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Abstract. We study the problem of determining suitable investments
in improving the robustness of complex systems comprising many com-
ponent systems with an aim of minimizing the (time) average costs to
system operators. The problem is formulated as an optimization problem
that is nonconvex and challenging to solve for large systems. We propose
two approaches to finding a good solution to the optimization problem:
the first approach is based on a gradient method and finds a local op-
timizer. The second approach makes use of a convex relaxation of the
original problem and provides both a lower bound on the optimal value
and a feasible point. The lower bound can be used to bound the optimal-
ity gap of the solutions obtained by our methods. We provide numerical
results to demonstrate the effectiveness of the proposed approaches.
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1 Introduction

With increasing complexity, modern engineering systems, such as information
and communication networks and power systems, consist of many (component)
systems that depend on each other to deliver their services. This interdependence
among systems makes it possible for a local failure or infection of a system by
malware to spread to other systems. From this viewpoint, it is clear that sound
investments in robustness of the complex system should consider the interde-
pendence among comprising systems. A similar issue arises also in the problem
of managing the spread of an infectious disease via social contacts.

The problem of optimizing the investments in robustness of complex sys-
tems or the mitigation of disease spread has been studied extensively. In [4, 5,
8, 9], researchers adopted a game theoretic formulation to study the problem of
security investments with distributed agents. In another line of research more
closely related to our study, researchers examined optimal strategies using vac-
cines/immunization (prevention) [3], antidotes or curing rates (recovery) [2, 10,
14] or a combination of both preventive and recovery measures [13, 15]. How-
ever, these studies do not take into account dynamics; they focus on either the
expected costs stemming from single or cascading failures/infections [7–9] or the
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exponential decay rate to the disease-free state as a key performance metric.
When systems experience random failures over time, the exponential decay rate
adopted in the previous studies is no longer a suitable performance metric.

In a recent study, Mai et al. [11, 12] investigated the problem of minimiz-
ing the (time) average costs of a system operator while accounting for dynamics,
where the costs include both (security) investments and economic losses incurred
following failures or infections. However, the authors considered investments only
in resilience, but not in recovery. In this paper, we extend this study and con-
sider investments in both resilience and recovery. It turns out that incorporating
two different types of investments complicates the optimization problem for de-
termining optimal investments significantly. This is due to additional coupling
terms that are introduced in the new model, which were not present in [11, 12].
This leads to a highly nonconvex optimization problem that is difficult to solve
in general. However, we show that, under a technical condition, we can formu-
late a convex relaxation that provides a lower bound on the optimal value and
a good feasible solution for the original problem (Theorem 4), whose optimality
gap can be bounded. In addition, we show that a gradient-based method also
produces a good-quality solution.

Notation and Terminology – Let R and R+ denote the set of real numbers
and nonnegative real numbers, respectively. For a matrix A = [ai,j ], let ai,j
denote its (i, j) element and AT its transpose. We use boldface letters to denote
(column) vectors, e.g., x = [x1, ..., xn]

T, 0 = [0, ..., 0]T, and 1 = [1, ..., 1]T. For
any two vectors x and y of the same dimension, x ◦ y, x

y , and xy are their
element-wise product, division, and exponentiation, respectively. For x ∈ Rn,
diag(x) ∈ Rn×n denotes the diagonal matrix with diagonal elements x1, . . . , xn.

A directed graph G=(V, E) consists of a set of nodes V and a set of directed
edges E ⊆ V × V. A directed path in G is a sequence of directed edges in the
form

(
(i1, i2), (i2, i3), ..., (ik−1, ik)

)
. The graph G is strongly connected if there

is a directed path from each node to any other node.

The rest of the paper is organized as follows: Section 2 describes the setup
and the problem formulation, including the optimization problem. Our proposed
approaches are described in Section 3, followed by numerical studies in Section 4.
We conclude in Section 5.

2 Model and Formulation

The complex system under consideration consists of N (N ≫ 1) systems, and
we denote the set of (component) systems by A = {1, . . . , N}. Each system in
a subset AR (⊂ A) experiences random failures. The frequency with which a
system i ∈ AR suffers random failures depends on the amount of investments
in its resilience, which we denote by spi ; when system i invests spi in improving
its resilience, it experiences random failures according to a Poisson process with
failure rate λi(s

p
i ). Here, we assume that λi(s

p
i ) = λ̄i×qi(s

p
i ), where λ̄i ≥ 0 is the

failure rate when no investment is made in its resilience, and qi : R+ → [0, 1] is a
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decreasing function and quantifies how the resilience of system i improves with its
investment in resilience. We assume λ̄j = 0 for every system j ∈ A \AR =: Ac

R.
In addition to random failures, systems also experience secondary failures

brought on by the failures of other systems due to interdependence among sys-
tems. The rate at which the failure of system i causes that of another system j
depends on system j’s resilience and is equal to ξi,j × qj(s

p
j ), where ξi,j ∈ R+.

Thus, even systems in Ac
R can experience secondary failures. Note that this

failure transmission rate depends on system j’s investment in resilience. When
ξi,j > 0, we say that system i supports system j or system j depends on system i.
We adopt the convention ξi,i = 0 for all i ∈ A.

When system i suffers a failure, the recovery time required to repair the
system and put it back in service depends on the amount of investment in recov-
ery, which we denote by sri ; when system i invests sri in recovery, the recovery
times are given by independent and identically distributed exponential random
variables with parameter δi(s

r
i ). We assume that δi : R+ → (0,∞) is strictly

increasing. Furthermore, the recovery times of different systems are assumed to
be mutually independent.

In addition to the investments in the resilience and recovery of systems,
the system operator also incurs other costs; when system i fails, it can cause
economic losses, e.g., some servers in system i may need to be taken offline for
inspection and repair and remain inaccessible during the period to other systems
that depend on the servers. We call the economic losses failure costs. To model
the failure costs, we assume that the failure of system i causes economic losses
of ci per unit time. Define c = (ci : i ∈ A) to be the failure cost vector.

From our discussion, we can define a following dependence graph G = (A, E),
where E := {(i, j) | ξi,j > 0, i, j ∈ A}. Let B = [bi,j : i, j ∈ A] be an N × N
matrix that describes the failure transmission rates among systems, where the
element bi,j is equal to ξj,i. We assume that B is irreducible. Note that B is
irreducible if and only if the dependence graph G is strongly connected.

2.1 Model

We adopt the well-known Susceptible-Infected-Susceptible (SIS) model to cap-
ture the evolution of the state of each system: if a system i is up and running
at time t ∈ R+, we say that the system is at ‘susceptible’ state. If the system is
being repaired following a failure at time t, we say that the system is ‘infected’.
Let p(t) be a vector, whose i-th element is the probability that system i is at
‘infected’ state at time t ∈ R+. The dynamics of p(t) is approximated using the
following (Markov) differential equations, starting with p(0) at t = 0:

ṗ(t) = (1− p(t)) ◦
(
λ̄+Bp(t)

)
◦ q(s)− δ(s) ◦ p(t), t ∈ R+, (1)

where s =
(
si = (spi , s

r
i ) : i ∈ A

)
, λ̄ =

(
λ̄i : i ∈ A

)
, q(s) =

(
qi(s

p
i ) : i ∈ A

)
and

δ(s) =
(
δi(s

r
i ) : i ∈ A

)
.

Suppose that, for each fixed investment profile s = (si : i ∈ A) in R2N
+ , the

system state p(t) converges to a stable equilibrium (the existence and uniqueness



4 V.-S. Mai et al.

of such an equilibrium will be addressed shortly), which we denote by p̄(s).
From (1), it is clear that p̄(s) is a solution to the following equation.

gs(p) := (1− p) ◦
(
λ̄+Bp

)
◦ q(s)− δ(s) ◦ p = 0 (2)

We are interested in solving the following problem:

[P0] min
s≥0

F (s) := w(s) + cTp̄(s), (3)

where w : R2N
+ → R+ is the cost function that quantifies the investment costs.

The second term in (3) is the average failure costs that the system operator suf-
fers due to the failures of systems. Although we do not impose any constraints on
s (other than nonnegativity), our analysis can be extended to handle constraints,
e.g., 1Ts ≤ sbgt, where sbgt is the available budget for investments.

3 Main Analysis

In order to make progress, we introduce following assumptions.

Assumption 1 Suppose that G is strongly connected and the following holds:
A1-a. At least one system experiences random failures with a positive rate,

i.e., AR ̸= ∅ and λ̄i > 0 for all i ∈ AR.
A1-b. For each i ∈ A, the function qi(s

p
i ) = (1 + κis

p
i )

−αi , where κi and αi

are some positive constants.
A1-c. For each i ∈ A, the recovery rate of system i is given by δi(s

r
i ) =

θi(1 + ζi · sri )βi > 0, where βi, θi and ζi are some positive constants.
A1-d. The cost of investments is equal to w(s) = 1Tsp + 1Tsr.

Assumption A1-b can be viewed as a form of the law of diminishing returns
with increasing investments in resilience, where the shape is determined by the
parameters αi and κi. Similarly, since the mean recovery time is inversely pro-
portional to the recovery rate, the law of diminishing returns may suggest βi < 1
in Assumption A1-c. Larger values of αi and κi (resp. βi, θi, and ζi) indicate
higher effectiveness of available tools for improving resilience (resp. expediting
recovery) and, thus, greater benefits from investments in resilience and recovery.

The following theorem states that, for fixed investments s ∈ R2N
+ , there is a

unique equilibrium of the differential system described by (1); see, e.g., [6].

Theorem 1. Suppose that Assumption 1 holds. Then, for fixed investments s ∈
R2N

+ , there is a unique equilibrium p̄(s) ∈ (0, 1)N that satisfies (2).

Theorem 1 asserts that the unique equilibrium of (1) satisfying (2) is strictly
positive. Hence, under Assumption 1, we can rewrite the constraints in (2) as

(p−1 − 1) ◦ (λ̄+Bp) = θ ◦ (1+ κ ◦ sp)α ◦ (1+ ζ ◦ sr)β, (4)
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where p−1 = (p−1
i : i ∈ A). Based on this observation, we reformulate our

original problem [P0] in (3) as the following equivalent problem:

[P1] min
s,p

w(s) + cTp =: f(s,p)

s.t. (4), p ∈ (0, 1]N , s ≥ 0

The main difficulty in solving this problem lies with the constraint in (4). Specif-
ically, the constraint in (4) involves bilinear terms that are not only nonconvex,
but also known to be difficult to handle. For this reason, although the objective
function is linear in optimization variables s and p, problem [P1] is nonconvex.

In view of the observation that [P1] is nonconvex, finding an optimal point
for a large system (with N ≫ 1) is in general challenging. In this section, we
will discuss how we can obtain a feasible point (s′,p′) to [P1] along with a
lower bound flb on the optimal value f∗ of [P1] so that we can bound the gap
f(s′,p′) − f∗ using f(s′,p′) − flb. In order to find a lower bound on f∗, under
a technical assumption, we formulate a convex relaxation of [P1], which can be
solved efficiently. We find a feasible point to [P1] in two different ways; in the
first method, we use a gradient-based method to find a local minimizer of [P1].
In the second method, we use an optimal point to the aforementioned convex
relaxation to construct a feasible point and show that it solves [P1] under certain
conditions.

In order to cope with the difficulty caused by constraint in (4), we first rewrite
the constraint as following two constraints using an auxiliary variable ϕ ≥ 1.

(p−1 − 1) ◦ (λ̄+Bp) = θ ◦ ϕ (5a)

ϕ = (1+ κ ◦ sp)α ◦ (1+ ζ ◦ sr)β (5b)

Notice that constraint (5a) involves only optimization variables p, whereas con-
straint (5b) has optimization variables s. This observation will be exploited in
our algorithm design below. Here, we will briefly illustrate the usefulness of this
structure. Consider the following subproblems for fixed ϕ ≥ 1:

[SP1] min
p

cTp =: g(p)

s.t. (5a), p ∈ (0, 1]N

[SP2] min
s

w(s)

s.t. (5b), s ≥ 0

Here, in view of Theorem 1, [SP1] is simply the problem of finding the equi-
librium failure probability p̄ for fixed θ ◦ ϕ corresponding to some investment
profile s. Unfortunately, there appears to be no closed-form solution to this prob-
lem. One can, however, resort to a numerical method instead as shown below.

Theorem 2. ([12]) Suppose λ̄ ⪈ 0, θ > 0, and B is irreducible. Then, the
iteration

pk+1 =
λ̄+Bpk

λ̄+Bpk + θ ◦ ϕ
, k ∈ N, (6)

converges to a unique equilibrium p̂ when starting with any p0 such that p̂≤p0≤
1. Moreover, the convergence is exponential with some rate ρ0 < 1−mini∈A p̄i.
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Next, let us consider problem [SP2], which amounts to finding optimal in-
vestments for a given ϕ, or equivalently, for a given failure probability p̂. Unlike
[SP1], problem [SP2] can be solved analytically as follows:

Theorem 3. For each ϕ ≥ 1, the solution to [SP2] is given by

ŝri (ϕ) = ζ−1
i max

{
0, τiϕ

1/(αi+βi)
i − 1

}
with τi :=

(
βiζi
αiκi

) αi
αi+βi

ŝpi (ϕ) = κ−1
i

(
ϕ
1/αi

i max
{
1, τiϕ

1/(αi+βi)
i

}−βi/αi − 1
)
.

The proof of this theorem is straightforward and is omitted here.
Denote the optimal values of [SP1] and [SP2] for fixed ϕ ≥ 1 by g∗(ϕ) and

w∗(ϕ), respectively. Then, in principle, we can solve problem [P1] by solving

minϕ≥1 g∗(ϕ) + w∗(ϕ). (7)

Unfortunately, this is in general not a convex problem due to the implicit function
g∗(ϕ) and possible nonconvexity of ŝpi (ϕ) and ŝri (ϕ) (which is the case when
αi + βi > 1) as described in Theorems 2 and 3, respectively. As a result, we
resort to a numerical method that can find a (local) optimizer of the problem.
Among different methods for solving nonconvex problems, we consider next in
subsection 3.1 a gradient type algorithm due to its simplicity and scalability.
Later, in subsection 3.2 we will show that when αi + βi ≤ 1, we can obtain
practical convex relaxation of the original problem.

3.1 Gradient Method

First, it is tempting to use a gradient method to solve the problem in (7). How-
ever, note that w∗ is nonsmooth and possibly nonconvex since ŝri (ϕ) is nons-
mooth and nonconvex. Thus, directly solving this problem using gradient meth-
ods is known to be difficult. As a result, we will use [P0], which is of higher
dimension than (7) but smooth with simple constraints and hence is easier to
apply gradient methods to.

To this end, we show how to compute gradient ∇F (s) efficiently. Note that

∇F (s) = ∇w(s) +∇g(p(ϕ(s))) = 1+ Jp(s)
Tc, (8)

where Jp(s) =
[
∂pi(s)/∂sj

]
is the Jacobian matrix. Thus, the bulk of computa-

tion lies in evaluating Jp(s). By applying the chain rule, we obtain

Jp(s) = Jp(ϕ)Jϕ(s). (9)

Here, Jϕ(s) can be evaluated easily from (5b), i.e.,

Jϕ(s) =
[
diag

(
ϕ◦α◦κ
1+κ◦sp

)
, diag

(
ϕ◦β◦ζ
1+ζ◦sr

)]
. (10)
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The matrix Jp(ϕ) can be computed by totally differentiating (5a) with respect
to ϕ; this is similar to the approach of [12]. In fact,

M(ϕ)Jp(ϕ) = −diag(θ ◦ p̄(s)) (11)

where M(ϕ) = diag(θ ◦ϕ+ λ̄+Bp̄(s))−diag(1− p̄(s))B, and p̄(s) = p̂(ϕ(s)),
which can be computed efficiently using the fixed point iteration in Theorem 2.
We can show that M(ϕ) is a nonsingular M-matrix. Thus, from (11) we get

Jp(ϕ) = −M(ϕ)−1diag(θ ◦ p̄(s)). (12)

Substituting (10) and (12) in (9) and using it in (8), we obtain

∇F (s) = 1− Jϕ(s)
Tdiag(θ ◦ p̄(s))z, where z := M(ϕ)−Tc.

As a result, we can now use a projected gradient method for solving [P0];
see [12] for the detailed algorithm as well as an efficient and scalable approach
for computing z without matrix inversions for large systems (by employing the
structure of M(ϕ) and using the power method).

3.2 Convex Relaxation

We will introduce relaxations to the constraints in (5). First, to relax (5a), we
use the same approach used in [12]. Specifically, define

y := − lnp, t := λ̄ ◦ ey, U := diag(ey)Bdiag(e−y). (13)

Using these new variables, (5a) can be rewritten as

t+ U1 = λ̄+Bp+ θ ◦ ϕ, (14)

which is linear in the variables t,p,ϕ and U . Next, we relax the nonconvex
equality constraints in (13) with the following convex inequality constraints:

e−y ≤ p ≤ 1, λ̄ ◦ ey ≤ t, diag(ey)Bdiag(e−y) ≤ U (15)

We can express these inequality constraints as a following set of at most 2N+ |E|
exponential cone constraints:

(pi, 1,−yi) ∈ Kexp for all i ∈ A (16a)

(ti, 1, yi + log λ̄i) ∈ Kexp for all i ∈ AR (16b)

(uij , 1, yi − yj + log bij) ∈ Kexp for all (i, j) ∈ E , (16c)

where Kexp := cl({(x1, x2, x3) |x1 ≥x2e
x3/x2 , x2 > 0}). These constraints in (16)

(as well as those in (19) below) can be handled efficiently by conic optimization
solvers, e.g., MOSEK [1].3

3 Any mention of commercial products is for information only; it does not imply a
recommendation or endorsement by NIST.
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We now consider the constraint (5b). Note that since we aim to minimize
the investment costs from sp and sr and the right-hand side of (5b) is strictly
increasing in each element, at an optimal point the constraint will be active,
allowing us to replace the equality with the inequality, i.e.,

ϕ ≤ (1+ κ ◦ sp)α ◦ (1+ ζ ◦ sr)β. (17)

In general this is not a convex constraint because of the product term on the
right-hand side; however, it can be recast as convex constraints when α+β ≤ 1.
To see this, let us first use a change of variable to rewrite the right-hand side of
(17): for each i ∈ A, define

ηi = 1 + κis
p
i and ϑi = 1 + ζis

r
i . (18)

From their relations, we have spi (ηi) := (ηi − 1)/κi and sri (ϑi) := (ϑi − 1)/ζi.
Note that ηi and ϑi are linear in spi and sri , respectively, and vice versa. With a
little abuse of notation, we denote (spi (ηi) : i ∈ A) and (sri (ϑi) : i ∈ A) by sp(η)
and sr(ϑ), respectively. In order to rewrite constraint (17) as conic constraints,
we need the following assumption.

Assumption 2 We assume α+ β ≤ 1.

This assumption implies that the (marginal) rates of both the increase in
recovery rates and the decrease in failure rates slow down relatively quickly with
increasing investments. In other words, the available tools are not very effective
and, as a result, the failure rates do not diminish quickly and the recovery rates
do not improve rapidly with increasing investments in resilience and recovery,
respectively. Under Assumption 2, we can express the constraint in (17) as the
following conic constraints:{

(ηi, ϑi, ϕi) ∈ Pαi,1−αi

3 if αi + βi = 1,

(ηi, ϑi, 1, ϕi) ∈ Pαi,βi,1−αi−βi

4 if αi + βi < 1,
i ∈ A, (19)

where Pa1,...,am
n =

{
x ∈ Rn

∣∣ ∏m
i=1 x

ai
i ≥

√∑n
j=m+1 x

2
j , x1, . . . , xm ≥ 0

}
, m <

n, is an n-dimensional power cone (n ≥ 3), which is convex. Clearly, the above
power cone constraints require Assumption 2. When this assumption does not
hold, one must resort to other techniques to obtain a convex relaxation of (17).

Based on these new constraints (14)–(19), we obtain the following convex

relaxation of [P1]: define w̃(η,ϑ) := w(sp(η), sr(ϑ)) =
∑N

i=1(s
p
i (ηi) + sri (ϑi)).

[CR] min
p,t,y,η,ϑ,ϕ,U

w̃(η,ϑ) + cTp

s.t. (14), (16), (19),

p ∈ (0, 1]N , η ≥ 1, ϑ ≥ 1, y ≥ 0

Suppose that x+
R := (p+, t+,y+,η+,ϑ+,ϕ+, U+) is an optimal point of [CR],

and let s+ = (sp(η+), sr(ϑ+)). Define

p′ = e−y+

, ϕ′ = ϕ+ + diag(θ−1)B(p+ − p′), and s′ = ŝ(ϕ′), (20)
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where ŝ(ϕ′) is an optimal point of [SP2] for ϕ′, which was given in Theorem 3.
The above relaxation provides both an upper bound and a lower bound on the
optimal cost as shown below.

Theorem 4. Suppose that f∗ is the optimal value of [P1]. Then, (s′,p′) is a
feasible point of [P1], and we have

f(s+,p+) ≤ f∗ ≤ f(s′,p′). (21)

Moreover, the last two constraints of (15) are active at x+, i.e.,

t+ = λ̄ ◦ ey
+

and U+ = diag(ey
+

)Bdiag(e−y+

). (22)

This result shows that the tightness of our relaxation can be judged via the
gap f(s′,p′)−f(s+,p+). Note that in view of Theorem 4, w(s) can be expressed
as w(ŝ(ϕ)) =: ŵ(ϕ), which is a convex function of ϕ under Assumption 2. Thus,

f(s′,p′)− f(s+,p+) = ŵ(ϕ′)− ŵ(ϕ+) + cT(p′ − p+)

≤ ∇ŵ(ϕ′)T(ϕ′ − ϕ+) + cT(p′ − p+) (convexity of ŵ)

=
(
c−BT∇ŵ(ϕ′)

)T
(p′ − p+), (from (20))

where∇ŵ(ϕ′) is the gradient of ŵ at ϕ′ (or any subgradient if non-differentiable).
Since p′ ≤ p+, the above bound suggests that the gap f(s′,p′) − f(s+,p+) is
likely to be small when the failure cost vector c is sufficiently large (which is often
the case in practice). Clearly, this gap is 0 when c ≥ BT∇ŵ(ϕ′), i.e., (s′,p′) is
a global optimal solution to the original problem; this is the case, for example,
when α+β = 1 and c is sufficiently large (independent of ϕ′). Moreover, when
the convex relaxation is not tight, we can obtain an improved solution using the
gradient method in Section 3.1 with (s′,p′) as a starting point.

Finally, we note that when either (αi, βi) = (0, 1) or (αi, βi) = (1, 0) for all
i ∈ A, both (5b) and (17) are simple affine constraints and can be used directly
in our relaxed problem without the need to transform them into conic constraints
provided in (19); a similar approach for the special case with (α,β) = (0,1) can
be found in [12].

4 Numerical Results

In this section, we provide some numerical results to demonstrate the usefulness
and efficacy of our proposed approaches. Our studies are carried out in MATLAB
(version 9.5) on a laptop with 8GB RAM and a 2.4GHz Intel Core i5 processor.
For our numerical studies, we generate a set of strongly connected scale-free
networks with the power law parameter for node degrees set to 1.5, and the
minimum and maximum node degrees equal to 2 and ⌈3 logN⌉, respectively, in
order to ensure network connectivity with high probability.

For all considered networks, we fix θi = 1 and αi = βi = 0.5 for all i ∈ A.
The failure transmission rates bj,i, (j, i) ∈ E , and the parameters κi and ζi are
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selected uniformly at random in [0.01, 1], [1, 1.5], and [0.5, 1], respectively. We
choose failure cost vector c = νBT1 with a varying parameter ν > 0 to reflect
an observation that nodes that support more neighbors should, on the average,
cause larger economic losses. In each considered network, we assign positive
failure rates of λ̄i = 0.1 to 20% of the nodes (sampled without replacement).

We solve the relaxed problem [CR] using MOSEK package and define the

relative optimality gap at (s′,p′) as opt gap =
∣∣1− f(s+,p+)

f(s′,p′)

∣∣. We use the Reduced

Gradient Method (RGM) in [12] to find a local optimizer s̃ of [P0] with initial
point s(0) = 0. This gives us F (s̃), which is an upper bound on the optimal
cost, and the relative optimality gap for RGM’s solution is given by opt gap =∣∣1− f(s+,p+)

F (s̃)

∣∣. The results (averaged over 5 runs) are shown in Fig. 1.
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Fig. 1. Comparison between RGM and MOSEK package in two cases ν = 1.5 and
ν = 5; here ν is the parameter associated with the cost vector c = νBT1.

As we can see, when ν is small with smaller failure costs, the relaxation is
not exact, and the RGM yields a solution with a smaller optimality gap (less
than 5.5% for ν = 1.5). When ν is large, the relaxation becomes tight, and
both approaches provide (nearly) optimal solutions. In this case, MOSEK yields
a slightly better solution since it uses an interior-point method. In terms of
runtimes, RGM outperforms MOSEK, especially for large networks. The above
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results suggest that RGM not only is scalable, but also can find a good solution
to the original problem, if not (nearly) optimal.

5 Conclusion

We studied the problem of determining suitable investments in improving the
robustness of complex systems. Unlike in previous studies, we considered in-
vestments in both resilience and recovery, while taking into account dynamics.
The problem of minimizing the average costs of a system operator is formu-
lated as an optimization problem, which is shown to be nonconvex. We then
proposed two approaches to determining (nearly optimal) investments based on
a gradient-based method and a convex relaxation. The effectiveness of the pro-
posed approaches are demonstrated using numerical studies.
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