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Abstract

Airfoil shape design is a classical problem in engineering and manufacturing. In this work, we combine principled physics-based
considerations for the shape design problem with modern computational techniques using a data-driven approach. Modern and tra-
ditional analyses of two-dimensional (2D) and three-dimensional (3D) aerodynamic shapes reveal a flow-based sensitivity to specific
deformations that can be represented generally by affine transformations (rotation, scaling, shearing, and translation). We present a
novel representation of shapes that decouples affine-style deformations over a submanifold and a product submanifold principally
of the Grassmannian. As an analytic generative model, the separable representation, informed by a database of physically relevant
airfoils, offers: (i) a rich set of novel 2D airfoil deformations not previously captured in the data, (ii) an improved low-dimensional
parameter domain for inferential statistics informing design/manufacturing, and (iii) consistent 3D blade representation and pertur-
bation over a sequence of nominal 2D shapes.
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1. Introduction
We begin by reviewing aspects of airfoil and blade/wing design
to establish a motivation for the work. What follows is intended
to serve as a detailed overview of the theoretical foundations for
computations. Implementations and examples are available on
GitHub (Doronina et al., 2022).

Many artificial intelligence (AI)-aided design and manufactur-
ing algorithms rely on shape representation methods to manip-
ulate shapes in order to study sensitivities, approximate inverse
problems, and inform optimizations. Two-dimensional (2D) cross-
sections of aerodynamic structures, such as aircraft wings or wind
turbine blades, also known as “airfoils”, are critical engineering
shapes whose design and manufacturing can have significant im-
pacts on the aerospace and energy industries. Research into AI
and machine learning (ML) algorithms involving airfoil design for
improved aerodynamic, structural, and acoustic performance is a
rapidly growing area of work (Chen et al., 2019; Glaws et al., 2022a,
b; Li et al., 2019; Seshadri et al., 2018; Wang et al., 2022; Yang et al.,
2022; Yonekura & Suzuki, 2021; Zhang et al., 2018).

Although airfoil shapes have been studied extensively and can
appear relatively benign, their representation and design are com-
plex due to their extreme operating conditions and the highly
sensitive relationship between shape deformations and changes
in aerodynamic performance. In this context, innovations specifi-
cally related to computational domains are of paramount impor-
tance for the future of computational fluid dynamics (Slotnick
et al., 2014). Improved shape parameter domains will enable fu-
ture parametrized model reductions (Benner et al., 2015; Willcox
& Peraire, 2002) to balance computational costs, improve designs,
and make computations more explainable and interpretable.

In this work, we explore a data-driven approach that uses a
matrix (2-tensor) manifold framework to parametrize (or learn) a
manifold of airfoil shapes. The resulting set of deformations to air-

foil shapes separates important, and often constrained, affine de-
formations. Modern airfoil design incorporates constrained design
characteristics of twist (i.e., angle of attack) and scale, which must
be fixed or treated independently of higher order deformations to
the shape. Our approach decouples these two aspects of airfoil de-
sign and offers new interpretations of a space of shapes not previ-
ously considered—i.e., “learning” a manifold of discrete shapes as
submanifolds built from parent matrix manifolds. In the following
subsections, we provide a brief overview of the airfoil representa-
tion scheme and demonstrate its flexibility over current methods,
including the capability to extend from 2D airfoils to full three-
dimensional (3D) shapes, such as wind turbine blades. The results
are predicated on parametrizations over well-understood mani-
folds, offering an “analytic generative model” for airfoil shapes,
in contrast to alternative AI-based generative models and other
non-linear dimension reductions (i.e., manifold learning). Imple-
mentations and examples are available (Doronina et al., 2022).

1.1. Defining an airfoil
We review general concepts for airfoil design, highlighting the fact
that airfoil shapes are defined independent of planar rotations
and scaling despite these deformations being highly sensitive to
aerodynamic quantities of interest. This presents a challenge to
define a general domain of airfoil shapes which is also indepen-
dent of a chosen basis expansion representation.

Airfoil design seeks an optimal planar shape that satisfies de-
sired design criteria—e.g., a specific lift and drag under particu-
lar operating and atmospheric conditions. Quantitatively, a given
airfoil is typically characterized by its aerodynamic properties us-
ing lift and drag profiles, or “polars,” which are defined as univari-
ate functions of these quantities over a range of planar rotations
(or angles of attack). These profiles characterize important oper-
ational behavior and sensitivities over a continuous set of planar
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rotations. As such, functionals of these univariate profiles are of-
ten used to inform quantities of interest for optimization, approx-
imation, and inverse problems—e.g.,

∫
(ζ◦f)(θ )dθ , where f is lift,

drag, or the ratio of lift to drag as a function of scalar rotation
angle θ ; and ζ acts as a transformation representing the desired
characteristics of the polar. Specifying functionals over a planar
rotation of the shape to characterize the airfoil operational profile
suggests that a given airfoil is best characterized independently of
these rotations. The rigid motion is “integrated away” by the defi-
nition of operational effectiveness as a functional over the angle
of attack.

To study shapes, one approach is to represent airfoils by the
class-shape transformation (CST; Kulfan, 2008), which partitions
the shape into upper (suction side) and lower (pressure side) sur-
faces of the airfoil. The upper and lower surfaces are parametrized
by the coefficients of two truncated Bernstein polynomial series.
The two distinct upper and lower surface polynomials are multi-
plied by rational “class functions” that ensure at least two roots at
zero and one where the distinct curves (as graphs of the two poly-
nomials) connect. Consequently, deformations applied by modi-
fying the coefficients of the expansion retain fixed orientation by
design, such that the leading edge point (root at zero) and trail-
ing edge point (root at one) of the polynomial expansions are
fixed.

Alternatively, the airfoil can be parametrized using pla-
nar Bezier splines, or general B-splines, with specified control
points (Hosseini & Moetakef-Imani, 2016). Additionally, shapes
can be inferred from noisy data with weighted local least
squares (Ghorbani & Khameneifar, 2021). The curve is typically
parametrized with complicated (and often subjective) constraints
on each control point to help regularize deformations to achieve
certain behavior. Previous studies have used splines to design
several families of airfoils for modern megawatt-scale wind tur-
bines (Li et al., 2019). These representations are typically fixed to
ignore rotations of the shape and scaled to obtain a “unit-chord
length” such that the Euclidean distance from the “leading edge”
to the “trailing edge” is one.

However, the discussed expansion representations (and others)
are often coupled with a highly sensitive linear scaling of the shape as
inferred from the physics and modeling (Glaws et al., 2022b; Grey
& Constantine, 2018; Li et al., 2019; Seshadri et al., 2018). Specifi-
cally, general representations of shapes as curves remain coupled
to large-scale, affine-type deformations—deformations resulting
in significant and relatively well-understood physical impacts on
aerodynamic performance like changes in thickness and camber.
In contrast, smaller scale undulating perturbations are of increas-
ing interest to airfoil design problems (Glaws et al., 2022b) and to
the study of impacts of manufacturing defects and damage (Ge
et al., 2019). This coupling between physically meaningful affine
deformations and higher order perturbations in shapes confounds
deformations of interest in the design process. Further details and
examples of this coupling between deformations of interest and
affine deformations are presented in Section 2.1.

Moreover, defining appropriate domains and constraints in-
forming meaningful design spaces for the coefficients of Bern-
stein polynomials or B-splines can be very challenging from one
problem to the next. Defaulting to bounded ranges about nomi-
nal coefficients may not be expressive enough to cover more di-
verse classes of airfoils. Restrictive and complicated choices of
parameter domains make it challenging to diversify designs and
take full advantage of the flexibility offered by AI-aided design
and manufacturing. That is, interpreting the dependencies be-
tween perturbations to CST or spline parameters and subsequent

changes to the resulting shapes can be challenging. This makes it
difficult to select informed prior distributions generating “reason-
able” aerodynamic shapes that underpin fundamental AI and in-
verse problem computations. For example, assumed uniform and
Gaussian distributions over shape parameters often translate to
complex, non-intuitive distributions over any space of shapes—
distributions which may be multi-modal and consisting of several
disjoint clusters of shapes.

Constraints imposed by the chosen representation, e.g., CST or
splines, tend to fix the orientation of the airfoil in the plane. The
intuition is that airfoil shapes are characterized by perturbations that
are independent of rotation, given design functionals defined over
profiles of rotation angle. The desired 2D rotational invariance
and physics-based interpretations motivate our development of a
novel separable representation of shapes—independent of a cho-
sen basis expansion representation—for next-generation aerody-
namic design.

1.2. Defining a blade
We describe challenges associated with defining a 3D blade/wing
design by interpolating a sequence of 2D shapes. The 2D cross-
sections are designed and constrained by affine deformations en-
coding scale, rotation, and position properties that are often fixed
by structural constraints or legal regulations. We establish a clear
need for a general framework which can accomplish interpolation
of 2D shapes independent of prescribed affine deformations. Ad-
ditionally, new representations should be free from specific 2D ba-
sis expansion representations since total parameter count scales
poorly for 3D design.

As a natural extension of 2D airfoils, 3D aerodynamic design
considers the construction of a blade or wing from landmark air-
foils with specific operational characteristics along the length of
the blade. Blades and wings are generally represented by 2D cross-
sections extruded along a spanwise axis in 3D—e.g., wind turbine
blades or gas turbine blades (Hosseini & Moetakef-Imani, 2016). In
contrast to the 2D airfoil design problem, the relative orientation,
scaling, and position of the airfoil shapes along the span is heavily
coupled to the final design of the full 3D shape—which has struc-
tural and/or regulatory implications in the specific case of wind
turbines. For example, the 2D airfoils are often scaled to achieve
an appropriate Reynolds number within the 3D blade, per mod-
eled flow conditions. These shapes are then carefully rotated and
translated smoothly along the span axis—imparting a twist and
bend to the blade—to achieve specific operational characteristics
from the hub to the tip of the 3D design. This procedure amounts
to interpolating a sequence of 2D airfoils to define the 3D blade.

The proposed design procedure is challenging with existing air-
foil parametrizations as the total number of parameters defining
the blade scales with the number of 2D cross-sections and param-
eters may change dramatically from one airfoil cross-section to
the next. It is not clear how conventional, potentially high dimensional,
parametrizations can be interpolated from one 2D shape to the next to
retain the sought affine characteristics of the blade.

The methods presented here transform existing airfoil defini-
tions in order to (i) inform rotation- and reflection-invariant de-
signs of 2D airfoil shapes and (ii) extend 2D designs to 3D blades
by enabling spanwise airfoil interpolations that decouple blade–
shape perturbations from specified scalings and rotations. The key
characteristic in both the 2D and 3D design tasks is that we seek
“separability” between airfoil deformations that scale and rotate
the shape—defined by affine deformations—and those that in-
troduce local, high-order undulations in the surface. Introducing
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the separability then offers designers the ability to independently
select the types of deformations that are most important for their
application.

Further, we seek to accomplish these design tasks free from any
specific expansion representation involving CST or splines—i.e., in
a manner that does not parametrize the form of a specific ba-
sis expansion. Lastly, we explore a concept of consistently deform-
ing the airfoils defining a 3D blade such that the total parame-
ter dimensionality is independent of the number of provided 2D
cross-sections. This leads to a novel framework for the design of
next-generation aerodynamic shapes over a principled choice of
reduced dimension domain.

1.3. Contributions
This work formally develops the use of specific matrix manifolds
as underlying parent topologies for defining an affine and expan-
sion independent parametrization of a space of discrete shapes.
In general, this reveals a systematic approach to “learning” a sub-
manifold of shapes through a vector space of n-by-2 full-rank ma-
trices. Our contributions include:

(i) The definition of separable forms of discrete shapes inde-
pendent of affine deformations and designed expansions
for 2D and 3D design.

(ii) A metric space of discrete shapes with an improved notion
of distance between shapes over a novel data-driven do-
main definition.

(iii) Detailed computational routines for learning a manifold-
valued analytic generative model of shapes in seconds.

(iv) Definition of a 3D blade/wing using affine-independent in-
terpolation of designed 2D airfoil shapes.

(v) A novel approach for 3D design involving consistent
blade/wing deformations—minimizing parameter count
and deforming the blade in an intuitive way.

We note that these novel interpretations applied to airfoil de-
sign are closely related to the pioneering seminal work of David
G. Kendall in 1977 summarized in short (Kendall, 1989) and elab-
orated in detail (Kendall et al., 2009). As such, modern treatments
of discrete shapes are commonly referred to as Kendall shape
spaces.

2. Discrete Representation & Deformation
We introduce shapes defined by smooth curves inducing discrete
shapes as matrices that are independent of a choice of basis
expansion. In detail, we discuss deformations to and standard-
ization of these discrete shapes using linear algebra decompo-
sitions. We also analyze the convergence of data preprocessing
and provide comparisons to AI/ML generative models. Finally, we
cover detailed Riemannian interpretations informing computa-
tions necessary to build implementations from scratch.

We begin by developing the discretized representations of 2D
airfoil shapes as the foundation for data-driven parametrizations
that will facilitate 2D and 3D aerodynamic design. The challenge
of interest in modern aerospace shape design is to define shape
deformations that are independent of the well-studied and aero-
dynamically sensitive affine deformations to a shape. Affine de-
formations over planar coordinate axes, typically parametrized as
scaling and rotation, can greatly affect aerodynamic performance
(lift and drag profiles) of an airfoil. Additionally, scaling is not lim-
ited to simply increasing the shape volume but can also include
independent vertical or horizontal scaling as well as the shearing

the shape’s image in the plane. Thus, it is important to decouple
affine deformations from higher order deformations as undulations
and study them independently in 2D design. In this complemen-
tary context, we define an undulation in the shape as any remain-
ing deformation that is not represented by a linear deformation—
i.e., informally considered higher order or non-linear variations in
the shape. Additionally, we require geometric representations that
preserve these often carefully chosen affine characteristics for 3D
design.

A 2D shape can be represented as a boundary defined by the
open (i.e., injective or one-to-one) or closed (i.e., injective, except
at endpoints) curve c : I ⊂ R → R2 : s �→ c(s), where I is a compact
domain. Without loss of generality, we can assume that I = [0, 1].
In practice, we consider a discrete representation the 2D airfoil
shape as an ordered sequence of n landmarks (xi ) ∈ R2 for i = 1, …,
n and n ≥ 3 along the curve c(s). That is, we have landmark points
xi = c(si ) for 0 ≤ s1 < s2 < … < sn ≤ 1. Moving along the curve, this
sequence of planar vectors defining the airfoil shape results in the
matrix X = (x1, . . . , xn )
 ∈ Rn×2

∗ , where Rn×2
∗ refers to the set of full-

rank n × 2 matrices (i.e., the non-compact Stiefel manifold). The
full-rank restriction ensures that we do not consider degenerate
X as a feasible discrete representation of an airfoil shape.

Pivotal in this analysis is that we do not require a choice of basis ex-
pansion as a representation to deform c. Instead, we assume we have
access to a database of discrete shapes generated by a diverse set
of potentially different representations defining a variety of air-
foil shapes. Then, we work with statistics of discrete shapes as
opposed to statistics associated with coefficients in an expansion.

The innovative characteristic of the proposed approach is rep-
resenting discrete airfoil shapes as elements of a Grassmann
manifold (or Grassmannian) G(n, 2) paired with a corresponding
affine transformation defined by an invertible 2 × 2 matrix plus
a translation. This definition of the airfoil shape gives rise to a
separable representation, making important subsets of deforma-
tions independent and allowing designers to make interpretable,
systematic changes to airfoil shapes over either type of defor-
mation. For example, one may seek to preserve average airfoil
scale characteristics while independently studying all remain-
ing undulating deformations as perturbations over the Grass-
mannian. Further, this separability enables the extension of 2D
shape parametrizations to 3D blade and wing shapes in a low-
dimensional and consistent manner.

2.1. Affine deformations
We discuss affine deformations describing large-scale planar de-
formations to shapes—namely, the linear term. We present linear
deformations that are known to vary aerodynamic performance
significantly and/or require specific control informed by design
constraints. This motivates the need to separate linear deforma-
tions in shape representations from higher order oscillations or
undulations in the shapes.

Affine deformations (i.e., scale, rotation, shear, and translation)
of an airfoil have the form M
c(s) + b, where M ∈ GL2 is an element
from the set of all invertible 2 × 2 matrices (for brevity, we sim-
ply refer to GL2(R) as GL2 given all data and computation is over
the reals) and b ∈ R2. Note that deformations by rank-deficient M
would collapse the shape to a line or to a single point and are not
considered physically relevant as they have zero area.

A shape represented by associated boundary c : I → R2 can be
expressed generally as c(s) = (c1(s), c2(s))
 such that the univariate
functions ci for i = 1, 2 admit basis expansions ci(s) = ∑

k∈K akiBik(s)
as B-splines of fixed order, Bézier curves, or otherwise. Setting
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(�(s))ik = (Bik(s)) and (A)ki = aki, we can write this through the lens of
linear algebra as c(s) = ∑2

j=1 e j (e

j �(s)Ae j ) where e j is the jth col-

umn of the 2-by-2 identity matrix, A is a |K|-by-2 matrix of the
coefficients parametrizing the curve, and �(s) a 2-by-|K| matrix of
evaluated basis functions. By varying A, we can deform the shape
as D(A) through some mapping D( · ) returning a matrix of appro-
priate dimension and rank. However, this mapping is unknown in
general and could vary dramatically from one representation A
to the next. Applying M to the curve as a scaling/rotation/shearing
deformation then modifies D(A) and vice versa.

As an example, a common choice is to take c1(s) = s as the
identity with all other basis functions in � set to 0 along this
i = 1 horizontal coordinate. Consequently, the vertical direction
is parametrized along the horizontal planar-coordinate axis by
s. Any deformation D(A) to coefficients of the expansion deform
the curve as ĉ(s) = ∑2

j=1 e j (e

j �(s)D(A)e j ) in the planar-vertical di-

rection which is equivalent to the graph of the deformed func-
tion ĉ2 over a potentially scaled domain—i.e., (â11s,

∑
k âk2B2k(s))

for â11 > 0 avoiding reflection and maintaining the rank of Â pro-
vided at least one âk2 �= 0 for k = 2, . . . , |K|. Any deformation of
the curve—parametrized in any manner as D—is then realized as
a new expansion, Â = D(A). However, applying a linear scaling M
modifies the expansion and vice versa thus coupling deformation
types as

ĉ
(s) =
(

â11s,
∑

k

âk2B2k(s)

)
M

=
(

M11â11s + M21
∑

k âk2Bk2(s), M12â11s + M22
∑

k âk2Bk2(s)
)

,

where Mij are the corresponding entries of M. Even in the special
case that off-diagonal elements of M are zero (no shearing) and
M11 = 1, M22 must be non-zero to maintain M ∈ GL2 but M22 is
modified by factoring any non-zero common denominator from
the coefficients in the expansion of ĉ2—i.e., generally, D(A) repre-
sents the effect of a vertical scaling by a common factor. Thus,
changing Â changes scaling M and changing M changes our ex-
pansion Â despite the systematic choice of expansion along the
horizontal planar-coordinate—which is coupled to M22 at a mini-
mum. Of course, this is further complicated if M constitutes a ro-
tation or shearing. In other words, notice that the specific form of
� does not decouple linear deformations M applied to the shape
represented by deforming A via unknown D( · ). However, specific
choices of D( · ) may accomplish scale-invariance subject to cor-
responding constraints on any given representation—e.g., restrict-
ing a function space to a sphere (Hagwood et al., 2013).

As opposed to working with specific choices of � and con-
strained D( · ), we opt to work with discrete shapes X without de-
signing expansion representations. Additionally, we have no prudent
notion of distance in a high-dimensional space containing A and
Â which complicates selection of domain definitions when a Eu-
clidean distance is presumed insufficient.

For a discrete shape representation, affine deformations
can be written as the smooth right action with translation
XM + 1n,2diag(b), where 1n, 2 denotes the n × 2 matrix of ones and
diag(b) = ∑2

j=1(e

j b)e je


j . Note that the translation of the shape b
does not change the intrinsic characteristics of the shape (i.e., it
has no deforming effect) and is generally of little interest for 2D
design problems. For 3D blade design, b locates the landmark air-
foils relative to one another and can define the center of rotation.

Previous work on sensitivity analysis of CST parameters rep-
resenting airfoil shapes has revealed certain shape deformations
can dramatically change the coefficients of lift and drag (Glaws

et al., 2022b; Grey & Constantine, 2018). These deformations are
similar to affine deformations of simultaneously changing cam-
ber and thickness—a result consistent with laminar flow the-
ory. This dominating influence of affine deformations on aerody-
namic quantities of interest inhibits the nuanced study of a richer
set of perturbations to airfoil shapes, which is becoming increas-
ingly important to continued progress in aerodynamics research.
For example, the set of “dents” and “dings” common to damage
and manufacturing defects—e.g., leading edge erosion and soil-
ing of an airfoil shape—cannot be described entirely by affine
deformations. However, a fundamental understanding of the im-
pact of these features on aerodynamic performance can lead to
increased longevity of expensive and difficult-to-replace compo-
nents, such as offshore wind turbine blades. This motivates the
need for a set of parameters that describe deformations inde-
pendent of those in this dominating class of affine transforma-
tions. More precisely, we seek transformations to separately treat
smooth right actions over GL2. This line of research was initially
proposed as an extension of Grey and Constantine (2018) in Grey
(2019).

Affine deformations constitute only a subset of the possible
important aerodynamic deformations. We contend that aerody-
namics will be significantly influenced by any parametrization,
composition, or generalization of scaling/rotation as long as M ∈
GL2. Moreover, these affine deformations are critical for 3D design
and are usually constrained or rigorously chosen when select-
ing nominal definitions of shapes. For example, a useful example
parametrization of the linear term is

L4 : L ⊂ R4 → GL2

� �→ �1

[
�2 0
0 �3

][
cos(�4) sin(�4)

− sin(�4) cos(�4)

]
. (1)

This parametrization is representative of the types of systematic
deformations chosen or constrained in blade design. That is, we
compute volumetric (�1) and coordinate-aligned horizontal (�2)
and vertical (�3) scalings, then rotate the shape into the final angle
of attack (�4) for assembly or modeling. Although (1) is not nec-
essarily a common parametrization of GL2, assuming all of GL2

is aerodynamically significant offers more flexibility for design-
ers to select or fix arbitrary deformations over GL2 beyond those
parametrized by (1) that may be deemed interesting.

We seek to decouple and preserve affine features for blade and
wing design through a set of inferred shape deformations over the
Grassmannian that are independent of GL2. We also discuss sep-
arable shape tensors for parametrizing scale variations indepen-
dent of rotation/reflection for individual airfoil (2D) design.

2.2. Separable shape tensors
We introduce the Grassmannian G(n, q) as a topology where vari-
ations in discrete shapes due to linear deformations are “di-
vided out.” We describe how to map shapes to representative el-
ements of the Grassmannian as landmark-affine (LA) standard-
izations using: (i) the singular value decomposition (SVD) and (ii)
the related polar decomposition. This motivates parametrizations
of sections through product manifolds: (i) G(n, 2) × GL2 and (ii)
G(n, 2) × S2

++, respectively. These will define the “parent” topolo-
gies for submanifolds of separable shape tensors.

2.2.1. LA standardizations
Given a discrete shape representation X and an important affine
deformation XM + 1n,2diag(b), we now develop the necessary
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Figure 1: Thin SVD of centered landmarks with appropriate dimensions
and corresponding notation. Lines motivate an intuition for a relevant
partitioning of any given matrix.

interpretations for deforming shapes independent of the often
constrained and notably aerodynamically sensitive affine fea-
tures. Through this development, we reveal underlying parent
matrix manifold topologies which will inform improved non-
Euclidean considerations for subsequent computations and 3D
blade interpolation.

The Grassmannian G(n, q) is the space of all q-dimensional
subspaces of Rn. Formally, G(n, q) ∼= Rn×q

∗ /GLq, meaning that el-
ements of the Grassmannian are invariant under GLq trans-
formations where GLq is the set of all invertible q × q ma-
trices. Given this invariance, we may consider an element of
the Grassmannian [X̃] ∈ G(n, q) to be the equivalence class of
all matrices with the same column span as the representative
element X̃ ∈ Rn×q

∗ (Absil et al., 2008). That is, the equivalence

class [A] =
{
B ∈ Rn×q

∗ : B ∼ A
}

is defined by equivalence relation

A ∼ B such that Range(A) = Range(B). In this way, every ele-
ment of the Grassmannian is a full-rank matrix modulo GLq de-
formations. Thus, deformations over G(n, q) are independent of
affine deformations (ignoring the non-deforming translations)—
i.e., [XM] = [X]. By representing discretized airfoil shapes as el-
ements of the Grassmannian, we ensure that deformations to
shapes or differences between shapes in this space are, by def-
inition, decoupled from the aerodynamically important affine
deformations—e.g., linear transformations varying camber, thick-
ness, and length.

It is common to view the Grassmannian as a quotient topol-
ogy of orthogonal subgroups such that the n landmarks of any
representative element X̃ have sample covariance proportional to
the identity matrix—i.e., X̃
X̃ = Iq (Edelman et al., 1998; Gallivan
et al., 2003). In practice, this means that a representative compu-
tational element of the Grassmannian is an n × q matrix with or-
thonormal columns (Edelman et al., 1998). This perspective offers
certain computational advantages and motivates a scaling of air-
foil landmark data for computations over G(n, 2) for airfoil design.
In our case, n is equal to the number of landmarks, and q = 2 is
the dimension of the ambient space where the shape lives for de-
sign.

To represent physical airfoil shapes as elements of the Grass-
mannian, we define the LA standardization (Bryner et al., 2014)
as a mapping π : Rn×2

∗ → G(n, 2). LA standardization normalizes
the shape to have zero sample mean (translation invariance) and
identity sample covariance (scale invariance) over the n land-
marks defining the shape. The remainder of this section discusses
computation of the LA standardization and examines its proper-
ties.

Given a discrete airfoil shape with landmarks X ∈ Rn×2
∗ , let

b(X) = (1/n) X
1n,1 be the discrete center of mass and compute
the thin SVD of the centered airfoil (X − B(X))
 = U�V
, where
B(X) = 1n,2 diag(b(X)). Then, define M̃ to be the 2 × 2 invertible ma-
trix

M̃ = �U
. (2)

The mapping between the airfoil X and its LA-standardized rep-
resentation X̃ is

X − B(X) = X̃M̃. (3)

As a result, this definition of X̃ provides scale standardization

X̃
X̃ = M̃−
(X − B(X))
(X − B(X))M̃−1

= M̃−
(U�V
 )(V�U
 )M̃−1

= �−1U
(U�2U
 )U�−1

= (�−1�)(��−1 )

= I2,

consistent with a “whitening transform” (Hyvärinen & Oja, 2000).
From (3), we have X̃ = V, with standardized landmarks along the
rows as X̃ = (x̃1, . . . , x̃n )
 ∈ Rn×2

∗ . To clarify, Fig. 1 depicts the di-
mensionality of the various matrices and the notation. The LA
standardization (3) satisfies assumptions to apply various intrin-
sic parametrizations for computing normal coordinates over the
Grassmannian (Edelman et al., 1998).

For [X̃] ∈ G(n, 2), X̃ is a representative (Stiefel) element of the
Grassmannian, defined uniquely up to any GL2 transforma-
tion (Absil et al., 2008; Edelman et al., 1998). Abstractly, we map
a given discrete airfoil shape X to an equivalence class [X̃] via
π : Rn×2

∗ → G(n, 2) : X �→ [X̃] such that

π (X) = [X̃] = [X − B(X)]. (4)

Next, we show that π (X) = [X̃] is surjective, thus admitting a
parametrizable right inverse, and satisfies the desired scale and
translation invariance properties. Lastly, we show that π is the
canonical projection thus the right inverse parametrizes sec-
tions through Rn×2

∗ as a submanifold. The results establish a prin-
cipled framework for “learning” a (sub)manifold of discrete shapes
in Rn×2

∗ with the desired separability.

Proposition 1. π is surjective.

Proof. For any [X] ∈ G(n, 2), we can take an arbitrary basis [X] =
span {v1, v2} for linearly independent v1, v2 ∈ Rn. Consequently,
taking arbitrary (av1, bv2) ∈ Rn×2

∗ for a, b �= 0 implies π ((av1, bv2)) =
[X].

Proposition 2. π is scale invariant such that π (XM) = π (X) for any
M ∈ GL2.

Proof. Defining B(X) = 1n,2diag(b(X)) where b(X) = (1/n)X
1n,1,

π (XM) = [XM − B(XM)]

= [XM − 1n,2diag((1/n)(XM)
1n,1)]

= [XM − 1n,2diag(M
b(X))]

= [XM − 1n,2diag(b(X)
M)]

= [XM − (1n,2diag(b(X)))M]

= [(X − B(X))M]

= [X − B(X)]

= π (X).

Proposition 3. π is translation invariant such that
π (X + 1n,2diag(v)) = π (X) for any v ∈ R2.
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Figure 2: Collection of 10 nominal cross-sectional airfoils defining the
International Energy Agency (IEA) 15-MW blade in (a) physical
coordinates, X, and (b) LA standardized coordinates, X̃.

Proof. For arbitrary v ∈ R2,

π (X + 1n,2diag(v)) = [X + 1n,2diag(v) − B(X + 1n,2diag(v))].

Then, we recognize that

B(X + 1n,2diag(v)) = 1n,2diag((1/n)(X + 1n,2diag(v))
1n,1)

= 1n,2diag((1/n)X
1n,1 + (1/n)diag(v)1

n,21n,1)

= 1n,2diag((1/n)X
1n,1 + diag(v)12,1)

= 1n,2diag((1/n)X
1n,1) + 1n,2diag(diag(v)12,1)

= B(X) + 1n,2diag(v).

Noting that 1

n,21n,1 = n 12,1, diag(v)12,1 = v, and diag(u + v) =

diag(u) + diag(v). Plugging this result into the equation above
yields

π (X + 1n,2diag(v)) = [X + 1n,2diag(v) − B(X + 1n,2diag(v))]

= [X + 1n,2diag(v) − B(X) − 1n,2diag(v)]

= [X − B(X)]

= π (X).

Proposition 4. π is the canonical projection.

Proof. It is sufficient to show that π is idempotent onto equiv-
alence classes, π (π (X)) = π (X). For π (X) = [X̃] and (X − B(X))
 =
U�V
, representative X̃ = (X − B(X))U�−1 has zero mean over
rows, B(X̃) = 0, and X̃
 = �−1U
U�V
 = V
, which at most ro-
tates and/or reflects the shape after LA standardization informed
by the thin SVD V
 = ŨI2Ṽ
. Consequently, π (π (X)) = [X̃Ũ] = [X̃] =
π (X) .

Proposition 2 motivates an alternative interpretation of π as
a GL2 scale invariance, π (XM) = [X̃]. Intuitively, π (X) “standard-
izes” the discretized shape X such that X̃ is as circular as possible.
Figure 2 depicts a set of example transformations between these
two discrete representations for a collection of wind turbine air-
foil shapes. Proposition 2 together with Proposition 3 asserts the
sought affine invariance properties of a non-linear mapping (the
thin SVD from one discrete shape to the next is computed by an
iterative procedure which is, in general, non-linear over a space
of changing matrices) onto the Grassmannian, per Proposition 1.
With Propositions 1 and 4, we can propose the parametrization of
a section through Rn×2

∗ using representative elements X̃ to build a
submanifold. Consequently, we can define a separable shape ten-

Figure 3: A simplified visualization of five individual projections π i

(black arrows) from elements in R2×1
∗ (black dots) onto representative

elements of the upper semicircle (blue circles). Elements of G(2, 1) are
shown as dashed lines. A constant section of the fiber bundle (a
submanifold of R2×1

∗ ) is shown as the blue curve, with five (uniformly
sampled) elements as coincident dots.

sor parametrization for discrete shapes,

X(t, �) = (π−1 ◦ [X̃])(t, �) = X̃(t)M(�). (5)

In this formalism, π−1 is the right inverse of π parametrized
by (t, �) ∈ T × L ⊆ Rr+4. This parameter domain will be inferred
from data-driven pairs {[X̃k], Mk} ⊂ G(n, 2) × GL2 given by the thin
SVD of discrete shapes, {Xk}. In practice, M(�) could be expressed
for design as the composition of a fixed nominal scaling with
a parametrized affine deformation—e.g., M(�) = ML4(�) possibly
with translations where L4(�) is defined in (1) and M is some fixed
nominal scaling like an average. Figure 3 shows a simplified vi-
sual analogue of this approach for a constant average scale fac-
tor M—we further elaborate on the ability to average over GL2 via
separability in the next section. The parametrization of the Grass-
mannian element [X̃](t) is inferred from data-driven methods that
are also discussed in later sections. We note that the dimension of
t is restricted by the intrinsic dimensionality of G(n, 2) such that r
≤ 2(n − 2) but is practically chosen to be much smaller.

The utility of the representation in (5) is the separable form of
the airfoil representation such that the effects of changing t are
separate from the effects of changing �. The lingering question
is: Given a database of discrete airfoils {Xk}, how can we infer pa-
rameter distributions of (t, �)? Alternatively, how should we de-
fine T × L for subsequent design tasks? The key will be utiliz-
ing data-driven approaches involving the underlying Riemannian
geometry—described in the sections to follow.

2.2.2. Mean scales of random airfoils
When considering an “ensemble” of airfoil shapes {Xk}, an av-
erage notion of scale can be used to remove the dependencies
on M(�). For example, we could define the constant extrinsic es-
timate M = (1/N)

∑N
k=1 M̃k , where M̃k is computed as in (2) for

the corresponding Xk. Assuming these airfoils implicitly define
some distribution over L, this offers a notion of “average scale”
for parametrizing a “local section of the fiber bundle” through “to-
tal space” Rn×2

∗ as (π−1 ◦ [X̃])(t; M) (Grey, 2019). Figure 3 depicts a
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simplified visual analogue for this choice of constant scaling—
represented by the blue curve.

When designed or inferred affine deformation subgroups, or
arbitrary parametrizations such as (1), are combined with trans-
lations, they can then be applied independently to X̃(t)M as
a systematic design schema. As an aerodynamic interpreta-
tion, for unknown domain L weighted by unknown probabil-
ity measure ρ, order-dependent compositions of camber, chord,
twist, and/or thickness deformations can be independently ap-
plied to Monte Carlo approximations of average-scale shapes,
X̃(t)M ≈ ∫

L X̃(t)M(�)dρ(�) = X̃(t)
∫
L M(�)dρ(�). The challenge is en-

suring that M ∈ GL2 and that M does not arbitrarily inflate aver-
age length scales of the shape—i.e., M can result in an inflated
determinant. This may require control through additional non-
linear transformations (e.g., a set of shape constraints) applied to
X̃(t)M by the shape designer. Alternatively, we could pose an in-
trinsic mean scale over GL2. In either case, the ability to average
scales {M̃k}—or separately compute higher order moments of im-
portant and highly sensitive scale variations over alternative met-
ric spaces—is enabled by the separability in (5).

2.2.3. Equivalent polar decomposition
We next develop an alternative method for mapping discrete air-
foil shapes to the Grassmannian based on a rotation-invariant
polar decomposition. We denote the resulting product manifold
of shapes as G(n, 2) × S2

++, where S2
++ denotes the set of 2 × 2

symmetric positive definite (SPD) matrices. First, we define an
equivalence relationship X̃ ∼O X̃O for all orthogonal 2 × 2 ma-
trices O ∈ O(2) such that [X]O = {

A ∈ Rn×2
∗ : A ∼O X

}
. Taking the

polar decomposition of the linear transformation as M = P2R2, we
have [X̃M]O = [X̃P2R2]O = [X̃P2]O. Thus, we can parametrize a set of
rotation/reflection-invariant shapes as X̃(t)P(�) for all P(�) ∈ S2

++.
That is, we retain the scale variations of shapes over SPD matri-
ces and “divide out” deformations resulting in rotations and re-
flections.

Given a discrete shape X and its corresponding thin SVD (X −
B(X))
 = U�V
, the polar decomposition becomes (X − B(X))
 = PR
such that P = U�U
 is unique and R = UV
. Given V as an n × 2
rectangular matrix with orthonormal columns and U orthogonal
implies that RR
 = I2. Moreover, P−1 = U�−1U
 is SPD. Hence, X̃ =
(X − B(X))P−1 defines an equivalent normalization of scale,

X̃
X̃ = P−1(X − B(X))
(X − B(X))P−1

= P−1(PR)(R
P)P−1

= (P−1P)(PP−1)

= I2.

Equivalently, X̃ = R
 = VU
, which rotates/reflects the original
non-unique LA-standardized shape V back into the original view
by U
.

For an ensemble of shapes {Xk}, we can compute the cor-
responding Pk from the approximated thin SVD and use
the data-driven pairs to construct a submanifold from
{[X̃k], Pk} ⊂ G(n, 2) × S2

++—i.e., a set of rotation/reflection-
invariant subgroups of discrete shapes. The separable form
of rotation/reflection-invariant physical airfoils becomes

X(t, �) = (π−1 ◦ [X̃])(t, �) = X̃(t)P(�) (6)

for parameters (t, �) ∈ T × P ⊆ Rr+3. Notice also that P(�) serves
to parametrize the eigenspaces of the landmark sample covari-
ance, i.e., (X − B(X))
(X − B(X)) = U�U
 = P. In other words,

parametrizing linear scale variations in the shape is equivalent to
parametrizing the sample covariance of landmarks, establishing
the utility of examining and parametrizing the range of U.

2.2.4. Convergence to discrete representatives
The interpretation and use of the Grassmannian for the pur-
pose of describing a topology of discrete shapes is a rela-
tively unique application of the manifold. The motivation stems
from the application-driven need for separable representations
to study or systematically control distinct affine deformations
of known physical importance. There are concerns about how
this treatment of discrete shapes may change when subject to
reparametrizations as diffeomorphisms, i.e., ξ : I → I defining
new landmarks xi = c(ξ (si )) that constitute the transposed rows of
X. Modern definitions of shape spaces (Michor & Mumford, 2006;
Welker, 2021) are typically defined modulo such diffeomorphisms,
and alternative frameworks (Dogan et al., 2015; Joshi et al., 2007;
Klassen et al., 2004) take advantage of a “pre-shape space” with
“square root velocity functions”, inducing a notion of distance be-
tween shapes.

In shape design, ξ is often defined in an effort to best identify se-
quences (xi ) that are distributed along the arc-length of the shape
with increased concentration around regions of high curvature or
are distributed uniformly with high resolution (e.g., n ≥ 1000 in air-
foil design) to improve meshing in a flow solver. We propose fixing
ξ such that it induces a specific distribution over chosen parame-
ter s to generate corresponding landmark refinements, X ∈ Rn×2

∗ .
Data sets of discrete shapes rarely share a common choice of

generating landmark distribution, particularly if the shapes are
gathered from multiple sources. Further, the number of land-
marks in the discrete shapes nc may vary across the data set. We
consider a simple “preprocessing” of data before working with ten-
sor representations. This preprocessing proceeds as follows. Given
landmark data (xi ), we first compute normalized cumulative Eu-
clidean lengths:

si =

⎧⎪⎨
⎪⎩

0, i = 1∑i−1
k=1 ‖xk+1 − xk‖2

/∑nc−1
k=1 ‖xk+1 − xk‖2, i = 2, . . . , nc.

(7)

We then interpolate the entries of (xi ) over ξ (si) to construct a con-
tinuous representation ĉ(s) as an approximation. Finally, we gen-
erate a fixed “n-refinement” X ∈ Rn×2

∗ as n (typically greater than
nc) landmarks generated by interpolations and LA standardize the
n-refinement to produce X̃ ∈ Rn×2

∗ . This procedure also offers con-
trol over the “landmark gauge”, hn = max

k∈{1,...,n−1}
{‖xk+1 − xk‖2}, of the

n-refinement for subsequent meshing and simulation. This pre-
processing motivates the following result:

Lemma 1. Given sparse data (xi )
nc
i=1 from assumed c ∈ C4(I ), n-

refinements X ∈ Rn×2
∗ generated by cubic splines of (xi )

nc
i=1 with

fixed reparametrization ξ converge to elements [X̃] ∈ G(n, 2) as
O(h4

nc
) where hnc = max

k∈{1,...,nc−1}
|sk+1 − sk| is the gauge of an arc-length

parametrization.

Proof. By the polar decomposition (X − B(X))
 = PR, P is unique
and thus X̃ = R
 = (X − B(X))P−1 is unique, provided X is full rank,
which is true by assumption. Consequently, [X̃] = [R
] is unique.

In the most general case, an interpolation c̃ must be evalu-
ated over an appropriately weighted domain to maintain a cor-
respondence of landmarks consistent with a fixed reparametriza-
tion ξ : I → I over arc-lengths s ∈ I. Otherwise, inconsistent land-
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marks are encoded in the rows of the n-refinement. We argue con-
vergence over the worst-case error across rows of X computed
with ĉ = c̃ ◦ ξ , necessitating a choice and/or construction of fixed
ξ with pre-image as arc-lengths s ∈ I. We define

‖e‖∞,2 = max
s

{‖e(s)‖2 : s ∈ I}

as the “worst-case” Euclidean norm over any row encoded in a
corresponding matrix. For fixed ξ and hnc as the gauge of the nc-
mesh, it follows that the worst-case row converges for decreasing
hnc by applying results from Birkhoff and De Boor (1964; sharpened
by Hall & Meyer, 1976), asserting

‖ĉ − c‖∞,2 ≤ K4h4
nc

which bounds an equivalent matrix norm applied to a corre-
sponding difference in n-refinements. The aforementioned result
derives constant K4 which depends on the largest fourth deriva-
tives of the component functions of c.

We experiment with the common CST representation of airfoils
to generate 100 random airfoil shapes according to a cosine do-
main distribution (Chebyshev nodes), resulting in a non-uniform
arc-length distribution of landmarks. The cosine distributed land-
marks are a common choice for airfoil designers because land-
marks concentrate around the “leading edge” and “trailing edge”
features of an airfoil; in this case, it reflects an intuitive choice of
non-uniform landmark distribution. The CST representation uti-
lizes 18 total coefficients (nine upper surface coefficients and nine
lower surface coefficients), each uniformly sampled over [0,0.45].
However, the CST shapes are represented by a partition into upper
and lower surface thus potentially compromising the assumed
differentiability. Moreover, in general, we often do not have true
arc-lengths along the shape as data. Instead, we supplement by
using (7) as a parametrization of spline(s) with corresponding
landmark gauge. We numerically study the effects of abusing the
underlying assumptions of the theory to demonstrate empirically
that our necessary preprocessing of shapes remains convergent.

Given a known CST shape and an appropriate (design-
informed) sampling scheme, we compute a refinement at n =
10 000, defining LA-standardized shape X̃∗ with corresponding
cumulative Euclidean lengths (s∗

i )n
i=1 inferred from X∗ (prior to

LA standardization). Then, we sparsely resample the CST repre-
sentation with the same sampling scheme for nc ≤ n and pro-
vide the sparse landmarks to a cubic spline interpolation routine
parametrized over sparse nc using (7). The spline approximation
is then used to generate LA standardized refinements X̃ up to the
corresponding n = 10 000 according to ξ (s∗

i )—e.g., ξ is the iden-
tity for the planar spline built from landmark entries over (si )

nc
i=1,

while alternative splines may utilize ξ as a piecewise cubic Her-
mite interpolating polynomial (PCHIP) such that s̃i = ξ (si ) corre-
spond to (10) for the same nc-mesh. The nature of the spline inter-
polation over cumulative Euclidean lengths as an approximation
induces an error that manifests as a Euclidean shape distance,
‖X − X∗‖∞,2 = max

k∈{1,...,n}
{‖xk − x∗

k‖2}, or as the sum of principal angles

between n-refinement [X̃] and [X̃∗] as a distance over the Grass-
mannian, dG(n,2)([X̃], [X̃∗]). Evidence is depicted in Fig. 4.

Increasing nc landmarks with reduced landmark gauge pro-
vided as input data improve accuracy in the separable tensor rep-
resentations. The observed order of convergence—specifically for
the chosen random CST airfoils as a particularly relevant class of
shapes—to known representative elements on the Grassmannian
is reduced from the result of the Lemma 1. However, we observe

Figure 4: Convergence of n = 10 000 refinements X and X̃, generated by
planar splines reparametrized over (7), given nc landmarks as data with
corresponding landmark gauge hnc . Shaded regions represent a max-min
envelope over all 100 random CST airfoils. Colored curves represent the
average Euclidean shape distance and Grassmannian distance (sum of
principal angles) between interpolated refinements and true
refinements over all random shapes. The dashed black curve depicts the
observed quadratic convergence.

that the preprocessing procedure still offers a relatively fast order
of convergence over a class of relevant shapes.

2.2.5. Shortcomings
The proposed separable representations (5) and (6) are not with-
out drawbacks. In particular, physically relevant shapes c are non-
intersecting, with the possible exception of closed curves, which
necessarily coincide at the endpoints, i.e., embeddings (Welker,
2021). Our current formalism could violate this. Specifically, the
discrete separable representations (π−1 ◦ [X̃])(t, ·) can generate
self-intersections in continuous reconstructions for large changes
in parameters t. We mitigate these concerns by preventing extrap-
olation beyond embeddings (implicit to the data) using a numer-
ical routine to check for a piecewise linear intersection condition
(accurate for sufficiently large n). We hypothesize that constrain-
ing against significant extrapolation, with an improved notion of
distance, beyond a set of discrete non-intersecting shapes as data
is sufficient to protect against generating self-intersections—this
is supplemented by empirical evidence. Future work will focus
on improved constraints or continuous analogues avoiding self-
intersection to explicitly constrain to a set of embedded curves.

2.3. Continuous analogues and comparisons
We unpack an interpretation of the LA standardized shapes as
they relate to orthogonal polynomials. Thus extending discrete
representations to continuous forms. We conclude with compar-
isons to alternative AI/ML frameworks for generative modeling of
discrete representatives. These discussions set the stage for future
work and possible numerical comparisons.

We explore building continuous analogues from the discrete
shapes by approximating a so-called quasimatrix—i.e., a 2D array
that is discrete along one dimension and continuous along the
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other (Townsend & Trefethen, 2015). The basic idea is to explore
a procedure for computing orthogonal functions given two dis-
cretizations (one per column) encoded in the rows of V. Specifi-
cally, we seek interpolations for the columns of the LA standard-
ized shape V = X̃ (see proof of Proposition 4) such that

(X − B(X))(X − B(X))
v j = σ 2
j v j, j = 1, 2, (8)

where σ 1, σ 2 are the diagonal entries of � in (2). In this interpreta-
tion, (8) is a discrete analogue of the Fredholm integral equation

∫
I

k〈c,c〉(s′, s)vj (s
′ )dμ(s′ ) = σ 2

j v j (s) (9)

for some measure μ.
We present (8) to motivate an interpretation of the columns

of V as they relate to (9). In this interpretation, the columns of
V—v j for j = 1, 2—represent discretizations of two L2(I ) orthonor-
mal eigenfunctions vj(si) for si ∈ I with ordering s1 < s2 < … < sn.
These eigenfunctions constitute coordinate functions for an LA-
standardized planar curve c̃(s) = (v1(s), v2(s)). The Mercer kernel
k〈c,c〉 is the Euclidean inner product of the centered planar curve
with itself, akin to entries of a Gram matrix but distinct from land-
mark sample covariance. This choice is consistent with the “A =
0” metric discussed in supporting work (Joshi et al., 2007; Michor &
Mumford, 2006; Schulz, 2014). Although this choice of metric ad-
mits a pathology in the continuous framework (Michor & Mum-
ford, 2006), it may still be worthwhile to consider in a discrete set-
ting (Joshi et al., 2007; Schulz, 2014). This interpretation establishes
the utility of examining and parametrizing the range of V. Addi-
tionally, this interpretation motivates how we may modify our im-
plicit choice of kernel and/or shape metric for future applications.

Next, we inform continuous reconstructions using interpola-
tion of discrete data while retaining the desired separability in
deformations. To begin, we compute V via the SVD of centered X.
Then, we consider the normalized cumulative Euclidean length
along the discrete curve V = X̃ = (x̃1, . . . , x̃n )
, over which we will
construct our interpolation,

s̃i =

⎧⎪⎨
⎪⎩

0, i = 1∑i−1
k=1 ‖x̃k+1 − x̃k‖2

/∑n−1
k=1 ‖x̃k+1 − x̃k‖2, i = 2, . . . , n.

(10)

This results in pairs {(s̃i, vi j )} for j = 1, 2, where vij is the ij entry of
V. We can construct Barycentric Lagrange interpolation over these
data pairs, defined by

vj (s̃) =
n∑

i=1

wi

s̃ − s̃i
vi j

/
n∑

i=1

wi

s̃ − s̃i
, (11)

where weights are given by wi = 1/
∏

k �= i(s̃i − s̃k ) for all i = 1,
…, n (Berrut & Trefethen, 2004; Higham, 2004). Alternatively,
we could employ piecewise interpolating splines with condi-
tions designed for improved “fairness” (Sapidis, 1994) to build the
two curves. Alternative interpolations include regularized cubic
splines (clamped, natural, or periodic), PCHIP splines, B-splines,
non-uniform rational basis splines, Hicks–Henne bump functions,
or radial basis functions. The results, in any case, are two func-
tions v1(s̃) and v2(s̃), that interpolate pairs {(s̃i, vi j )} for all i = 1,
…, n with j = 1 or j = 2, respectively. Concatenating (v1( · ),
v2( · )) into the columns of V( · ), the interpolations defining
V( · ) are no longer necessarily orthogonal but retain some nice
(often subjective, yet prescriptive) design characteristics. However,
despite the choices defining the designed continuous reconstruc-
tion V( · ), the two interpolations can be evaluated uniformly to in-

duce a fixed reparametrized integral measure dμ̃(s̃) = ds̃ along the
curve, which can then be projected onto a space of orthonormal
Legendre polynomials (in this case, the arbitrary closed interval I
is reparametrized to [ − 1, 1] in contrast to the choice of [0,1] in 10)
via a QR-decomposition of the prescribed ∞ × 2 quasimatrix (Tre-
fethen, 2010)—i.e., V( · ) = Q( · )R for Q an ∞ × 2 quasimatrix and
R a 2 × 2 upper triangular. The quasimatrix Q( · ) from the QR-
decomposition becomes the continuous analogue that satisfies
the orthonormal constraint of the representative discrete shape
X̃, which is defined by a relevant choice of LA standardized land-
mark data interpolation, V( · ).

If desired, the Legendre polynomials as columns of Q( · )—with
sufficient differentiability over s̃—can be used to compute unit
tangent and normal vectors of the airfoil shapes as well as cur-
vature after right multiplication with corresponding scale varia-
tions. The continuous representation can then be expressed as

C(s̃; a, �) = Q(s̃; a)M(�) (12)

or

C(s̃; a, �) = Q(s̃; a)P(�) (13)

parametrized by a vector of polynomial coefficients a and scale
(length) variations � over the respective choice of manifold, gen-
erally for M(�) ∈ GL2 or specifically for P(�) ∈ S2

++. In other words,
an interpolation approximating the continuous reconstruction
of the curve is c̃(s̃; a, �) = (q1(s̃; a1, �), q2(s̃; a2, �)), where qi are
parametrized linear combinations (over variations in �) of two
orthogonal Legendre polynomials constituting the columns of
Q( · ) with coefficients a = (a1, a2) over the continuous dimension
of C(·; a, �). In this context, (a1, a2) represents a partition of the
full set of coefficients a into corresponding component functions
(q1, q2) of the curve.

2.3.1. AI/ML comparisons and interpretations
We consider alternative approaches that leverage AI-based
tools for dimension reduction and generative modeling, such
as autoencoders or variational autoencoders (VAEs; Kingma &
Welling, 2013; Kramer, 1991) and generative adversarial networks
(GANs; Goodfellow et al., 2020). Autoencoder models learn non-
linear reduced representations by mapping input data through a
so-called information bottleneck (i.e., the latent space) before re-
constructing it. The basic architecture of these models is the com-
position of an encoder πenc with a decoder πdec, with each compo-
nent part comprised of multiple neural processing layers. Given a
training data set {Xk}, we fit the model parameters w ∈ RD by min-
imizing some reconstruction loss

minimize
w∈RD

∑
k

‖Xk − (πdec ◦ πenc)(Xk; w)‖. (14)

VAEs expand on traditional autoencoders by encouraging desir-
able distributions on the latent variables by adding a term such
as the Kullback–Leibler divergence KL(πenc(Xk; w)||ρ(z)), where ρ(z)
is the target latent space distribution.

GANs are similarly comprised of two neural network mod-
els; however, unlike with autoencoders, these models are trained
against each other. The generator network πgen maps random la-
tent vectors z ∼ ρ to outputs in the space of the training data. The
discriminator network πdisc maps data to [0,1] corresponding to a
probabilistic prediction that the input data came from the genera-
tor or the training data. The network parameters are fit according
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to a minimax optimization of the training data:

minimize
wgen∈RDgen

maximize
wdisc∈RDdisc

∑
k

log πdisc(Xk; wdisc )

+
∑

k

log
(
1 − πdisc(πgen(Xk; wgen); wdisc )

)
. (15)

This optimization ultimately encourages the generator to draw
plausible samples from the training data distribution. The gen-
erator from GANs and the decoder from VAEs can both be used to
map low-dimensional, latent space parametrizations to new real-
izations. Both methods have been applied to the design of airfoil
shapes (Achour et al., 2020; Chen et al., 2019; Wang et al., 2022; Yang
et al., 2022; Yonekura & Suzuki, 2021).

In practice, we seek a robust and interpretable parametrization
for the decoder/generator model to act upon. For VAEs, this corre-
sponds to πenc being surjective onto the latent space. However, this
property can be difficult to guarantee in general. In contrast, the
proposed tensor representations are supported by Propositions 1–
4 and Lemma 1. The implications of ambiguous properties on the
VAE latent space are ill-posed constructions and parametrizations
that are highly dependent on the stochastic training process for
the model. Consequently, the resulting parametrizations are of-
ten overfit to the specific data types and sets used during training.
Although the targeted loss terms can encourage desirable behav-
ior, these results are not guaranteed. Despite this, geometric inter-
pretations have led to a set of boundary-value problems defined
by the pullback metric (geodesic equations) to offer improved no-
tions of distances between points in latent space (Arvanitidis et al.,
2017). Such innovations and interpretations are crucial in the con-
tinued development of VAEs.

GANs benefit from a well-defined parameter space, as the dis-
tribution over the latent variables is decided prior to network
training. However, it can be difficult to control the relationship be-
tween the latent variables and their resulting shape generations,
leading to poor interpretability and little insight into the intrin-
sic dimension of the shape parametrization. Similar to the VAEs,
the resulting parametrization is heavily influenced by the ran-
domized network initialization and training procedure. Further-
more, although the adversarial training encourages the genera-
tion of quality shapes, issues such as mode collapse and over-
parametrization of the networks may cause the generator to miss
key novel shape designs that drive innovation. Lastly, the com-
putational burden—and the associated energy costs—required to
train such sophisticated models are considerable (Strubell et al.,
2019).

In comparing these approaches to this work, the decoder πdec

from VAEs and the generator πgen from GANs may be consid-
ered as analogues of the right inverse π−1, which constitute a
parametrization over a local section of the fiber bundle (Lee, 2006).
Exploring this connection further, the analogous network latent
spaces are akin to normal coordinates, defined in Lee (2006), over
“parent” matrix manifolds that generate separable shape defor-
mations in our context. These normal coordinates constitute a
set of naturally defined parameters describing general manifold
topologies, as opposed to the obscure latent space emulating a
target distribution.

In Section 2.4, we describe how our principled separable rep-
resentations (5) and (6) offer improved geometric interpretations
with significantly reduced computational cost. In particular, our
principled approach to shape representation takes advantage of
rigorously studied matrix manifolds and linear algebra to avoid
the need for general non-convex optimization and numerical in-

tegration of boundary-value problems when computing geodesics
and distances over latent spaces. We also assert additional geo-
metric interpretations beyond geodesics and distances that en-
able novel deformations of 3D shapes—a means of interpolat-
ing and applying consistent deformations to distinct 2D shapes.
The result is an analytic generative model from a “learned” (data-
driven) manifold of shapes.

2.4. Riemannian interpretations
We formally develop a data-driven framework for parametrizing
elements over topologies of separable shape tensors, which lever-
age an extension of principal component analysis (PCA) to Rie-
mannian manifolds. This requires a pair of fundamental intrin-
sic maps for mapping between a given manifold and a tangent
space at a central element. We also discuss an improved notion
of distance as lengths of geodesic curves over the manifold. Lastly,
we present parallel transport as a method for applying consistent
deformations to different shapes—motivating a novel approach
to deform 3D blades. These interpretations are backed by sec-
tions detailing algorithms to compute all necessary maps over the
presented manifolds.

In Section 2.1, we demonstrated how to define airfoil repre-
sentations that separate important aerodynamic scale variations
from higher order undulations in the shape. The methods for LA
standardization, namely polar decomposition, map discrete airfoil
shapes X to representative elements of the Grassmannian X̃. Here,
we provide a data-driven approach to parametrizing these sepa-
rable shapes that leverages rigorously designed data sets of air-
foil coordinates (UIUC Applied Aerodynamics Group, 2022) and/or
systematically engineered airfoil expansion representations (Kul-
fan, 2008). The goal is to use ensembles of existing, well-designed
shapes {Xk} to construct the separable forms in (5) or (6). To do
so, we perform a statistical analysis of a given ensemble of dis-
crete shapes factored into the separable forms. This constitutes a
data-driven perspective for reparametrizing shapes via separable
tensors.

By introducing separability, we must consider the Riemannian
geometry of G(n, 2) and S2

++, or possibly GL2, to parametrize our
discrete shape space. In general, we consider any as a smooth
manifold M such that the Riemannian manifold is defined as
(M, g) for some choice of metric g that induces an inner product
gp : TpM × TpM → R over the tangent space TpM for some p ∈ M.
Note that in this abstracted sense, p is a representative matrix el-
ement of the smooth manifold, whereas v ∈ TpM are generalized
notions of “directions” in a tangent space at p but are also ulti-
mately represented as matrices.

Building submanifolds from parent matrix manifolds offers
several advantages over alternative approaches, including mod-
ern AI/ML methods discussed previously. This perspective supple-
ments a novel treatment for learning a non-Euclidean manifold of
discrete shapes from data, namely by Propositions 1 and 4. This
supplements a more prudent notion of distance between discrete
shapes and their separable deformations. Shapes in this frame-
work are defined by “explainable” and “interpretable” representa-
tions induced by parent matrix manifolds. That is, there is no ob-
scurity about our explicit parametrizations defining submanifolds
of discrete shapes—an argument which is very difficult to de-
velop in general for alternative frameworks. Moreover, the geome-
try of the parent manifolds is largely understood and supported by
robust theoretical foundations. The advantage is that each
computation involved in defining parameters of the subman-
ifold can be explained using the interpretations of linear al-
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gebra and Riemannian geometry. These explanations and in-
terpretations are transparent and supplement a more pre-
cise critique of potential flaws in previous methods and
applications.

The goal is to use a given ensemble of discrete airfoils to infer
submanifolds of either G(n, 2) × GL2 ⊂ Rn×2

∗ or G(n, 2) × S2
++ ⊂ Rn×2

∗ .
Over the former, parametrizations through GL2 are often pre-
scribed by the design problem under consideration—e.g., using
(1) to enforce structural/regulatory constraints dictating that a
specified airfoil thickness at a given location along a wind tur-
bine blade. In this case, scale variations and rotations are pre-
scribed such that a fixed or constrained M(�) is paired with un-
known t. Hence, the geometry of GL2 is largely inconsequential
for aerodynamic design given explicit definitions of M(�), and only
inferences involving G(n, 2) are required. For G(n, 2) × S2

++, a more
flexible representation of airfoil shapes is offered, independent of
rotations/reflections. This is most useful for more general repre-
sentations of airfoil shapes if scale variations independent of ro-
tations are not prescribed—i.e., unknown (t, �). This insight pro-
vides a blueprint for leveraging different representations of air-
foil shapes. That is, if you understand scale variations (e.g., tradi-
tional blade design), then compute M(�) explicitly and pair it with
inferred statistical properties of [X̃](t) from data projected onto
G(n, 2) to parametrize shape deformations using (5). Otherwise,
attempt to infer statistical properties for pairs of [X̃](t) and P(�)
over G(n, 2) × S2

++, and parametrize shape deformations using (6)
for more generalized airfoil design.

2.4.1. Intrinsic maps
There are two important intrinsic maps of Riemannian manifolds
that are used to parametrize data-driven submanifolds. First, we
require the exponential map Expp : TpM → M that parametrizes
an initial value problem for geodesic trajectories along the re-
spective manifold M beginning at p ∈ M. Specifically, a geodesic
curve beginning at p is parametrized over a direction v ∈ TpM
as γ (t; p, v) = Expp(tv) such that γ (0; p, v) = p. Second, we require
the corresponding inverse Logp : M → TpM which parametrizes
a boundary-value problem given two points connected by a
geodesic trajectory over the respective M. Figure 5a shows an ex-
ample visualization of the Exp and Log maps over a 2-sphere.
Compositions involving these maps with a corresponding basis
in a fixed tangent space TpM define “normal coordinates” of the
manifold (Lee, 2006). We leverage reduced-dimension subspaces
of these normal coordinates to parametrize discrete shape sub-
manifolds from data.

2.4.2. Distances
Distance over a Riemannian manifold (M, g) is defined as the in-
fimum over a set of lengths—i.e., line integrals of the inner prod-
uct of curve velocities induced by g—connecting two points in the
manifold. Per the developments of Lee (2006), this definition of
distance is consistent with that of zero acceleration curves (or
geodesics) over the manifold such that these curves have a length-
minimizing property. Consequently, geodesics induce an intuitive
notion of shortest-distance curves whose lengths inform a metric
over geodesic balls. These geodesic balls are defined as the image
of Exp at a point over an open or closed ball in normal coordinates,
as visualized in Fig. 5c. When restricted to a geodesic ball over the
manifold, these geodesic distances are equivalently represented
by the norm over the image of the Log map (Lee, 2006),

dM : M × M → R+ : (p, z) �→ ‖Logp(z)‖g, (16)

with the norm induced by the metric g at the corresponding
point. In our case, the norm in (16) is the Frobenius norm, induc-
ing dG and dS2++ with corresponding Log for the respective mani-
folds. In our data-driven setting, we assume data is concentrated
within geodesic balls to leverage (16) for computing distances,
given the desire to compute Log and Exp maps that define normal
coordinate charts. However, the assumed restriction to geodesic
balls is more generally extensible by constructing an atlas of
normal coordinate charts using a collection of disjoint tangent
spaces.

2.4.3. Riemannian statistics
We next introduce two algorithms that extend the fundamen-
tal data analysis technique of PCA to Riemannian manifolds as
a so-called PGA (Fletcher et al., 2003; Pennec, 1999). The output of
PGA will inform a parametrization over the Grassmannian G(n, 2),
which defines the higher order perturbations to airfoil shapes. The
basic premise of classical PCA is that, given a set of points as data,
we can determine directions that maximize sample covariance G
of the point set,

argmax
v s.t.v
v=1

v
Gv. (17)

Writing the Lagrangian and solving for the stationarity condition
in the optimization problem implies (G − λI)v = 0 for strictly non-
negative λ. Thus, examining the decreasing ordered pairs (λi, vi )
of eigenvalues and eigenvectors offers a set of directions defin-
ing a basis for a reduced-dimension subspace over which the
covariance-weighted inner product changes the most, on average.

We require two functionalities to extend PCA to Riemannian
manifolds: (i) we must “center on the data” by an appropriate no-
tion of an intrinsic mean over the manifold; then, (ii) we must
“identify important directions” over the manifold that form an or-
thogonal frame for a submanifold . Figure 5b offers a useful visual
analogue for the case of a sphere. For completeness, we present
the two algorithms in detail as Algorithms 1 and 2. Algorithm 1
computes the intrinsic (Karcher or Fréchet) mean by computing
the mean of the data in the tangent space of an iterative approx-
imation restricted over the manifold. Algorithm 2 computes the
corresponding PGA directions in the central tangent space using
the SVD of the data lifted to the tangent space at the intrinsic
mean computed from the previous algorithm. Together, these al-
gorithms provide a framework for parametrizing separable shape
tensors. Additional motivation and development for these algo-
rithms can be found in Pennec (1999), Fletcher et al. (2003), and
Fletcher and Joshi (2004).

In Algorithm 1, the choice of norm ‖ · ‖ over the tangent
space in the case of matrix manifolds is taken as the Frobe-
nius norm—induced by the choice of ambient inner product,
tr(A
B). For Algorithm 2 applied to matrix manifolds, Step 2 re-
quires vec : Rn×2 → R2n, which stacks the columns of the ma-
trices such that the kth columns of �N are replaced with
vec(Logp0

(pk )). This does not modify the induced metric implicit
to Algorithm 2—which maximizes an approximated notion of a
covariance-weighted inner product (Fletcher et al., 2003)—since
tr(A
B) = vec(A)
vec(B). Consequently, the left singular vectors
of �N still correspond to principal directions in Tp0M that max-
imize sample covariance in normal coordinates proportional to
�


N�N. When mapping forward through these important direc-
tions, which are defined by the left singular vectors as columns
of Ur to parametrize a submanifold, we must reshape once more
prior to composition with Expp0

. Defining vec−1 : R2n → Rn×2 such
that vec−1(vec(A)) = A, the r-dimensional matrix submanifold of
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Figure 5: Visualizations of data-driven methods over the 2-sphere. (a) A visualization of the exponential ExpA(�) = B and inverse exponential LogA(B) =
� maps over the sphere for points A, B ∈ M and corresponding tangent vector � ∈ TAM. (b) Principal geodesic analysis (PGA) over the two-sphere
embedded in R3. The large black dot represents the intrinsic mean of the blue dots, which are provided as data. The black arrows represent PGA
directions in the central tangent space at the intrinsic mean. The black lines represent geodesics along the PGA directions. (c) A geodesic ellipse and
grid (dashed boundary) lifted to the normal coordinate neighborhood (light blue region with solid boundary). Smaller black dots are new samples
generated uniformly over the submanifold spanned by both directions—constituting a generative model.

Algorithm 1. Intrinsic mean over Riemannian manifold.

Require: Data points {pk}N
k=1 ∈ M and chosen convergence threshold ε >

0
1: Set p

′ = p1 and initialize v such that ‖v‖ > ε

2: while ‖v‖ ≥ ε do
3: v = 1

N

∑N
k=1 Logp′ (pk )

4: p′ = Expp′ (v)
5: end while

return p0 = p′ ∈ M

Algorithm 2. PGA directions.

Require: Data points {pk}N
k=1 ∈ M, chosen convergence threshold ε > 0,

and dimensionality r
1: Compute p0 according to Algorithm 1 with parameter ε

2: Compute matrix

�N = 1√
N−1

(
Logp0

(p1 ), . . . , Logp0
(pN )

)
3: Compute reduced SVD, up to r ≤ dim(M),

�N = Ur�rV

r

4: Compute normal coordinates in the new basis,
T = U


r �N = �rV

r

return Ur with columns as the r directions in Tp0M and T as the
matrix of principal normal coordinates

interest becomes

{p ∈ M : p = Expp0
(vec−1(Urt))} (18)

for a vector of PGA coefficients t ∈ Rr and basis Ur ∈
R2n×r

∗ . Once again, despite the composition with reshap-
ing, the choice of ambient inner product remains con-
sistent for v = Urt, such that tr(vec−1(v)
vec−1(v)) =
v
v.

2.4.4. Consistent deformations
To supplement 3D design for blade or wing shapes, we will re-
quire parallel translation to facilitate the mapping of consistent
perturbations to different elements of the manifold. Given p, z ∈
M, parallel translation acts as an isometry parametrizing zero-
acceleration transport of tangent vectors over geodesic curves in
the manifold, τp‖z : TpM → TzM. Note that parallel translation is
unique and exists over any curve in M. However, if defined over
unique geodesic curves within a normal neighborhood, parallel
translation has the advantage of not requiring any memory of
the curve. That is, we can always reconstruct the original tan-
gent vectors by “back-tracing” parallel translation over the choice
of unique geodesics that are intrinsic to the manifold. This alle-
viates the computational burden by taking advantage of tensor
parametrizations that are consistent with geodesic trajectories
but do not require the otherwise burdensome numerical integra-
tion of the dynamics (Arvanitidis et al., 2017) for the two special
cases of Grassmannian and SPD manifolds.

The mapping τ p�z preserves the notion of direction within a tan-
gent space such that

gp(u, v) = gz(τp‖z(u), τp‖z(v)) (19)

for u, v ∈ TpM and p, z ∈ M. Consequently, given a basis defined at
a particular point, we can map directions in the span of this ba-
sis to new tangent spaces along geodesics parametrized by end-
points, i.e., τ p�z( · ) = τ�( · ; p, z). These connected directions have
equivalent inner products taken in the central tangent space, con-
stituting the closest analogue of a consistent parameter direction
over distinct tangent spaces.

Applying this process to airfoil shapes, we can use Algorithm 1
to identify the intrinsic mean shape p0 and its central tangent
space Tp0M. Next, using Algorithm 2, we compute a basis in
this tangent space describing dominant perturbations about this
mean shape. Given a particular deformation to the mean shape
Urt ∈ Tp0M with coefficients t, we can then consistently map these
deformations to new shapes via τ‖(Urt; p0, p). Such a procedure
preserves the original notion of direction in the parametrization
at Tp0M but assigns the deformation to the shape p. The result
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is our definition of “consistent deformations” of distinct shapes—
specifically, consistency in the inner product at the intrinsic mean.

2.4.5. Geometry of Riemannian product manifolds
Motivated by the separability of our shape parametrizations from
(6), we explore the concept of a product manifold. Given (M1, g1)
and (M2, g2 ), we consider the topology of a Riemannian product
manifold (M1 × M2, g1 + g2). Under this construction, we take ad-
vantage of the ability to parametrize geodesics in a componen-
twise manner. Letting Expi denote the exponential map for the
manifold Mi, (Exp1,p(tv), Exp2,z(tu)) is the corresponding geodesic
over (M1 × M2, g1 + g2) for t ∈ R. This allows us to independently
formulate the necessary intrinsic maps over distinct manifolds
and combine these computations in a componentwise manner
to build shapes using our separable representations. Given this
convenience, the general submanifold of discrete shapes assumes
the defined product manifold topology over G(n, 2) × S2

++ with
the canonical ambient metric and affine-invariant metric, respec-
tively.

2.4.6. Geometry of orthogonal matrices: G(n, 2)
Following the developments of Edelman et al. (1998), Gallivan et al.
(2003), and Bendokat et al. (2020), we present algorithmic routines
for the computation of the Exp and Log maps over G(n, 2) for com-
pleteness (we assume the Riemannian metric tr(A
B) inherited
from embedding space; Absil et al., 2008).

Algorithm 3. Thm. 2.3 (Edelman et al., 1998), Grassmann exponential
with Stiefel representatives.

Require: Representative matrix X̃ ∈ Rn×2
∗ with orthonormal columns and

direction � ∈ T[X̃]G(n, 2) ⊂ Rn×2
∗

1: Compute thin SVD,
� = U���V


�

2: Compute, with cos ( · ) and sin ( · ) acting only on diagonal entries,
Ỹ = X̃V� cos(�� )V


� + U� sin(�� )V

�

return [Ỹ] = Exp[X̃] (�) ∈ G(n, 2)

First, we present the exponential map as Algorithm 3. Lever-
aging this algorithm, we can compute Exp[X̃] (�) to take a unit
step in the direction � from the equivalence class [X̃]. As a
reparametrization, we can arbitrarily scale distances along this
geodesic via the one-parameter subgroup γ (t; [X̃],�) = Exp[X̃] (t�)
for all t ∈ R, identifying the base point as γ (0; [X̃],�) = [X̃]. For gen-
eral G(n, q), this algorithm has computational complexity O(nq2)
by virtue of a generalized SVD as the only iterative procedure (Gal-
livan et al., 2003). In our fixed ambient spatial dimension q = 2,
we anticipate linear scaling of the computational burden with
increasing n (Bendokat et al., 2020; Gallivan et al., 2003; Zimmer-
mann, 2019).

Next, we present Algorithm 4 for computing the inverse expo-
nential map (Absil et al., 2004; Bendokat et al., 2020; Gallivan et al.,
2003; Zimmermann, 2019). In general, this algorithm has compu-
tational complexity O(nq2), which again implies linear complex-
ity with landmark refinements for fixed ambient spatial dimen-
sion q = 2. However, treating this map simply as a matrix trans-
formation is subject to Exp[X̃] (Log[X̃] (Ỹ )) �= Ỹ with mismatch up
to rotation (Bendokat et al., 2020; Zimmermann, 2019). The mis-
matched matrix still corresponds to the same [Ỹ] = [Ŷ] such that
Ỹ ∼ Ŷ; however, it lacks the desirable property that Exp[X̃] ◦ Log[X̃]

returns the same element of the equivalence class up to re-

flections. This computational inconvenience is corrected by Pro-
crustes matching (Bendokat et al., 2020; Zimmermann, 2019). This
concept comes into play for the purposes of 3D blade and wing
cross-section interpolation, where a sequence of representative
matrices of the Grassmannian intended for interpolation can be
mismatched up to rotation, requiring Procrustes analysis to align.
This is discussed further in Section 2.5. Despite this correction,
there remains a possibility that the shape is reflected in the com-
position Exp[X̃] ◦ Log[X̃]. Additional checks or constraints may be
required for detecting such a condition, depending on the data.

Algorithm 4. Alg. 5.3 (Bendokat et al., 2020), Alg. 10 (Zimmermann, 2019),
and Grassmann logarithm with Stiefel representatives.

Require: Representative matrices X̃, Ỹ ∈ Rn×2
∗ with orthonormal columns

1: Take the matrix product, Q̃ = X̃
Ỹ
2: Define orthogonal projection (to normal space),

π⊥
n = (In − X̃X̃
 )

3: Compute thin SVD,
π⊥

n (ỸQ̃−1 ) = U���V

�

4: Compute, with arctan(·) acting only on diagonal entries,
� = U� arctan(�� )V


�

return � = Log[X̃] ([Ỹ]) ∈ T[X̃]G(n, 2)

A modified version of Algorithm 4 such that Exp[X̃] (Log[X̃] (Ỹ )) =
Ỹ up to reflections can be found in Zimmermann (2019) and Ben-
dokat et al. (2020) but is omitted from this presentation for brevity.
The motivation here is to highlight the relatively inexpensive com-
putations of these intrinsic mappings—linear growth in compu-
tational complexity for refined shapes in fixed ambient spatial
dimension—for the purposes of informing a statistical analysis
and separable representation of shapes. The modified version of
Algorithm 4 requires two SVD computations but remedies the rep-
resentative rotational mismatch and, as an added benefit, avoids
the calculation of Q̃−1 (Zimmermann, 2019).

Algorithm 5. Thm. 2.4 (Edelman et al., 1998) and Grassmann parallel
transport along geodesic with Stiefel representatives.

Require: Representative matrix X̃ ∈ Rn×2
∗ with orthonormal columns and

directions �, � ∈ T[X̃]G(n, 2) ⊂ Rn×2
∗ , and scalar t ∈ R

1: Compute thin SVD,
� = U���V


�

2: Compute parallel transport operator, with cos ( · ) and sin ( · ) acting
only on diagonal entries,

τ‖ (t; [X̃], �) = (
X̃V� U�

) (
− sin(t�� )
cos(t�� )

)
U


� + In − U�U

�

return �(t; [X̃], �) = τ‖ (t; [X̃], �)�

Lastly, we present the algorithm for parallel translation (Edel-
man et al., 1998). Using Algorithm 5, �(t; [X̃],�) ∈ Tγ (t;[X̃],�)G(n, 2) is
the parallel translation of � along the geodesic a distance scaled
by t emanating from [X̃] in the direction �. Again, a comparable
computational complexity is achieved by only requiring the thin
SVD of the direction �—defining the geodesic γ (t; [X̃],�)—over
which � is parallel translated by the n × n matrix τ‖(t; [X̃],�).

Notice that Algorithm 5 is parametrized by a “point” and a “di-
rection” as opposed to two endpoints, per the development of con-
sistent deformations, τ p�z( · ) = τ�( · ; p, z). Both interpretations are
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valid (within a geodesic ball) because the direction and magnitude
parametrizing the geodesic from p to z (generally) is implied by
Logp(z) ∈ TpM, while the endpoints in Algorithm 5 are implied by
γ (0; [X̃],�) and γ (t; [X̃],�) using Algorithm 3. In our implemen-
tations, the endpoint parametrization is most appropriate, thus
modifying the Grassmannian parallel translation of � ∈ T[X̃]G(n, 2)
to T[Ỹ]G(n, 2), as τ‖(�; [X̃], [Ỹ]) = τ‖(1; [X̃], Log[X̃] ([Ỹ]))� by compos-
ing Algorithm 5 with Algorithm 4.

2.4.7. Geometry of the symmetric space: S2
++

Next, we review the necessary computations over the con-
vex cone of 2 × 2 SPD matrices, S2

++. We follow the de-
velopments of Fletcher and Joshi (2004), Pennec et al. (2006),
and Bonnabel and Sepulchre (2010) for algorithms to compute
Exp and Log maps, while Sra and Hosseini (2015) addition-
ally expound on the computation of parallel transport. More
recent implementations and interpretations are facilitated by
Yair et al. (2019) and Zimmermann (2019). Consistent with the
referenced developments, we assume the affine-invariant met-
ric for all computations over S2

++. For brevity, we reiterate
the presentation of Zimmermann (2019) and note that a con-
sistent yet more systematic implementation is discussed in
Fletcher and Joshi (2004) for the purposes of computing P1/2 and
P−1/2.

Algorithm 6. SPD exponential (Fletcher & Joshi, 2004; Zimmermann,
2019).

Require: Matrix P ∈ S2
++ and direction S ∈ TpS2

++ ∼= Sym(2)
1: D = P1/2exp (P−1/2SP−1/2)P1/2

return D = Expp(S) ∈ S2
++

The exponential map over S2
++ is stated as Algorithm 6. This

algorithm induces the one-parameter subgroup for moving along
geodesics emanating from P in the direction S as a 2 × 2 symmetric
matrix, γ (t; P, S) = ExpP(tS). Note that “exp ” represents the matrix
exponential which is distinct from “Exp,” given by the algorithm
for a particular choice of Riemannian metric.

Algorithm 7. SPD logarithm (Fletcher & Joshi, 2004; Zimmermann, 2019).

Require: Matrices P, D ∈ S2
++

1: S = P1/2log (P−1/2DP−1/2)P1/2

return S = Logp(D) ∈ TpS2
++ ∼= Sym(2)

The inverse exponential map is stated as Algorithm 7. Note that
in this algorithm, “log ” represents the matrix logarithm (distinct
from “Log”).

Finally, parallel translation is given by Algorithm 8. In this algo-
rithm, parallel translation is parametrized by the two endpoints
of the geodesic curve, τ�(S; P, D) = τ P�D(S), consistent with the gen-
eralizations described in Section 2.4.4.

These routines, combined with the Grassmannian routines, of-
fer a complete picture of the necessary computations for learning
a manifold of discrete shapes for 2D and 3D blade design and in-
terpolation. The improved notion of distances between shapes in-
forms more favorable interpolations and distributions for numer-
ical studies and supplements improved shape representations by

Algorithm 8. SPD parallel translation along geodesic (Sra & Hosseini,
2015; Yair et al., 2019).

Require: Matrices P, D ∈ S2
++ and direction S ∈ TpS2

++ ∼= Sym(2)
1: Compute E = (DP−1)1/2

return ESE
 = τ‖ (S; P, D) ∈ TDS2
++

regularizing deformations—i.e., constraining to data-driven sub-
manifolds. Moreover, this approach constitutes a more principled
perspective for learning a submanifold of discrete shapes from
data with reduced computational costs compared to alternative
ML-based methods.

2.5. Grassmannian blade interpolation
We discuss the procedure for applying the framework of separa-
ble shape tensors to interpolate a sequence of 2D shapes into a
3D blade/wing. We also discuss the implications of a “Procrustes
clustering” approach to select best representative matrices from
equivalence classes for interpolation.

The separable shape tensor framework for airfoil representa-
tion has the added benefit of enabling the design of 3D wings and
blades. In the context of wind energy, blade shapes are defined by
a limited number of landmark airfoils located at different blade-
span positions, as well as by profiles of twist, chordal scaling, and
bending. Defining the full blade shape given the relatively small
number of defining airfoil shapes along the blade is a nontriv-
ial problem. Simple interpolation techniques result in undesirable
blade features, such as kinks or dimples, in the regions between
airfoils. Currently, airfoils must be designed as collections or fami-
lies that will interpolate smoothly to construct the blade. The goal
here is to define an interpolation of these shapes—independent
of the prescribed affine deformations—that results in physically
relevant blade definitions. In addition to interpolating between
designed airfoil shapes, we may seek a separable representation
from measured blades and subsequently infer a smoothly vary-
ing set of affine deformations over discrete blade-span positions
corresponding to twist, scaling, and bending profiles of the blade.

2.5.1. Interpolation procedure
Given a sequence of matrices (Xk ) ∈ Rn×2

∗ for k = 1, …, N that
represent landmark airfoil shapes in a wing or turbine blade,
we induce the corresponding sequence of equivalence classes
([X̃k]) ∈ G(n, 2) located at blade-span positions ηk ∈ S ⊂ R from
root to tip. An example of such landmark shapes is depicted by
the red-yellow curves in Fig. 6. We define a piecewise geodesic
path over the Grassmannian to interpolate representative airfoil
shapes from ([X̃k]). This results in a continuous representation of
the 3D blade shape using piecewise geodesic paths over ordered
blade-span positions ηk along a non-linear representative mani-
fold of shapes. In practice, we use piecewise geodesic interpola-
tion γ (t̃; [X̃k], Log[X̃k] ([X̃k+1])) via Algorithms 3 and 4 for all t̃ ∈ [0, 1]
and k = 1, …, N − 1 enumerating the sequence of geodesics inter-
polating between representative shapes over the Grassmannian.
This procedure is also described as Algorithm 2 of Zimmermann
(2019) and is summarized below.

To implement this approach, we must first reconcile differences
in length scales over the piecewise geodesic Grassmannian curve
and the spanwise physical distances between the airfoils within
the blade. We define a monotonic reparametrization to consider a
mapping from the physically relevant blade-span position η ∈ S to
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Figure 6: Example of an IEA 15-MW blade wire-frame (left-hand panel) obtained from interpolation of the solid-color cross-sections (right-hand panel)
omitting the unperturbed circles. Note that consistent perturbations to the shape (right-hand panel) are applied to all of the baseline airfoils in the
blade. Visually, we observe each of the distinct airfoils sampled from distinct classes deformed in a markedly similar manner. Also, note the curved
span axis (bending along η), which is easily accounted for by including planar shapes in R3, then rotating the shapes into a plane with normal tangent
to the span axis.

the corresponding cumulative distance over the Grassmannian, ϕ:
η �→t. In practice, this mapping can be built from a PCHIP of {(ηk,
tk)} as a monotonically increasing function such that

tk =
{

0, k = 1∑k−1
i=1 dG ([X̃i+1], [X̃i]), k = 2, . . . , N.

(20)

Then, within any piecewise interval [tk, tk + 1] = [ϕ(ηk), ϕ(ηk + 1)], we
scale [tk, tk + 1] to [0,1] to build interpolated shapes over the subin-
terval, informing [X̃](ϕ(η)) for all η ∈ [ηk, ηk + 1]. As a three-step pro-
cedure, given any η ∈ S: (i) convert to the appropriate cumulative
Grassmannian distance t = ϕ(η) and identify the corresponding
subinterval, t ∈ [tk, tk + 1]; (ii) scale to a normalized coordinate t̃ =
(ϕ(η) − tk )/(tk+1 − tk ); and (iii) compute Exp[X̃k] (t̃Log[X̃k] ([X̃k+1]) using
the composition of Algorithms 3 and 4. Finally, to map the interpo-
lated shapes over the Grassmannian back to physically relevant
scales, we apply appropriate affine deformations using six regu-
larized splines of data or explicit parametrizations M(η) and b(η):

X(η) = (X̃ ◦ ϕ)(η)M(η) + 1n,2diag(b(η)). (21)

In Section 2.5.2, we discuss the implications of inferring M(η) and
b(η) from measured data (Xk) using splines.

As an example computation, on a laptop (2.4 GHz 8-Core Intel
Core i9 macOS Catalina Memory: 32 GB 2667 MHz DDR4), the in-
terpolation routine with reparametrized shapes according to n =
401, with N = 10 nominal cross-sections as input and a refinement
of 100 cross-sections defining the wire-frame, took approximately
0.04 seconds, on average. The corresponding blade is shown in
Fig. 6, with a resulting structured surface mesh shown in Fig. 7.
Varying refinements up to 1000 new cross-sections defining the
wire-frame took 0.12 seconds, and refinements up to 100 000 new
cross-sections took 14.9 seconds, on average (all else fixed). For
comparison, it often takes longer to read the 10 nominal cross-
sections into memory than it does to run the interpolation routine
with refinements between 100 and 1000 cross-sections. Code and
examples are available at Doronina et al. (2022).

2.5.2. Procrustes clustering
If the affine scale variations are implicitly encoded in the original
data (Xk)—i.e., the sequence of discrete airfoils has already been
appropriately scaled to size and orientation and do not constitute
shapes with fixed orientation and unit-chord—then computations
of the discrete centers of mass bk = 1/nX


k 1n,1 and (M̃k ), using (2)
for (Xk), can be utilized. With data {(ηk, M̃k, bk )}, we construct six
entrywise splines over strictly increasing (ηk), defining M(η) = M̃(η)
and b(η) in (21) with appropriate endpoint conditions. However,
large uncontrolled variations in (M̃k ), namely from rotation, may
be problematic in the construction of the four corresponding en-
trywise splines.

Recalling the concerns with Algorithm 4 about a rotational mis-
match between representative shapes from equivalence classes,
we perform a “Procrustes” clustering along the reversed order of
representative shapes—i.e., for k = N, …, 2, we solve

Rk−1 = argmin
R∈O(2)

‖X̃k − X̃k−1R‖F (22)

then apply the computed rotation to the LA-standardized shape
X̃k−1Rk−1 and reassign scale variations to M̃k−1Rk−1 so that the re-
versed sequence of shapes are best matched (sequentially) for in-
terpolation. Our intuition is that wind turbine shapes are typically
more similar from tip to hub, and the hub shape is often circular
and thus invariant under rotation; thus, reversing the order may
be desirable but is seemingly unnecessary.

This is an important caveat when inverting the shapes in (21)
back to the physically relevant scales for subsequent affine defor-
mations inferred from data. As a procedural interpretation, from
the blade tip shape X̃N to the blade hub shape X̃1, we sequentially
match the representative LA-standardized shapes via Procrustes
analysis (Gower, 1975) using (22). This offers rotations that can be
applied to representative LA-standardized airfoils for matching—
but does not modify the underlying piecewise geodesic interpola-
tion along the Grassmannian, which is independent of these ro-
tations. Consequently, we cluster the sequence of representative
shapes X̃k by optimal rotations in each [X̃k] to ensure they are best
oriented from tip to hub and to mitigate concerns about large vari-
ations in entrywise splines of M̃(η).

3. Data-Driven Representations
We apply the detailed developments of the Riemannian interpre-
tations to learn the manifold coordinates (t, �) that define a gen-
erative airfoil model from data in seconds. We then demonstrate
the generation of novel 3D blade shapes by consistently deform-
ing landmark airfoils with chosen parameter dimensionality in-
dependent from the number of interpolated 2D cross-sections.

To explore separable shape representations, we use a data set
containing 1000 perturbations to 16 baseline airfoils for a total of
16 000 shapes from the NREL 5-MW, Technical University of Den-
mark 10-MW, and IEA 15-MW reference wind turbines (Bak et al.,
2013; Gaertner et al., 2020; Jonkman et al., 2009). The baseline air-
foils are defined by 18 nominal CST coefficients with the trailing
edge thickness coefficients set to zero. We then perturb these 18
coefficients by up to ±20% of their nominal value to create an en-
semble of random airfoils.

The left-hand panel of Fig. 8 shows a marginal 2D slice through
the 18D space of CST coefficients that defines the collection of
shapes under consideration. Note that across the 16 baseline
shapes, the groups of perturbations to nominal CST coefficients
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Figure 7: Structured surface mesh of 10 nominal cross-sections interpolated to 100 refined cross-sections, defining a “through curves” surface
representation from B-splines of discrete shapes with n = 401. The mesh was generated using Gmsh (Geuzaine & Remacle, 2009) with the
Grassmannian interpolation wire-frame provided as input. The input wire-frame to the surface meshing routine is consistent with the wire-frame
depicted in Fig. 6.

Figure 8: Comparison of the airfoil data over two of the 18 total CST
parameters (left-hand panel) and two of the four total normal
coordinates (right-hand panel), with colors indicating different named
classes of designed airfoils. Notice that the transformed normal
coordinates resemble a Gaussian mixture.

create a complex, highly disjoint design domain given the variety
of airfoil classes. This can significantly impact the performance of
various AI/ML algorithms in analyzing airfoils across this domain.
We demonstrate how the proposed separable representation ad-
dresses these issues with the CST representation.

3.1. Principal geodesic deformations
We describe the process for applying the framework of separa-
ble shape tensors to learning coordinates (t, �) ∈ T × P for aero-
dynamic design and generation of new shapes. We explicitly
parametrize two submanifolds used to define the shape product
manifold. Additionally, interpolation is revisited in this context for
the construction of 3D wings/blades from sequences of 2D shapes.
Numerical examples demonstrate an improvement in shape gen-
eration along random continuous sweeps over the inferred Grass-
mannian parameter domain.

We infer nonparametric data-driven airfoil deformations by ap-
plying PGA (Algorithm 2), using Algorithms 3 and 4 and/or Algo-
rithms 6 and 7 to compute the required intrinsic maps for the
respective matrix manifolds. This informs an approximated cen-
tral tangent space at a Karcher mean, denoted T[X̃0]G(n, 2) or T[P0]S2

++,
computed with Algorithm 1 using the corresponding intrinsic
maps for either manifold of interest. The subsequent image of Exp,
given at respective Karcher means over subspaces T ⊆ T[X̃0]G(n, 2)

or P ⊆ TP0 S2
++, define planar sections (Lee, 2006) of the manifolds as

submanifolds, Exp[X̃0] (T ) ⊆ G(n, 2) or ExpP0
(P ) ⊆ S2

++. In this way,
PGA and the product manifold construction constitute a mani-
fold learning procedure for computing important submanifolds
that represent a design space of physically relevant airfoil shapes
inferred from provided data.

Based on the strength of the decay in eigenvalues over
T[X̃0]G(n, 2), we take the first r eigenvectors as a reduced basis for
Grassmannian PGA deformations. For PGA over the SPD matrix
manifold, we retain all three dimensions of S2

++. To compute co-
ordinates tk ∈ T or �k ∈ P corresponding to each Xk in a new basis
returned by Algorithm 2, we map LA-standardized airfoils to nor-
mal coordinates of T[X̃0]G(n, 2) or TP0 S2

++ via inner products with the
computed basis. In particular, in Algorithm 2, we compute

tk = T

r vec(Log[X̃0] ([X̃k])) (23)

or

�k = L

3 vec(LogP0

(Pk )) (24)

with Tr and L3 as the approximated bases returned by Algorithm 2
applied to either matrix manifold of interest. Note that the “vec”
operation applied to symmetric matrices in TP0 S2

++ only “vector-
izes” the three unique entries. In a similar manner, vec−1 in this
sense would duplicate the corresponding symmetric entry when
mapping to the representative matrix, such that vec−1(vec(P)) =
P. Also note that the coordinates tk and �k correspond to the
columns of the principal normal coordinate matrix T returned
by Algorithm 2. This implies definitions of parameter spaces as
T ⊆ T[X̃0]Ar and P ⊆ TP0 S2

++.
As an example, on a laptop (2.4 GHz 8-Core Intel Core i9 macOS

Catalina Memory: 32 GB 2667 MHz DDR4), we randomly subsam-
pled N = 10 000 shapes from a database of 35 035 total shapes.
Then, 10 sets of random draws with N = 10 000 were fed to Algo-
rithms 1 and 2 which were applied over the Grassmannian for n
= 401 and ε = 1e − 8. Algorithm 1 ran in 14.3 seconds, on aver-
age, over the 10 draws, while Algorithm 2—including the compu-
tational time of Algorithm 1—ran in 18.2 seconds (an additional
3.9 seconds) on average. Again, code and examples are available
at Doronina et al. (2022).

Having defined reduced-dimension normal coordinates tk ∈ T
with paired �k ∈ P, we restrict T and P as compact sets over the
respective tangent spaces, which contain PGA coordinates de-
scribed by an appropriate distribution—e.g., uniform over a ball
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Figure 9: A series of random corner-to-corner sweeps across a hypercube containing all points partially visualized in Fig. 8 through (a) CST parameter
space and (b) the Grassmannian submanifold A4. The sweeps represent geodesic trajectories from yellow to blue shapes passing through the origin of
the respective coordinate systems—CST parameter space is assumed to be flat.

containing the data {tk} and/or {(tk, �k )}. Then, the set of all linear
combinations of the principal components, Trt for all t ∈ T and L3�

for all � ∈ P, define an (r + 3)-dimensional domain over T × P ⊂
T[X̃0]G(n, 2) × TP0 S2

++. This parametrizes a section of the Grassman-
nian (r-submanifold) for all t ∈ T ⊂ Rr and �(t) = vec−1(Trt):

Ar =
{
[X̃] ∈ G(n, 2) : [X̃] = Exp[X̃0] (�(t))

}
, (25)

and the SPD matrix manifold for all � ∈ P:

S3 = {
P ∈ S2

++ : P = ExpP0
(vec−1(L3�))

}
. (26)

The resulting parametrized Riemannian submanifold Ar × S3

becomes the product manifold of interest for generating
rotation/reflection-invariant airfoils X̃(t)P(�) according to (6).
Moreover, when composed with subsequent rotations and span-
wise reparametrizations, the data-driven representation (6) can
also be used to interpolate any blade or wing over paired piecewise
geodesics across respective manifolds. This procedure is consis-
tent with the previous interpolation procedure, but is now applied
independently over respective manifolds as

X(η) = (X̃ ◦ ϕ)(η)(P ◦ ψ )(η)R(η) + 1n,2diag(b(η)) (27)

utilizing reparametrization over SPD distances as ψ : η �→� and
inferred (implicit) or parametrized (explicit) rotations R(η) with
paired translations b(η).

Truncating the Grassmannian principal basis to the first r =
4 components (based on the decay in PGA eigenvalues), we sig-
nificantly reduce the number of parameters needed to define a
rich set of airfoil deformations. Consequently, we have “learned”
a 4D data-driven submanifold of airfoil undulations, A4, which
are independent of affine deformations. New parameters are now
coordinates of this 4D subspace t ∈ T0A4 ∼= R4 over the tangent
space at the Karcher mean (analogous origin for Ar). This is sub-
sequently composed with right group actions defined by normal
coordinates over S2

++, fixed average length scales M, explicit or in-
ferred parametrizations M(�), or some combination thereof to of-
fer a complete representation of shapes.

The right-hand panel of Fig. 8 shows a 2D marginal slice of the
airfoil data projected onto the 4D PGA basis T —i.e., a discrete dis-
tribution of t ∈ T[X̃0]A4. Note that this design space roughly resem-
bles a mixture of overlapping Gaussian distributions across the di-
verse family of airfoils. Compared to the CST representation, such
a design space is significantly easier to infer or represent in the
context of AI and ML algorithms. Further, extrapolation to shapes
beyond the point cloud is significantly less volatile in this frame-

work, offering an improved notion of regularized shape deforma-
tions.

To demonstrate the improved regularization of deformations,
Fig. 9 shows four random corner-to-corner sweeps (enveloping the
data by bounding hyperrectangles) through CST and PGA spaces.
The PGA perturbations are constructed with fixed average scales
M defining right inverse X̃(t)M for t ∈ T[X̃0]A4. In CST space, it is
difficult to define a single design space that covers the range of
airfoils under consideration while allowing for smooth deforma-
tions between them—i.e., named classes correspond to largely
distinct subsets of perturbed CST coefficients, and linear inter-
polation across these classes results in nonphysical shapes with
large undulations. Conversely, all shapes generated using the pro-
posed Grassmannian methodology result in valid airfoil designs
while creating a rich design space worthy of investigation. More-
over, this data-driven approach and regularization over (25) mit-
igates undesirable oscillations and undulations in the shape, as
depicted in Fig. 9.

3.2. Consistent blade deformations
We emphasize a powerful approach to dimension reduction for
parametrizing 3D shapes from 2D sequences of discrete shapes.
Namely, we introduce the concept of “consistent deformations”
via parallel translation over the inferred PGA domain. The defor-
mations retain the original notion of parameter direction over the
PGA domain and result in a more intuitive deformation of blade
shape—only requiring 7–10 parameters in total to define rich de-
formations to the entire 3D blade shape.

As previously noted, current approaches to 3D blade design re-
quire significant hand-tuning of airfoils to ensure the construc-
tion of valid blade geometries without dimples or kinks. Quanti-
tatively, this can result from poor interpolation of shape character-
istics, which deform shapes differently from one cross-section to
the next. Our proposed approach enables the flexible design of
new blades by applying consistent deformations to all airfoils
in addition to affine-invariant interpolation of shapes along the
span. The undesirable variations from one cross-section to the
next are mitigated by parametrizing consistent perturbations en-
abled by parallel translation.

Blade perturbations are constructed from deformations to each
of the given cross-sectional airfoils in consistent directions over
t ∈ T[X̃0]A4. Having defined perturbation directions in the tangent
space of the Karcher mean [X̃0], we utilize parallel transport as an
isometry to smoothly translate the perturbing vector field of the
shape along separate geodesics—connecting the Karcher mean to
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each of the LA standardized airfoils ([X̃k]). More generally, this
could be computed for G(n, 2) and S2

++ using Algorithms 5 and
8, respectively. The result is a set of consistent directions—as
equal inner products and consequently equivalent normal coordi-
nates in the central tangent space—over ordered tangent spaces
T[X̃k]G(n, 2), centered on each of the nominal [X̃k] defining the blade
(similarly for corresponding SPD matrices). An example of a con-
sistently perturbed sequence of cross-sectional airfoils is shown
in Fig. 6 (right-hand panel), composed with average length scales
M and �(t) = vec−1(Trt) as

(π−1 ◦ [X̃])(ηk; t, M) = Exp[X̃k]

(
τ‖(�(t); [X̃0], [X̃k])

)
M. (28)

These deformed shapes are then interpolated over (ηk) to con-
struct various blade deformations with any level of refinement as
wire-frames. Consequently, undulations in the blade can be con-
sistently parametrized and regularized by a shared set of four pa-
rameters t ∈ T[X̃0]A4 in the tangent space of the Karcher mean us-
ing parallel transport with Algorithm 5 (and/or Algorithm 8 for a
chosen separable representation).

Utilizing interpolation over consistent deformations with three
to six independent affine parameters �, chosen to be spanwise
constant, as X̃(η; t)M(η; �), constitutes a full set of 7–10 parameters
that describe a rich feature space of 3D blade perturbations—a signifi-
cant reduction compared to alternative explicitly designed expan-
sion representations. Of course, the more general representation
(6) requires distinct parallel transport over the product manifold
A4 × S3 to offer additional flexibility with similar implications us-
ing only seven, or generally r + 3, total parameters. Additional
generalizations can be made at the expense of introducing ad-
ditional parameters—perhaps incorporating controlled spanwise
variations in t. However, in this most simplified context, a rich
set of deformations can still be defined with very few parame-
ters. The result is a framework with a flexible means for design-
ers to balance the total number of parameters to achieve sought
blade deformations using a more explainable and interpretable
representation—generated by an explainable and interpretable
non-linear manifold of shapes.

4. Conclusions
The benefits of coherent shape deformations, coupled with a
natural framework for interpolating 2D airfoil shapes into 3D
blades and the decoupling of affine and undulation-type deforma-
tions, make Grassmannian-based shape representation a power-
ful tool for enabling aerodynamic design. Moreover, the proposed
transformations also enable the representation of rotation- and
reflection-invariant shapes over a product submanifold for the
purposes of 2D design.

Transforming discrete shapes into separable tensors enables
2D deformations and designs with evidence of improved regu-
larization against nonphysical deformations. Moreover, the trans-
formed representation offers more visually compelling evidence
that Gaussian mixture models (a common prior in AI-aided de-
sign) may be a more relevant choice of prior distribution over the
Karcher (Fréchet) centered domain of normal coordinates. Addi-
tionally, the ability to construct consistent deformations to blade
shapes via parallel transport offers a novel and intuitive regular-
ization to dramatically reduce the total number of parameters for
3D blade design.

We have shown, through theoretical arguments and numerical
demonstration, that samples drawn from a class of relevant dis-
crete airfoil shapes converge to Grassmannian elements defined

as discrete refinements with fixed reparametrization. Moreover,
we have motivated continuous analogues built from the corre-
sponding discrete shapes for future extensions of this work. Lastly,
in contrast to AI-based generative shape models, our methods of-
fer a fast and extremely lightweight approach to shape-manifold
learning.
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