purely empirical approach.62,85367

Systematic and simultaneous unit operation optimization is well-established in the major-368

ity of continuous chemical manufacturing processes. In continuous chemical manufacturing,369

empirical approaches are typically augmented by mathematical models that enable an in370

sillico process characterization and optimization to reduce experimental efforts, costs, and371

development.86,87 Mathematical models for process optimization and understanding have372

also demonstrated significant value in the continuous manufacturing of pharmaceuticals.88–90373

However, widespread adoption in process optimization for continuous biomanufacturing is374

still lacking and is currently at the stage of active research. Based on the amount of system375

knowledge required, mathematical models can be classified into data-driven (black box),376

mechanistic and hybrid (Table 2).91,92377

Data-driven modeling offers the advantage when there is a lack of detailed process un-378

derstanding. This advantage is simultaneously its biggest disadvantage as it means that pre-379

dictions are only reliable within the experimental conditions used to optimize the model.92380
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Table 2: Overview of different mathematical model types and their relative characteristics

Model

Type

Process

Knowledge

Required

Model

Development

Time

Model

Interpretability

Interpolation

Capability

Model

Transferability

Data-

driven

Models

Low Low Low Low High

Mechanistic

Models

High High High High Low

Hybrid

Models

Medium Medium Medium High Medium

Hence, their primary utilization is in the early stages of process development and explo-381

ration of high-dimensional datasets.93 For instance, data-driven models which augment the382

traditional DoE have demonstrated their value in media formulation.53,94 Among different383

data-driven techniques, machine learning (ML) tools seem to show the most promise for eluci-384

dating complex, non-linear relations, especially in cases where datasets are inherently noisy.95385

For example, a reinforcement learning approach has demonstrated the capability to reduce386

the experimental effort in finding an optimal flow rate for continuous chromatography.96387

Nevertheless, while showing excellent prediction capabilities, pure machine learning models388

suffer from low interpretability, and variability of biases across differing data batches.97389

Mechanistic models use physical and biochemical principles to simulate the analyzed390

system and infer the causality between input and output variables.98,99 Advantages of this391

modeling approach are high accuracy, good extrapolation, and physical and biochemical392

interpretation of parameters which is why it has been a predominant approach for cases393

with sufficient process knowledge. On the other hand, mechanistic models require a high394

level of mathematical expertise and system knowledge, leading to high model development395

time and an extensive experimental effort to parametrize the given model.91,92,99 The two396

main strategies used in biopharmaceutical process modeling are kinetic-based and flux-based397

modeling.99,100398

Kinetic-based modeling represents the system via coupled differential equations.99,100399
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Based on the modelling of the intracellular dynamics, kinetic models of the upstream process400

phase can be split into unstructured and structured models. Unstructured models represent401

the system as a function of abiotic variables (e.g., metabolite and nutrient concentrations)402

and treat the inner cellular dynamics as a ”black box.” Given that such an approach re-403

quires multiple simplifications and assumptions, unstructured models are most suitable for404

modeling the dynamics of 1) cell viability and density, 2) nutrient and metabolite concen-405

trations, and 3) product titer.101 On the other hand, structured kinetic models explicitly406

represent the intracellular dynamics of the cells, such as enzyme kinetics within a particu-407

lar cellular compartment (e.g., Golgi apparatus). They can thus be suitable for modeling408

factors such as antibody glycosylation.100,101 Structured models are usually constructed by409

first defining a model for the macroscopic system characteristics such as growth kinetics and410

process-related values. Next, this model’s variables are used as initial and boundary condi-411

tions of the microscopic model that describes the product synthesis or modification process412

within the cells.102,103 An example of such a kinetic modeling technique is described in the413

glycosylation of antibodies modeling in a perfusion bioreactor by Karst et al.102 Downstream414

kinetic models try to capture the solute transport from the inlet to the outlet. Based on the415

model assumption and characteristics, they can be divided into mass transfer models and416

adsorption kinetic models. For a detailed review of this topic, along with an extensive list417

of literature examples, see Shekhawat et al.104418

Flux-based models represent the system as a reaction network that defines the consump-419

tion and reaction stoichiometry of each species. In general, they require less experimental420

data for parameter determination than kinetic models. This type of model’s central assump-421

tion is that the system is in a steady state, which is also its main flaw, as the steady-state422

assumption cannot correctly capture the dynamic shift inherent to cell culture systems. Also,423

accurate reaction rate estimation requires having analytical measurements of key metabo-424

lites. Flux-based models can therefore be only reliably applied at discrete time points. Due425

to these limitations, the application of flux-based models to process control is limited. Nev-426

ertheless, when the steady-state assumption holds, flux-based models do present a valuable427

tool for process design and optimization, as has been shown in multi-perfusion bioreactor428

modeling.105429
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Models that combine flux-based and kinetic models are also emerging. The advantage of430

combining the two models is that flux-based estimation of metabolites can replace some of431

the complex kinetic reactions, thereby reducing the number of kinetic parameters that are432

difficult to estimate or might vary during the upstream process.106 As an example, Sha et al.433

utilized a flux-based model to estimate the intracellular concentrations of nucleotide sugar434

donors (NSDs). The estimated NSD concentrations within the Golgi apparatus were then435

used as an input to the glycosylation kinetic model to estimate the antibody glycosylation436

profile. The model was able to accurately predict the glycosylation profile impacts of process437

conditions such as pH shift, temperature shift, inoculation density, and feed composition.107438

Hybrid models attempt to augment a mechanistic (fully parametric) with data-driven439

approaches (statistical and machine learning), to enable capturing of phenomena that are440

highly-nonlinear or not well understood (e.g., the impact of variability in raw material on441

product CQAs).108,109 Advantages of hybrid models over traditional mechanistic approaches442

include higher adaptability to process variations and data heterogeneity, higher capability443

to be transferred to similar processes and an overall reduction in necessary process under-444

standing.101,110 Hybrid models demonstrated excellent performance in rapid evaluation and445

optimization of complex downstream processes.111 A hybrid modeling approach has demon-446

strated superior accuracy and robustness compared to a Lumped kinetics mechanistic model447

to predict breakthrough curves.112 Also, a hybrid modeling approach has been successfully448

applied to Single-pass tangential flow filtration (SPTFF) to reduce the overall experimental449

effort required for method optimization.113450

In contrast to downstream processing the application of hybrid modeling to perfusion451

bioreactors is lacking and most applications up to date have only been tested on fed-batch452

systems. Nevertheless, the principles tested out for fed-batch bioreactors could potentially453

be extended and adapted for perfusion systems. For example, a combination of a hybrid454

model and an iDoE was applied to the process characterization of E.coli recombinant hu-455

man superoxide dismutase production, achieving reduced process characterization time and456

development costs.114 Luo et al. proposed a hybrid system where a mechanistic or semi-457

mechanistic process model is augmented with a supplemental data-driven model to mitigate458

low inter-process transferability and lower development time. Such a set-up enables faster459
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adaptation to a new process as the base structure remains unchanged, while the supple-460

mental model captures the perturbation introduced by process alterations.103 Also, a hybrid461

model that combines a macroscopic mechanistic model with a machine learning model for462

Golgi apparatus glycosylation has demonstrated to be more robust and adaptable to sys-463

tem perturbations compared to a fully parametrized mechanistic model of the glycosylation464

process.115465

Finally, process design and model building should be performed synergistically.85 The466

model can be utilized to guide the empirical experimentation required, while on the other467

hand newly obtained experimental results can be used to advance the capabilities of the468

models.116 Consequently, a virtuous cycle of perpetual improvement can be created.469

In addition to process optimization, mathematical models have become indispensable470

for employing advanced control strategies. Namely, in continuous manufacturing, there471

is a greater opportunity to modulate the process outcome by real-time or near-real-time472

variation of process parameters for which dynamic control strategies are imperative.18,28 In473

downstream processes mechanistic first-principle models have been successfully applied for474

model predictive control (MPC) and model based adaptive control.30 For instance, Steinbach475

et al. demonstrated the feasibility of adaptive control with respect to different feed rates476

and resin aging in continuous capture steps.117 Also, mechanistic multiparametric MPC477

controller has demonstrated superior performance for a Counter Current Solvent Gradient478

Purification process in mAb manufacturing.118 In upstream processes mechanistic model479

predictive control has also been established.30 However, due to the high process complexity480

and many variable parameters, control strategies that are based on data-driven (primarily481

ML) or hybrid models are also gaining traction. For example, a controller based on a radial482

basis function neural network has shown adequate performance for time varying parameters,483

uncertain non-linear disturbances and unmodeled dynamics in a fed-batch bioreactor.119484

Also, a hybrid flux-balance analysis model has demonstrated the ability to reliably capture485

system dynamics and serve as a basis for feed modulation in baby hamster kidney cell486

cultivation.120487

While the process models of unit operations bring benefits to both design and control,488

the very integrated nature of a continuous process means that holistic models are needed to489
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truly represent the process in question. Advantages of introducing holistic models include a490

more comprehensible and quantitative manufacturing risk assessment and deviation detec-491

tion, a solid foundation for a cost-of-goods model, improved plant-wide control, and better492

continuous improvement.99 Moreover, such models can provide a basis for a digital twin of493

the entire process, which has the simulation capabilities to provide additional insight and494

help with process design, control, personnel training, and optimization.121–123495

Two strategies for integrating individual unit operations are present. The first being496

the unit-by-unit approach, where the unit operations are all simulated individually and are497

connected in an inlet-outlet manner. Such an approach enables high modularity as individual498

unit operations are easily switched, and each unit can be optimized independently. However,499

this approach’s sequential nature means that optimization covering several unit operations500

can be challenging. On the other hand, in a time-step approach the propagation of the entire501

inlet profile is evaluated across all the unit operation at each time step, enabling genuinely502

integrated control at the cost of higher computational time and usage of more complex503

software.124504

The effectiveness of control or process design models relies heavily on having an ample505

amount of accurate measurements. Sensors such as Raman or near infrared spectroscopy506

however provide complex outputs that can not be utilized directly. Therefore, mathematical507

models are also imperative for deconvoluting the sensor signal and correlating it with desired508

measurement parameters.64,91509

The approaches primarily applied for spectroscopic signals are data-driven and are typi-510

cally multivariate data analytics (MVDA) techniques such as principal component analysis511

(PCA) and partial least squares regression (PLSR).76,92 For example, PLSR has been suc-512

cessfully tested for obtaining measurements of small molecules with Raman spectroscopy in513

cell culture media in a perfusion bioreactor.125 Machine learning approaches are also gaining514

importance, especially when the parameters monitored by sensors are highly non-linear.126515

For instance, support vector regression has demonstrated superior performance to PLSR516

for obtaining measurements of different glycoforms with NIR spectroscopy.127 Additionally,517

machine learning has a self-learning capability that could enable real-time sensor calibra-518

tion and, therefore, potentially increase the robustness of sensors to process drifts and raw519
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material variability.128520

In addition to converting raw data, mathematical models are an integral part of soft521

sensors. Soft sensors are a combination of a mathematical model and one or more traditional522

sensors, whereby the physical measurements made by the traditional sensors are utilized in523

the model to infer variables of interest.85 On-line or in-line soft sensors can indirectly estimate524

the values of parameters that would otherwise be measured offline.85,129525

Data-driven and hybrid models are the predominant model types employed for soft sen-526

sors. For example, an in-line gas probe in combination with a multilinear regression model527

was utilized as a soft sensor for biomass estimation in perfusion bioreactors.130 Also, a soft528

sensor based on a combination of multi-wavelength fluorescence spectroscopy and a hybrid529

model demonstrated good performance in estimation of cell concentration, titer, glucose and530

ammonia.131 However, it should be noted that several challenges are associated with devel-531

oping soft sensors: 1) variable process lengths, 2)multiple process phases, and 3) physical532

sensor faults. As extensively reviewed by Brunner et al., several methods have emerged533

that can mitigate the aforementioned challenges.129 Nevertheless, this can introduce further534

development complexity and, thus, induce further costs and potentially lead to protracted535

development. Additionally, the accuracy, frequency, and cost of the underlying physical sen-536

sor may impact the overall utility of the soft sensor. Therefore, the decision to develop and537

deploy a soft sensor and any associated design choices should be guided by the purpose and538

requirements of the application. For instance, an online soft sensor for biomass estimation539

is particularly beneficial when there is a 1) demand for frequent measurements imposed by540

factors such as cell-line specific characteristics or processing conditions and control strategy541

requirements (e.g., utilizing biomass measurements to adjust the bleed rate to minimize the542

variability in viable cell concentration during prolonged cultivation periods),132 2) a need543

to minimize sampling due to the risk of compromising the sterile barrier (e.g., biomass es-544

timation in continuous aseptic closed systems) or 3) it has demonstrated higher robustness545

to process fluctuations and background compared to already existing physical sensors (e.g.,546

capacitance probe).133,134547

Mathematical models, at the heart of soft sensors, can also be applied to detect and548

reduce the measurement error of physical sensors. Namely, in order to reliably utilize mea-549

22



surement results to achieve more holistic, robust, and proactive process control, as well as550

RTRT, data reconciliation is required. Data reconciliation can be defined as ”a mathematical551

approach applied to correct imperfect measurement data to satisfy a mathematical model of552

the process, generally based on mass and energy balances, material property relations, pro-553

cess variance, and dynamics, or correlation between variables.”135 In principle, measurement554

errors can be split into two broad categories: random errors and systematic errors. Random555

errors are caused by small changes within the system (e.g., electrostatic fluctuations and air556

movements). Their correction is relatively well established (e.g., use of simple median filters557

or polynomial filters).558

On the other hand, systematic errors occur due to factors such as sensor fouling and cali-559

bration errors (e.g., for Raman or NIR spectroscopy). Compared to random error minimiza-560

tion, correction and detection of systematic errors is more challenging and typically requires561

the utilization of mechanistic or hybrid models.131,134,136,137 Data reconciliation methods for562

the reduction of systematic errors are already relatively well established in other industries,563

such as the chemical industry.136,138 However, applying advanced data reconciliation methods564

in the biopharmaceutical industry is still a developing field, especially in the case of mam-565

malian cells. Nevertheless, with the increased availability of mechanistic and hybrid models,566

progress is being made. Recently, Narayanan et al. demonstrated the potential utilization567

of a hybrid model with an extended Kalman Filter (EKF) to increase the accuracy of results568

derived from spectroscopic signals, such as glucose and lactate concentration.136569

Finally, data reconciliation methodologies should be applied to the soft sensors themselves570

as the measurement error stemming from the physical sensor can propagate in the soft sensor571

model and thereby reduce the overall accuracy of prediction. For instance, Steinwandter et572

al. developed a framework to correct for various sources of errors for a biomass soft sensor.134573

Also, Ohadi et al. used an EKF based on a combination of a dynamic mechanistic model574

and a fluorescence-based soft-sensor to increase the soft-sensor prediction accuracy.131 For a575

more detailed review on data reconciliation the reader should look at Su et al. and Brunner576

et al.129,135577
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Synchronization of upstream and downstream processes578

Regardless of the final product in question, every bioprocess can be split into two major579

phases: upstream and downstream.1 Upstream processing is the starting phase of production580

where the targeted therapeutic is synthesized by prokaryotic or eukaryotic cells,139 or, in the581

case of cell therapy, where the cells are expanded to reach the necessary production scale.140582

Downstream processing represents a collection of purification steps necessary to recover the583

final drug substance with the required purity level from the complex matrix obtained at the584

end of the upstream process.141585

Most of the work so far has been predominantly focused on making the upstream phase586

continuous as it has been proven multiple times that it can lead to higher cell density587

and, therefore, higher rates of production.141,142 Over the decades, significant progress has588

been made in upstream process design and optimization, including cell banking, inoculum589

expansion, cell retention and separation devices, and bioreactor design.142–145 For example,590

modern day single-use bioreactors have the benefit of removing sterilization and clean-up591

steps along with lower capital costs due to using non-stainless-steel materials and the reduced592

equipment size.141,146593

Comparatively, progress in continuous downstream processing has been slow. The most594

probable reason is that continuous purification systems have begun to be available only re-595

cently, and as such, the experience with using them, especially on a manufacturing scale, is596

limited. Additionally, the heterogeneity between different biopharmaceutical classes makes597

the number of purification steps, and the type of equipment needed diverse.1 In addition to598

technological advancements, a successfully realized continuous process warrants the harmo-599

nization between the upstream flow rate and the subsequent downstream purification flow600

rate. Considering these statements, the rest of the section is split into the following topics:601

• Advances in downstream technology602

• Integration of upstream and downstream processing603
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Advances in downstream technology604

The predominant techniques for purification are various chromatography techniques, as605

they possess unrivaled robustness, resolution, and flexibility in both scale and types of sep-606

aration criteria.141,142 One of the main factors determining the costs of a chromatography607

process is the capacity a system needs to have to separate a product stream with a spe-608

cific concentration efficiently. As the advances in upstream processing in both cell lines and609

bioreactor designs are enabling the production of, for example, antibodies to reach new titer610

levels, downstream processes need an adequate capacity boost to process the new material.611

Thus, the overall process cost is shifted more towards the purification steps.141 Additionally,612

for efficient continuous manufacturing implementation, equipment reliability is required over613

prolonged periods.1 Therefore, dedicated continuous chromatography systems are needed614

that can achieve higher capacity and productivity, lesser operating costs, and prolonged615

functionality.142,147 Several different methods have been developed to achieve this, including616

continuous annular chromatography, counter-current chromatography, and expanded bed617

chromatography.141,148–151 Also, single use chromatography is in expansion due to flexibil-618

ity and lower capital costs.149 For a more comprehensive list of techniques along with their619

performance indication, see Rathore et al. 2015 and Rathore et al. 2018.142,149620

During continuous chromatography purification, elution streams stemming from different621

columns in multicolumn systems are typically pooled. This means that a single defective col-622

umn could significantly damage the overall quality of the product output unless adequately623

addressed.152 More stringent and robust monitoring and feedback mechanisms are neces-624

sary to prevent such a failure in a timely manner. The monitoring technologies and control625

models under development have been discussed in the previous section. However, the addi-626

tional valves, monitoring devices, pressure gauges, and control hardware needed to ensure627

product quality of multicolumn systems significantly increase the operational and process628

characterization complexity. This complexity is also positively correlated with the number629

of columns. A balance between maximizing production output and operational simplicity is630

thus necessary.153 Examples of such column systems that seem to manage to increase the631

output with minimal added complexity are ChromaCon’s Eco Twin GMP and GE health-632
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care’s periodic counter current technology.153,154 The incorporation of single-use technologies633

into these systems also presents an attractive alternative option.146,147,153,155634

In order to fully utilize the advances in upstream productivity, alternatives to chromatog-635

raphy are also emerging. Methods employing monoliths and membranes with large pores636

have the potential to circumvent conventional chromatography’s mass transfer limitation,637

thereby providing reduced purification time and improved productivity.156,157 Although the638

focus is still primarily on adsorptive methods, the interest in aqueous two-phase extrac-639

tion (ATPE) is also rising due to the method’s scalability and productivity.12 Despite the640

lower resolution and operational maturity compared to conventional chromatography, the641

higher throughput and reduced cost make the described technologies potent candidates for642

integration into downstream purification pipelines.643

In addition to purification technologies, continuous viral clearance and filtration systems644

are necessary. Viral clearance is an essential step to ensure the safety of biologics produced in645

human or animal cell lines, which, if not handled properly, can lead to prolonged facility shut646

down for decontamination.153,158 For proteins that are transiently stable at low pH, a robust647

method for viral inactivation involves exposing the eluate after a chromatography step to a648

low pH buffer for a pre-specified time interval. However, continuous chromatography systems649

involve collecting eluates from multiple columns at varying time points, and an inherent risk650

exists of over or under exposure to low pH conditions leading to ineffective inactivation or651

protein aggregation.158652

To circumvent the problem described above, the discrete concept of incubation time653

should be translated into residence time distribution (RTD), which is a probability distribu-654

tion that describes how a material travels within a unit operation of a continuous system.159655

The viral inactivation step should aim to have a narrow RTD as this minimizes the proba-656

bility of under or over incubation. While existing technologies still have limited commercial657

utilization, several solutions that demonstrate a narrow RTD are emerging; including a con-658

tinuous packed bed reactor and a coiled flow inversion reactor.160,161659

Other essential parts of the purification pipeline are membrane-based filtration systems660

that adjust the product concentration or buffer exchange.162 Traditionally, this was done661

using tangential flow filtration (TFF) over multiple passes until the target volume or buffer662
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composition was achieved. However, it is challenging to integrate TFF in a continuous663

process as multiple passes cause a substantial retention time and would thus create a bot-664

tleneck in the production stream.163 Consequently, for continuous manufacturing TFF, was665

adapted to be single-pass by increasing the length of the flow path and the membrane surface666

area. Examples of successful implementation include buffer exchange in multiple stages of667

antibody purification164 and antibody concentration after anion exchange chromatography668

polishing.165669

Finally, pre-formulation and formulation processes of biopharmaceuticals include gen-670

erating lyophilized solid formulations and high-concentration liquids. For administration671

and production, high-concentration liquid formulations (HCLF) are preferred compared to672

lyophilized formulations. However, this approach has challenges, such as aggregation, gela-673

tion, phase separation, and high solution viscosities.166 Various ultrafiltration and diafil-674

tration strategies are employed to enable continuous concentration of products and buffer675

exchange for the formulation step.12 For example, in cases of antibody production, some676

techniques, such as countercurrent diafiltration systems, are used for continuous product677

formulation.167 Most often, lyophilization in the biopharmaceutical industry is performed678

using conventional batch freeze-drying.168 Although conventional freeze-drying has been a679

golden standard for manufacturing solid biopharmaceuticals, drawbacks such as high cap-680

ital cost, processing time variations, and high energy consumption have been recognized.681

Furthermore, the risk of discarding the entire batch in cases of a process failure is present.682

Additionally, depending on the dryer design, container closure, and load condition, some683

concerns related to heat and mass transfer and process scale-up have been reported.169 Var-684

ious continuous manufacturing drying techniques emerged as an alternative to conventional685

batch freeze-drying. One example is the continuous Spin freeze-drying developed by Corver686

et al. (RheaVita, Ghent, Belgium), where all freeze-drying process steps are integrated687

into a continuous production line, thereby reducing production time and cost while avoiding688

scale-up issues.170 While this methodology was successfully used for more stable biophar-689

maceutical products, further product-specific evaluations are necessary for determining the690

effects Spin-freezing has on labile biopharmaceuticals. Moreover, a publication by Lamoot et691

al. (2023) demonstrates the lyophilization of mRNA lipid nanoparticles using a continuous692
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lyophilization process.171 Even though they are still not widely accepted in the biopharma-693

ceutical industry, some novel continuous drying technologies have also appeared, such as694

Spray-drying and continuous Freeze-drying of suspended vials. For a more detailed review695

of the emerging drying technologies and their performances, see Sharma et al.169696

Integration of upstream and downstream processing697

Along with technological advancements in downstream and upstream technology, another698

critical aspect to a successful transition is integrating the upstream with the downstream699

processing.152 After cell harvesting, a capture step is performed where the goal is to reduce700

process volume and separate the biomolecule of interest from the harmful materials present701

in its surroundings.172702

Integration between the cell harvesting and capture step necessitates synchronizing the703

upstream perfusion flow rate with the subsequent downstream purification flow rate. To704

ensure this, employment of membrane chromatography or multicolumn systems might be705

necessary. An example of a lab-scale implementation of a two-column capture system in-706

tegrated with a perfusion bioreactor is given by Steinebach et al.173 As an alternative to707

multicolumn strategy, a single column continuous capture system has been demonstrated708

by Kamga et al.174 While the single column system has benefits over the multicolumn one709

because of the reduction in implementation cost and ease of control, an upstream media op-710

timization is needed, as lower perfusion rates are required to make the system feasible.175 In711

addition to flow rate synchronization, to avoid process disruptions caused by, for instance, fil-712

ter clogging, some redundancies might have to be employed, such as surge tanks and backup713

columns.152714

It should be noted that surge tanks might also be needed between further downstream715

steps to maintain lower operating pressure and average out the variability stemming from716

different process streams. However, care must be taken to decide where surge tanks are placed717

and how they are controlled as they can increase operational cost and complexity. Thus, a718

set of general guidelines for surge tank placement and control to maximize their effectiveness719

has been proposed by Thakur et al.175 Finally, the employment of sterile barriers between720

upstream and downstream processing and additional contamination control is needed.152721
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In addition to the flow rate synchronization, variations in the content of the flow streams722

are essential to consider when integrating the upstream process with the downstream. For723

instance, harvest titer measurement is used to determine the loading of the subsequent cap-724

ture step, thereby ensuring that the column capacity is adequately utilized and that column725

underloading (underusing expensive resin) and overloading (wasting product as flow-through726

(FT)) do not occur. In the case of batch manufacturing, only one titer measurement is suf-727

ficient as the discrete nature of batch processing yields a single homogenous harvest pool.728

In contrast, the flow between unit operations in continuous manufacturing is uninterrupted.729

Variations during the upstream phase in factors such as cell density and cell-specific produc-730

tivity can thus cause the titer to vary during the column loading.176 As such, efficient titer731

monitoring and a strategy to modulate the operating parameters of the capture step ade-732

quately in response to titer changes are required. For instance, Ramos et al. used a protein733

A bindable assay to monitor titer and then modulate load duration and frequency of elution734

for a dual load capture step to ensure constant mass load. This strategy enabled achieving a735

constant concentration downstream of the capture step, regardless of the variability in titer736

during the run.177 Karst et al. demonstrated a feedback control system that modulates the737

capture step operating parameters of a countercurrent two-column capture based on at-line738

HPLC titer measurements.178739

Another key factor to consider when integrating upstream and downstream is the amount740

and composition of impurities generated during the upstream process. The impurities can be741

classified into two categories: 1) product-related components and 2) process-related compo-742

nents. Product-related components include variants of the target product, such as precursors,743

degraded products, and aggregates. Process-related components include cell components744

(e.g., DNA, RNA, host cell proteins) as well as residual media or digested components (e.g.,745

carbohydrates, amino acids, salts, and lipids). Out of the listed impurities, host cell proteins746

(HCP) represents the biggest challenge. Namely, the amount and similarity of HCP with747

the product can cause complications in downstream processing in terms of increased process748

time, material consumption, and costs. Variation in culturing conditions (outlined in detail749

in Gronemeyer et al.179) can shift the HCP profile towards being more similar to the prod-750

uct in characteristics such as pI, molecular weight, and hydrophobicity.179,180 The increase751
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in the amount of HCP is often more pronounced in processes that have higher titers.179752

As such, upstream process optimization, such as media composition, is required to reduce753

the burden on downstream operations. In many cases, such an optimization needs to con-754

sider the cost-benefit trade-off between high titer and reduced HCP generation. The HCP755

profile and amount can also dictate the choice of adequate equipment for the harvesting756

step, as demonstrated in Gronemeyer et al.179,181 The HCP profile should likewise be con-757

sidered when choosing the appropriate downstream equipment regarding equipment type,758

downstream operation sequence, column size and resin capacity, as well as the possible need759

for duplicity in certain operations.182 Finally, the understanding of the change in upstream760

processing conditions that cause impurity shifts should be included in the downstream con-761

trol strategy such that operating conditions in downstream can be modulated if an upstream762

perturbation occurs. Conversely, detection of a change in the impurity profile during down-763

stream processing (e.g., increased amount of protein aggregates) should trigger an adequate764

adjustment in upstream processing.183765

An alternative to end-to-end integrated manufacturing might be a hybrid system, where766

only a subset of the production process is run in continuous mode.1 For instance, Ötes et767

al. made the protein A capture column continuous, while the rest of the downstream pu-768

rification remained in batch mode. The lower buffer expenditure and higher product yield769

demonstrated that such a solution is a potential intermediate step before end-to-end contin-770

uous processes become a reality.184 A hybrid system is also easier to integrate with current771

systems. Additionally, economic analysis demonstrated that depending on the production772

scale, in some cases, fed-batch bioreactor coupled with partially or fully continuous down-773

stream processing offers the benefit of increased operational simplicity and reduced ecological774

footprint.185,186 Another explored option is periodic continuity, where equipment is operated775

in periodic pulses with scheduled hold and flow steps. While a periodic continuity system has776

lower specific productivity and increased consumable utilization when compared to a fully777

continuous system, it benefits a lower facility cost and reduced operational complexity.187778
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Data and knowledge management in continuous biomanu-779

facturing780

The QbD paradigm has led to the realization that it is the knowledge and not just the781

sheer volume of data that should reinforce science-based submission and evaluation of a782

biomanufacturing process characterization.188 Consequently, through process understand-783

ing, continual improvement can be achieved throughout the entire process lifecycle.18,59 For784

example, by obtaining and connecting knowledge from data gathered during research, de-785

velopment, and manufacturing, it is possible to increase understanding of the propagation786

of variations throughout different lifecycle phases, which can guide the identification and787

improvement of control objectives as well as reduce process development time.188,189 Thus,788

regulatory authorities suggest introducing knowledge management about the product and789

the process from early conceptualization up to product discontinuation.188,190790

Knowledge management consists of methods to capture, create, transfer, document, re-791

trieve and reuse knowledge. This is a particularly daunting task in biopharmaceutical manu-792

facturing as a typical process has numerous process parameters and unit steps.188 In continu-793

ous manufacturing, knowledge management becomes particularly challenging as the units are794

interconnected, and the volume of data generated from process monitoring is increased. The795

variability in raw materials also has to be documented and stored as it can impact the end-796

product.191 Finally, knowledge from ongoing developmental studies and technology transfer797

needs to be incorporated as well.188 The rest of the section will analyze biopharmaceutical798

knowledge management with respect to its three distinct components:799

• Data collection and exchange standards800

• Recipes and data management systems801

• Data contextualization and metadata management802

Data collection and exchange standards803

The first step toward knowledge management is to develop an effective system to col-804

lect and exchange data within the system at all levels of operation and process research805
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and development phases. Currently, data obtained during biopharmaceutical manufacturing806

comes in diverse proprietary and non-standardized file formats that vary across vendors.192807

This is particularly problematic for continuous manufacturing as cross-unit communication808

is needed to enable integrated end-to-end control and decision making.152 The data obtained809

in the research and development phases also typically comes in a different format and has810

different or additional characteristics and features, making it challenging to utilize in technol-811

ogy transfer and data-informed decision-making. Hence, it is essential to have standardized812

communication protocols and interfaces to achieve integration in production and laboratory813

environments.193,194814

Various communication protocols exist in practice for communication between SCADA815

and individual devices. Furthermore, modern facilities need to enable efficient integration816

across devices, SCADA systems, manufacturing execution systems (MES), and enterprise-817

level systems.195 Currently, the most applied standardized integration protocols for process818

industries and their supply chains include MIMOSA, B2MML, PackML, BatchML, OAGIS,819

open platform communications (OPC), and OPC UA (unified architecture).196 Overview of820

standards for both types of communication are given in Table 3.821

In the analytical and development laboratories, either OPC or Standardization in Lab-822

oratory Automation (SiLA) standards are typically used for equipment integration.193 In823

other words, it is not that standards do not exist. There are actually quite a few of them.824

However, no industry-wide consensus has been created, making equipment and systems inte-825

gration case-specific, costly, and protracted on all levels. Therefore, having a ubiquitous or826

connected suite of standards that will be universally used in biomanufacturing is paramount827

for progress.828

In addition to standardized interfaces and communication set-ups for an established pro-829

duction system, the ability to interchange equipment during production is gaining impor-830

tance.197 Namely, with the increasing use of single-use equipment, prolonged uninterrupted831

periods of production typical for continuous manufacturing, and the need for fast adaptation832

to changing market demands, a way to integrate equipment into an existing production line833

in a streamlined manner is required.834

A promising standard for integrating manufacturing equipment has been developed by835
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Table 3: Overview of current standards for communication between SCADA and individual

devices

Standard Description

IEC 61158 The standard specifies industrial communication networks – Fieldbus

including ControlNet and Profibus

IEC 61784 This standard is used in design of communication devices and de-

fines a set of protocol specific communication profiles built on the IEC

61158 series and real-time ethernet communication profiles.

IEEC 62591 The standard specifies Wireless communication network and communi-

cation profiles – WirelessHART

IEC/PAS 62030

(Modbus)

Modbus standard provides serial communication protocol to connect

industrial electronic devices; it is often used for connection between

remote terminal units (RTUs) or PLC and SCADA.

MQTT An exceptionally light-weight publish and subscribe messaging trans-

port for connections with remote locations where small code footprint

and/or network bandwidth are of utmost importance.

IEC 62541 OPC Unified Architecture – an industrial Machine-to-Machine (M2M)

communication protocol for interoperability developed by the OPC

foundation.
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Namur under the name VDI/VDE/NAMUR 2658.198 The key idea behind this standard is836

the module type package (MTP) and that all units involved in processing should be based on837

it (both software and hardware) such that all necessary information for integration (e.g., such838

as communication, services, a human-machine interface (HMI) description, and maintenance839

information) is already contained within the MTP of the units. Also, work has been done840

to integrate MTP into higher-level communication based on OPC UA.197 This setup could841

potentially enable seamless integration and cross-unit interoperability in a plug-and-play842

fashion.197,198843

In the modern manufacturing environment, the role of models and data analysis in pro-844

cess optimization and control is ever-increasing.199 Consequently, the impact of efficient data845

utilization is also becoming higher. In recent years, more and more data are generated but846

need to be post-processed including transforming, connecting, and contextualizing into infor-847

mation and knowledge – the forms easily used by domain experts.200 Much historical data is848

also still stored in legacy systems, which increases the difficulty of long-term maintainability849

and future integration. That is, raw data are difficult to analyze and hence underutilized;850

and post-processing is difficult and costly. To that end, a unified data framework would be851

beneficial as it would ease data integration, reduce data post-processing time and associated852

errors and lead to better data utilization.853

For various analytical measurements in laboratories, two frameworks are used. The first854

is Allotrope that is stable for over a decade now and can cover various techniques and scales855

but is a for-fee license product.201 On the other hand, AnIML is easy to integrate and open856

source but has a lower number of supported equipment.202 Both have the potential to be857

adopted at an industrial scale, however, neither of them has good semantic coverage for858

manufacturing, control, system modeling, and simulation, and neither has been evidently859

adopted by manufacturers to this date.860

Another critical issue in biomanufacturing is that many essential documents such as861

certificates of analysis (CoA) and batch records are still in many cases paper-based.199,203862

That means a manual entry of data is needed for the information contained within them to863

be computer usable and hence utilizable for modeling, visualization, and data analysis. This864

process is error-prone, cumbersome, and it makes checking the validity of the information865
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more difficult.199 Thus, an efficient strategy for document digitalization is needed.866

Several industry leaders have started the adoption of electronic CoAs, and batch records.867

For electronic CoAs, an XML-based standard has been created by ASTM (E3077 - 17). The868

advantage of utilizing this standard and switching to electronic format include fast data869

transfer, a more streamlined business, and reduced cost of implementation.204 However, the870

ASTM standard is primarily tailored for chemical entities and not complex assembled con-871

sumables such as certain types of single-use equipment. Hence, further developments of the872

standard or the emergence of a complementary standard that could handle the previously873

mentioned complexity are required. Also, a wider adoption across the industry is needed. Fi-874

nally, the standard is a one-off standard. Therefore, integration with other larger standards,875

such as B2MML or OAGIS, should take place.876

Recipes and data management systems877

In addition to data format and communication standardization, a modular and scalable878

data management system is needed to deal with data integration, assembly, and contextual-879

ization efficiently.191,200 Some of the benefits that a standardized data management system880

would bring include system reusability and lower implementation costs.205 In batch manu-881

facturing industries, the basis of data management systems is the utilization of standards882

defined by the Instrumentation, Systems, and Automation Society (ISA) for batch execution883

and planning/modeling (ISA-95, ISA-88).200,206,207884

ISA 95 defines a manufacturing functional hierarchy through a 4-level automation pyra-885

mid (Enterprise, Manufacturing operations management, SCADA, and device). ISA 95 is886

production type neutral and hence can be utilized directly for both batch and continuous887

manufacturing.207888

The ISA-88 is batch process specific. It defines the terminology, and provides the data889

structure as well as the architecture in terms of a physical and functional model.206,208890

ISA-88 standard has gained popularity across different manufacturing sectors because of its891

intuitive recipe representation, which eases understanding and implementation throughout892

the entire lifecycle. What makes ISA-88 especially attractive for bioprocess data models are893

the modular design philosophy and the separation of process requirements from equipment894
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capability.209895

The aforementioned advantages are enabled by usage of hierarchical recipes. The recipe896

is defined in ISA-88 as “an entity that contains the minimum set of information that uniquely897

defines the manufacturing requirements for a specific product.”206 Given the varying amount898

of information required by different parts and hierarchy of an enterprise, four different levels899

of recipes are established, namely general, site, master, and control, that drive from the more900

generic process requirements down to the specific equipment requirements. These levels are901

related, and are compatible with the ISA-95 hierarchy. Information in each level varies with902

respect to the amount of production details present. The ISA-88 also outlines the logical903

paths of how to transform a recipe in one level to another.200,206904

Recipes could be used as a hierarchical data structure to assemble data generated from905

various parts of the biopharmaceutical manufacturing process.206 In addition to ubiquitous906

recipe data model, an efficient system for data management that includes storage, dissem-907

ination, and analysis is needed.210 In the same vein, Fermier et al. integrated the ISA-88908

recipes with data warehousing to create a modular and scalable system for data management909

throughout the entire product lifecycle.200 The recipe data warehouse model was recently910

built upon by Cao et al. in order to adapt the system to continuous manufacturing. Specifi-911

cally, the enhanced system encompassed more levels of control compared to traditional batch912

manufacturing as well as a laboratory recipe system to be able to accommodate both on-line913

and offline measurements. The recipe data warehouse framework was able to capture and914

transform data from different process levels and locations and therefore aid the process con-915

trol and decision making. Although pilot tests were based solely on tablet manufacturing,916

the system has the potential to be extended to continuous biomanufacturing processes.191917

As such, there seems to be a trend to focus on the further evolution of ISA-95 and ISA-88918

in the context of continuous biomanufacturing, instead of an attempt to develop a new set919

of standards. In other words, retaining the intuitiveness of ISA-95 and ISA-88 while also920

addressing specific aspects of continuous manufacturing should be emerging as one of the921

critical drivers of progress.922
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Data contextualization and metadata management923

An essential aspect of knowledge management is domain contextualization and an unam-924

biguous and universal representation of concepts that enables cross-system interoperability.925

Metadata needs to be preserved, contextualized and connected to properly utilize the in-926

formation available in a dataset. Therefore, universal, explicit, and platform-independent927

vocabulary is also required to enable smooth knowledge flow, transfer, and generation.210928

Ontologies enable the representation of domain knowledge in an interoperable way with929

a logical description of data and information. An ontology can be defined as a controlled930

vocabulary consisting of a consensus-based common set of terms that enable a standardized931

description of entities in a domain of interest and their mutual interconnections. In addition932

to providing a common vocabulary, ontologies are enriched with the logical representation of933

terms, enabling machine understanding, consistency checking, and inference.211 Hence, the934

utilization of ontologies enables knowledge to be standardized, transferable and both machine935

and human usable. Ontology has also been shown to assist in feature and model selection,936

causal inference,212 and automated reasoning209 in research related to other industries.212–215937

So far, in the biomedical field and pharmaceutical industry, several prominent ontologies938

have emerged that cover various aspects of product development and manufacturing. For939

instance, Ontology for biomedical investigations (OBI) can be used to log biological and940

clinical investigations.216 Coakley et al. presented an ontological approach to describe a941

biopharmaceutical manufacturing process with particular emphasis on the CQAs and CPPs942

involved in each process step,217 and Gueblitz et al. created a QbD compliant ontology for943

risk management.218 The Allotrope foundation has also created an ontology called Allotrope944

Foundation Ontology (AFO) that describes laboratory analytical processes with an accom-945

panying data model that enables data interoperability in practice.201 Muñoz et al. built an946

enterprise ontology model based on the ISA-88 recipe model and demonstrated ontological947

approach to recipe management that showed improvement in plant process communica-948

tion.208,219 The Industrial Ontology Foundry (IOF) aims at producing a highly axiomatized949

suite of ontologies to enable the connectivity of information throughout the digital thread950

of a product.220,221 While these ontologies are not necessairly compatible, fortunately there951
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is a trend to converge on the top-level ontology called Basic Formal Ontology (BFO).222952

Hence, there should be an emerging unified ontology for biomanufacturing that would serve953

as a grounding point for integration and that would assure interoperability across distinct954

domains and activities involved in biomanufacturing.955

To that end, Figure 3 enhances the information management outlined in Fermier et al.200956

(the bottom box – high-performance data processing and retrieval) with the knowledge957

management and exploration layer using ontology (the top box – domain expert-friendly958

knowledge graph tool). This top layer provides scientists or other domain experts, such959

as process engineers, easy access to the full digital thread of data throughout the product960

life cycle using graph data technology and standardized terminology via ontology. Graph961

data provide readily connected data so scientists can explore without relying on IT support.962

The dotted lines represent the type of personnel needed to perform the data management963

function. The data management functions outlined in Fermier et al.200 require IT specialists964

to develop them so scientists can use pre-built data analysis functionalities in the bottom965

orange box. This stifles innovations from data because scientists cannot directly interact with966

the data. With the knowledge graph layer, scientists can visualize and understand ontology.967

They can also interactively explore data represented according to the ontology in the graph968

mart (note that the color dots in the graph mart are instance data of the corresponding969

terms in the ontology) and then experiment with the data using analysis tools compatible970

with graph data. Once they know what they want, they can communicate requirements971

(data analysis) to IT specialists who can implement them in higher-performance systems972

(than knowledge graph systems) for real-time adaptive control or performance monitoring.973
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Figure 3: Notional data and knowledge management architecture supporting continuous

manufacturing development and execution

Conclusions and future perspective974

Biotechnology has been recognized as an industry of increasing economic impact and975

potential for innovation, with the biopharmaceutical industry being its integral, rapidly976

growing part.223 Thus, innovations and advancements in biopharmaceutical manufacturing977

could bring far-reaching benefits to the entire global economy. Transitioning from batch to978

continuous biomanufacturing has been acknowledged in both industry and academia as an979

essential driver of progress in the modern biopharmaceutical market. However, this process980

is still in its infancy, and multiple hurdles need to be surmounted. Primarily, improve-981

ments associated with QbD and the PAT initiatives are needed, along with advancements in982

equipment, information and knowledge integration.983

Quality by Design has become one of the cornerstones of biopharmaceutical manufac-984
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turing because its implementation reduces product variability and eases any post-approval985

changes, given that they are within the submitted design space. Due to its integrated nature,986

continuous biomanufacturing has the potential to build upon the QbD paradigm and enable987

real-time release. For this to become a reality, advancements in the active process control988

and process monitoring technologies are required.989

Process control is shifting towards increased utilization of model-based control strate-990

gies, with a mechanistic or hybrid data-driven model at the core. Significant breakthrough991

was achieved at the level of unit processes. Moreover, the lacking holistic approaches are992

actively researched. However, one of the hindering factors for adoption is the need for more993

regulatory clarity, especially in the case of hybrid models. To mitigate this challenge sev-994

eral possible efforts could be undertaken. Namely, companies should work with regulatory995

agencies through channels such as the FDA Emerging Technology Team (ETT). The ETT996

provides a ”safe space” to identify and resolve any regulatory or technical issues before fil-997

ing a regulatory submission.224 Consortia-based efforts should also be undertaken to provide998

community-based proof of principle demonstrations that can 1) raise awareness of a need for,999

as well as demonstrate the value potential of a particular technology and 2) be used as a ba-1000

sis for further regulatory discussions (e.g., through means such as the NIIMBL RCC).225,2261001

An example of such an ongoing project is the NIIMBL Big Data model-based adaptive1002

control project.227 Finally, to further facilitate adoption, more studies that benchmark the1003

performance of advanced control strategies compared to more traditional control should be1004

performed.1005

Regarding process monitoring, minimizing reliance on offline analysis is paramount. Con-1006

sequently, as part of the PAT initiative, innovative devices and methods for on-line, in-line,1007

and at-line monitoring are being developed. The most promising technologies include spec-1008

troscopy techniques, mass spectrometry, and soft sensors. Nevertheless, widespread adoption1009

has not occurred because of the lack of trained personnel, strict GMP documentation re-1010

quirements, and in some cases, relatively high cost of implementation. To facilitate further1011

adoption, investing in dedicated workforce development programs is needed.226 Also, more1012

studies that address the business value, return on investment, and limitations of a partic-1013

ular PAT technology should be conducted. An example of such a study and its benefits is1014
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provided in the recent PAT benchmarking survey conducted by BioPhorum Development1015

Group.2281016

Connecting the equipment to allow for uninterrupted flow between unit processes is fun-1017

damental for achieving continuous biomanufacturing. Upstream continuous technologies are1018

relatively better developed and are available on a commercial scale. On the other hand,1019

downstream continuous manufacturing remains an active research problem. The most no-1020

table advancements made are novel continuous chromatography and viral inactivation sys-1021

tems. Also, in both upstream and downstream manufacturing, single-use equipment has been1022

significantly gaining traction. Finally, synchronization of upstream and downstream phases1023

of the process remains a primary concern, where balancing the trade-off between cost and1024

complexity with process robustness is particularly difficult and should be further explored.1025

As a viable alternative, partially continuous (hybrid) systems have emerged, allowing greater1026

flexibility and easier adaptation of current production lines.1027

Cost effective and efficient systems, information, and knowledge integration is one impor-1028

tant axis to enable continuous biomanufacturing. While there are advancements in all three1029

fronts of integration, ubiquitous or well-connected suite of standards is yet to be available.1030

Projects at NIST’s System Integration Division and NIIMBL are underway to both improve1031

efficiency around standard development/deployment and create new and better standards1032

that are more domain expert friendly.221,229,2301033
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