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Variational autoencoders (VAEs) are rapidly gaining popularity within molecular simulation for discovering low-
dimensional, or latent, representations, which are critical for both analyzing and accelerating simulations. However, it
remains unclear how the information a VAE learns is connected to its probabilistic structure, and, in turn, its loss func-
tion. Previous studies have focused on feature engineering, ad hoc modifications to loss functions, or adjustment of
the prior to enforce desirable latent space properties. By applying effectively arbitrarily flexible priors via normalizing
flows, we focus instead on how adjusting the structure of the decoding model impacts the learned latent coordinate.
We systematically adjust the power and flexibility of the decoding distribution, observing that this has a significant
impact on the structure of the latent space as measured by a suite of metrics developed in this work. By also varying
weights on separate terms within each VAE loss function, we show that the level of detail encoded can be further tuned.
This provides practical guidance for utilizing VAEs to extract varying resolutions of low-dimensional information from
molecular dynamics and Monte Carlo simulations.

I. INTRODUCTION

Identifying low-dimensional representations for interpret-
ing the results of molecular simulations, or for efficiently bias-
ing simulations to better explore configuration space, remains
a significant challenge in the field. Autoencoding structures
have rapidly gained popularity for learning low-dimensional
collective variables (CVs), or latent spaces, from molecular
simulation data1–11. In particular, variational autoencoders
(VAEs)12 provide a Bayesian modeling framework that can
tune the properties of a learned latent space through the form
of the probabilistic models composing the VAE13. However,
systematic studies of the impact of probabilistic modeling as-
sumptions on the learned latent space, especially those as-
sociated with the form of the decoding distribution, are, to
our knowledge, nonexistent in the published scientific litera-
ture. To address this, we propose metrics to quantify these
impacts and examine their behavior as we progressively ad-
just the modeling power of decoding models in VAEs with
highly flexible priors that make minimal assumptions on the
form of the latent space.

Choosing a probabilistic decoding model directly sets the
training objective, or loss function for a VAE, in turn criti-
cally impacting the CVs that are learned through model train-
ing. VAEs consist of an encoding-decoding structure in which
neural networks taking full-space x or latent space z coor-
dinates are trained to predict encoding q(z|x) and decoding
P(x|z) probability distributions. The model is also defined in
terms of a prior distribution P(z) that can remain fixed, or, as
we allow here, can be learned during training. The full VAE
loss Ltotal is an upper bound on the negative log likelihood of
a Bayesian model for the probability density of the training
data12

Ltotal ≥
〈
− ln

P(x|z)P(z)
P(z|x)

〉
P(x)

(1)

The ensemble average is taken over the training data distribu-
tion P (x). Ltotal is an upper bound due to the introduction of
the variational distribution q(z|x) to approximate P(z|x)12

Ltotal = 〈− lnP(x)+KL(q(z|x) ,P(z|x))〉P(x) (2)

=
〈
〈− lnP(x|z)〉q(z|x)+βregKL(q(z|x) ,P(z))

〉
P(x)

(3)

= Lrecon +βregLKL (4)

The second term on the right of Eq. 3 is the Kullback-Leibler
(KL) divergence14 between the encoding distribution q(z|x)
and the prior P(z), with βreg defined as the regularization
weight15. For βreg = 1 we recover the exact variational upper
bound while other values adjust the weight between the re-
construction and KL divergence loss terms indicated in Eq. 4,
which, more specifically, are

Lrecon =
〈
〈− lnP(x|z)〉q(z|x)

〉
P(x)

(5)

LKL = 〈KL(q(z|x) ,P(z))〉P(x) (6)

If βreg is set to zero, the loss is identical to that of a standard
autoencoder, though a VAE still differs in that its encoding and
decoding involve stochastic sampling. In this case, however,
it is expected that the encoding and decoding distributions ap-
proach delta functions, approaching the behavior of a standard
autoencoder.

Eq. 5 makes it clear that the selected decoding model ex-
presses our assumptions concerning the system we are model-
ing. In molecular simulation, this directly involves the phys-
ical nature of interactions between degrees of freedom — do
we assume that atomic coordinates are independent of each
other or probabilistically coupled? Just as the form of the
prior P(z) places constraints on the properties of the latent
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space distribution, the decoding distribution P(x|z) limits the
types of interactions that may be captured in the full config-
urational space. However, the properties of the learned latent
space will directly depend on the form of the decoding model
because a VAE is driven by Eq. 3 to encode information that
is useful for increasing the probability of inputs under P(x|z).
Latent information can be used to enhance the probabilistic
modeling power of the decoding distribution, lowering the re-
construction loss. A price is paid, however, through an in-
crease in the KL loss term. The KL loss effectively requires
that the latent space ignore extraneous information, focusing
only on that which benefits and improves the decoding model.
As we will show, this can mean that the learned latent space
contains no useful information if the decoding model is either
too weak or too powerful.

Ideally, we would like to always select a VAE model to
learn the most meaningful latent space, which first requires
defining a “good” latent coordinate. There are two primary
schools of thought on determining CVs from simulations: ei-
ther pick those associated with the slowest timescales in the
system, or those that traverse the most volume in configura-
tional space1. While a number of studies have explored the
use of time-lagged autoencoders or VAEs to identify slow
degrees of freedom8,9,16,17, we focus here on using VAEs
to identify CVs that best describe equilibrium configuration
space, which applies to both molecular dynamics simulations
that have a sense of time and Monte Carlo (MC) simulations
that do not. To be useful, it is desirable that such CVs be: 1)
interpretable by humans, 2) smooth and differentiable map-
pings from full-space coordinates, and 3) maximally expres-
sive in that they can flexibly learn to capture low-dimensional
representations regardless of the specific details of the system
being simulated.

The first desirable property of latent coordinates is that they
be interpretable by a human, and in that sense meaningful.
In image processing, there has similarly been a considerable
amount of interest in using VAEs to determine “disentangled”
representations15,18–20, which enables interpretation of highly
non-linear encodings. Locatello et al. 21 have shown, how-
ever, that identifying disentangled latent spaces is largely a
matter of luck, depending heavily on the random number seed
for starting the training run. The reason is simply that, to
the VAE, any linear combination of the most informative la-
tent coordinates is equally optimal, meaning that human in-
terpretability is never guaranteed without human intervention
in constructing the latent space. Tiwary and coworkers have
proposed a promising avenue for interpreting learned latent
spaces by also learning how to represent these coordinates
in terms of linear combinations of human-proposed CVs that
best approximate the non-linear encoding of the VAE4,22. This
technique is always available as a post-processing tool for in-
terpreting the results of training a VAE, but does not impact
the properties of the learned latent space.

While standard autoencoders and VAEs naturally identify
mappings to CVs that are differentiable, and hence can be
used to apply biasing forces to molecular dynamics simula-
tions, it is also advantageous for them to be smooth, avoiding
large discontinuities in latent space. Such jumps in CV values

are problematic when enhancing sampling of configuration
space by applying biasing potentials or forces along a latent
coordinate. This means that related configurations should be
projected to similar locations in latent space, which has mo-
tivated the addition of distance-preserving terms to the loss
function of standard autoencoders (i.e., only the reconstruc-
tion term)5,23. Applied to a VAE, this could be thought of as
an added restraint on the form of the encoding distribution, but
we argue this is unnecessary due to the stochastic nature of the
encoding. The encoder of a VAE maps a full-space configura-
tion to an entire region of latent space rather than to a single
point, with any unnecessary separation of similar configura-
tions in latent space penalized by the KL loss. Chen, Tan,
and Ferguson 3 also propose modifications to a standard au-
toencoder loss, but by introducing multiple reconstruction ob-
jectives (e.g., atomic coordinates and distances between sets
of atoms). This is a form of feature engineering and effec-
tively places different weights on full-space degrees of free-
dom, or relationships between them, that the decoder attempts
to reproduce, which those authors show has an impact on the
quality of the learned CVs for enhancing sampling. Multi-
ple objectives or different choices of inputs and outputs will
not change the underlying decoder model in a VAE, but will
change the features that are emphasized. We will not focus
on feature engineering in this work other than to demonstrate
that the choice of coordinate system for VAE inputs and out-
puts modifies the difficulty of the modeling task and should
therefore influence choices of structure and complexity in a
decoding model.

Discovered latent spaces should also ideally be maxi-
mally expressive, free from unintentional constraints placed
upon their structure. For instance, Chen, Tan, and Fergu-
son 3 demonstrated that, without explicitly enabling latent
space periodicity, autoencoders have difficulty identifying
low-dimensional representations associated with dihedral an-
gles. Gaussian mixture encoders and priors have been intro-
duced recently to increase the modeling capacity of P(z)10,11.
This is particularly appropriate for learning clusterings of
data, with configurations subdivided into different Gaussians
within latent space. In this work, we apply even more flexible
priors based on normalizing flows13,24,25. A normalizing flow
learns to transform one random variable following a known
probability density into another that satisfies the probability
density of the data used for training26. In training our VAE
models with a flow on the prior, we learn effectively arbitrar-
ily complex priors P(z). Unlike in a Gaussian mixture with
a fixed functional form and number of components, a prior
based on a flow is free to take on any continuous form and
include as many peaks as necessary for encoding information
useful to the decoder.

For a flow defining the transformation z = f (z′) from a
random variable z′ satisfying a normal distribution with zero
mean and unit varianceN (z′;0,1) to our latent space variable
z, the KL loss term becomes

LKL =
〈
lnq(z|x)− lnN

(
f−1 (z) ;0,1

)
− lnRz→z′ (z)

〉
q(z|x)

(7)
Rz→z′ (z) is the absolute value of the Jacobian determinant of
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the flow transformation z′ = f−1 (z), which is readily calcu-
lated for the transformations we implement (see Section II).
With P(z) fixed to a simple distribution that is easy to sam-
ple from, like a standard normal, the expressivity of the en-
coding is restrained by the KL divergence term, which may
result in an overly simple, uninformative latent space and a
poor approximation of q(z|x) to P(z|x)24,25,27. A flow re-
laxes restraints on the form of the learned latent distribution
but, through Eq. 7, still penalizes highly structured, complex
latent spaces that are difficult to transform to a standard nor-
mal. A prior based on a flow is also preferred when generat-
ing new configurations because it avoids a scenario in which
the distribution of encoded values fails to match the chosen
prior P(z) and is thus unknown and difficult to sample from
directly. While use of a flow on the prior may thus gener-
ally improve VAE models, our emphasis here is that it enables
near-maximally expressive and flexible latent spaces so that
the impact of the decoder model alone may be assessed.

To understand the fundamental impact of the ideas pre-
sented above, such as the interplay between regularization
strength and decoder flexibility, we consider a variety of toy
and simple molecular systems. For each, we train a number
of VAE models in replicate to assess variations across training
runs. Systematic adjustments are made to the power of the de-
coding model, as well as to the regularization weight βreg that
adjusts the balance between reconstruction and KL loss terms.
We compare learned latent spaces across different decoders
and values of βreg via a number of novel metrics for assessing
latent space structure and utilization. Our results reveal that
the form of the probabilistic decoding model and weight on
the KL loss significantly alter the latent space, or even if any
information is encoded. Based on our observations, we map
out conditions under which a meaningful latent space is ex-
pected to be learned and provide practical guidance in using
VAEs to learn low-dimensional representations of molecular
systems.

II. METHODS

A. VAE Models and Training

VAEs consist of an encoding-decoding structure in which
neural networks taking full-space x or latent space z coor-
dinates are trained to predict encoding q(z|x) and decoding
P(x|z) probability distributions. The model is also defined
in terms of a prior distribution P(z) that can remain fixed,
or, as we allow here, can be learned during training. As
is typical, we set the functional form of the encoding dis-
tribution to independent Gaussians along each latent dimen-
sion, with means and log-variances output by the last layer of
the encoder neural network. Encoder neural networks con-
sist of two fully-connected hidden layers of 50 units each
for all 2D systems and 300 units each for molecular sys-
tems. Hidden layers receive rectified linear unit (ReLU) ac-
tivation while we apply no activation to output layers. We
transform periodic degrees of freedom (e.g., dihedral angles)
to sine-cosine pairs before passing through the encoder net-

work. Schematics describing the architectures of all compo-
nents of our VAE models are provided in Figs. S12-S20 of
the Supplementary Material (SM) and code may be found at
https://github.com/JIMonroe/vae-mc.

To focus on the impact of decoding model assumptions on
learned latent spaces, throughout this work we use extremely
flexible priors based on normalizing flows, with a VAE struc-
ture as described by Chen et al. 13 . A normalizing flow de-
fines a bijective mapping based on neural networks that trans-
forms a simple, analytically known distribution into the un-
known distribution of the training data26. We use neural spline
flows28 with a RealNVP structure29 as implemented in Ten-
sorFlow Probability30 to learn a transformation z′ = f−1 (z)
to turn latent encodings z into samples from a random vari-
able z′ that satisfies a standard normal distribution. All flows
consist of 4 RealNVP blocks, each transforming half of the
dimensions by using the untransformed dimensions as inputs
to neural networks that output parameters for a monotoni-
cally increasing rational quadratic spline associated with that
block (Fig. S19). For flows on a single dimension, con-
stants are input to the neural networks defining splines so
that a fixed transformation independent of the input data is
learned for each block. We define a domain of [−10,10] for
our spline transformations with 31 spline knot locations and
slopes learned for all transformed dimensions by a fully con-
nected neural network with a single hidden dimension of 20
units and ReLU activation.

With fixed choices for the encoding and prior probabil-
ity distributions, we systematically vary the representational
power of the decoder probability distribution. Fig. 1 schemat-
ically illustrates the decoder models that we employ, with each
option leading to a different form for the reconstruction loss.
Further details of decoder architectures may be found in Figs.
S14-S18. In the simplest case (Fig. 1a), the decoder neu-
ral network only predicts the means of full-space degrees of
freedom µµµ (z), assuming independent Gaussian distributions
with variances fixed at unity σσσ2 (z) = 1. Using this specific
Gaussian probability density for the full-space coordinates in
the decoder probability distribution leads to the classic mean-
squared error reconstruction loss and so we label it the “MSE”
decoder model.

− lnPMSE (x|z) =
1
2

M

∑
i

[
(xi−µi (z))2 + ln2π

]
(8)

The summation in Eq. 8 runs over all M fine-grained degrees
of freedom. The ln2π term comes from the proper normal-
ization constant of a Gaussian distribution with unit variance.
While such a constant will not affect training, it is explicitly
represented here to emphasize that the form of the loss func-
tion is a direct consequence of choosing a decoder probabilis-
tic model. Notably, the MSE model assumes that, given z, all
elements of x are probabilistically independent of each other,
which is called conditional independence, i.e.,

P(x|z) = ∏
i

P(xi|z) (9)

As such, we term the next decoder model “conditionally in-
dependent,” since it maintains this probabilistic structure but



VAE Latents 4

FIG. 1. Four different decoding models are applied within this work:
(a) conditionally independent normal distributions with means deter-
mined by the decoder neural network and all variances set to 1, which
gives rise to the well-known mean-squared error reconstruction loss,
(b) conditionally independent normal distributions with both means
and variances determined by the decoder neural network, (c) autore-
gressive normal distributions, where the means and variances of a
given degree of freedom depend on previously sampled degrees of
freedom, and (d) a decoder applying an autoregressive normalizing
flow to samples drawn from independent normal distributions de-
termined by the decoder network, both adding correlations between
degrees of freedom and removing assumptions of normality.

now allows the variance of decoder normal distributions to be
determined by the decoder neural network.

− lnPCondInd (x|z) =
1
2

M

∑
i

[
(xk−µi (z))2

σ2
i (z)

+ ln2π + lnσ
2
i (z)

]
(10)

In Eq. 10, the variances are elements in a vector since all off-

diagonal elements of the covariance matrix are zeros, reiter-
ating the conditional independence of the decoder probability
distributions. While it has been proposed to introduce cor-
relations into decoder models by predicting full covariance
matrices31,32, we instead introduce correlations through an au-
toregressive decoding probabilistic structure13,33, i.e.,

P(x|z) = ∏
i

P(xi|z,x<i) (11)

In “autoregressive” decoder models, we sample each degree
of freedom in turn with a fixed ordering, allowing sampled
values to influence the means and variances of degrees of free-
dom yet to be sampled. While this does not modify the form of
the log-probability in Eq. 10, it drastically changes the func-
tional dependencies of µµµ and σσσ .

− lnPAuto (x|z) =
1
2

M

∑
i

[
(xi−µi (z,x<i))

2

σ2
i (z,x<i)

+ ln2π + lnσ
2
i (z,x<i)

]
(12)

In the most powerful decoder, termed our “flow” model, we
relax the assumption of normality in our decoding distribu-
tions by applying an autoregressive normalizing flow that
learns a bijective transformation x = f (x′). This leads to a
reconstruction loss of

− lnPFlow (x|z) = 1
2

M

∑
i

[(
f−1 (x)i−µi (z)

)2

σ2
i (z)

+ ln2π + lnσ
2
i (z)

]
− lnRx→x′ (x) (13)

During generation, the decoder neural network first predicts
means and variances of conditionally independent normal dis-
tributions in the space of x′ = f−1 (x). Samples drawn from
these distributions are transformed by the autoregressive flow
into samples on x. We write Eq. 13 in terms of x and transfor-
mations to x′ since during training we evaluate the likelihood
of data under this model and must implement the inverse flow
transformation to compute the model probability.

All decoder models contain fully-connected hidden layers
utilizing tanh activations with 50 units for 2D systems and
300 units for molecular systems. MSE and conditionally in-
dependent models contain 2 hidden layers before outputting
means and log-variances with no activation. Autoregressive
decoders follow the same architecture, but then use masked
neural networks, as in Ref.34, to predict shifts in the means and
log-variances due to correlations between degrees of freedom.
Latent space values are provided directly to the masked neural
networks as conditional inputs to encourage use of latent in-
formation, as suggested by the success of skip connections35.
Flow decoders only contain a single hidden layer and produce
conditionally independent means and log-variances of normal
distributions without activation in their next layer. We use
TensorFlow Probability30 to implement two stacked masked
autoregressive flows36 with neural spline transformations28 as
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the final layer in our flow decoders. As in autoregressive de-
coders, z values are provided as conditional inputs for the flow
transformations. For autoregressive and flow decoders, we
use von Mises rather than Gaussian distributions for periodic
degrees of freedom, which provides an additional advantage
over MSE and conditionally independent decoders.

To implement all models, we use TensorFlow37 (version
2.4.0) and TensorFlow Probability30. We train models in
batches of 200 samples with the Adam optimizer38, setting
the learning rate to 0.0001 and other parameters to their de-
fault values in TensorFlow. For systems in 2D, models train
for 100 epochs at each value of βreg, while models for molecu-
lar systems are train for 300 epochs. Models with βreg ≥ 1 are
trained in turn, carrying over parameters to the next value of
βreg and annealing from the last value of βreg over 20 epochs
for 2D systems and 40 epochs for molecular systems. For
βreg = 1, annealing from 0 starts with randomly generated pa-
rameters rather than those of the model trained for the full
number of epochs at βreg = 0. Slowly annealing from one βreg
to another helps prevent the the collapse of the latent space
to uninformative noise before the VAE has time to identify a
more structured encoding39.

B. Latent Metrics

We have developed a suite of novel metrics for characteriz-
ing latent space properties for any system and VAE model.
The average Jeffreys Divergence (JD)40 between encoding
distributions characterizes the degree to which configurations
are distinguished within the latent space. JD is defined as
the sum of two KL divergences with the reference distribu-
tion switched, though here we write it as an average

JDencode =
1
2
(KL(q(z|xi) ,q(z|x j))

+KL(q(z|x j) ,q(z|xi))) (14)

Each KL divergence is between encoding distributions de-
fined by data samples x j and xi, with the average JDencode
determined by averaging over all pairs (or in practice all pairs
within a batch) of the training data. While Eq. 14 is general for
any choice of encoding distribution, for normal distributions
with diagonal covariance structure, as implemented here, the
KL divergence is

KL(q(z|xi) ,q(z|x j)) =
1
2

Dl

∑
k

(
σ2

i,k

σ2
j,k

+

(
µ j,k−µi,k

)2

σ2
j,k

−1+ ln
σ2

j,k

σ2
i,k

)
(15)

The summation runs over the dimensionality of the latent
space Dl with µi,k and σ2

i,k being the mean and variance of
the normal distribution along latent dimension k associated
with the ith training data point. Large values of the average
JDencode identify memorization of data, a form of overfitting
where each training data point is encoded in its own volume in

latent space and encoding distributions have almost no over-
lap. Small values approaching zero indicate an unused latent
space where all encoding distributions overlap fully and the
VAE does not distinguish between configurations in the latent
space. Computing this quantity in a dimension-wise fashion
differentiates latent dimensions based on their utilization.

To estimate the relative complexity of the latent distribu-
tion, or roughly how structured it is compared to Gaussian
noise with the same mean N (z; µµµz,1), we define

JDprior =
1
2
(KL(q(z) ,N (z; µµµz,1))

+KL(N (z; µµµz,1) ,q(z))) (16)

Note that Eq. 16 uses the variational prior under the train-
ing data distribution q(z) = 〈q(z|x)〉P(x) rather than the prior
learned based on a normalizing flow P(z). Though these
should be similar to satisfy the training objective in Eq. 7, we
draw z samples from the former by sequentially drawing from
the training data distribution P (x) followed by the encoding
distribution q(z|x) and from the latter by drawing z′ samples
from a standard normal and passing through the flow f (z′).
JDprior will be small when q(z) matches the prior in the coor-
dinate transformed by the flow z′, indicating that the Jacobian
determinant term in Eq. 7 approaches zero. This can happen,
however, when z′ and z differ only by an arbitrary additive
shift, and so we compare to a normal with the same mean of
µµµz =

〈
〈z〉q(z|x)

〉
P(x)

but unit variance, which would be the

simplest prior one of our VAE models could learn. To cal-
culate JDprior, we approximate the KL divergences in Eq. 16
as

KL(q(z) ,N (z; µµµz,1))≈
〈〈

lnN
(

f−1 (z) ;0,1
)

+ lnRz→z′ (z)

− lnN (z; µµµz,1)
〉

q(z|x)

〉
P(x)

(17)

KL(N (z; µµµz,1) ,q(z))≈−SN
−
〈
lnN

(
f−1 (z) ;0,1

)
+ lnRz→z′ (z)

〉
N (z;µµµz,1)

(18)

In Eqs. 17 and 18, we have used the learned prior P(z) de-
fined by a flow to approximate the probability density of
q(z), though samples in Eq. 17 are drawn from the varia-
tional prior under the training data distribution. In Eq. 18,
SN = Dl

2 (ln(2π)+1) is the entropy of a standard normal dis-
tribution. Note that both JDprior and the average JDencode must
be small to achieve a small KL loss in Eq. 7. For example,
the learned P(z) might exactly follow a standard normal dis-
tribution, driving JDprior to zero, but each encoding distribu-
tion q(z|x) might be sharply peaked, resulting in high average
JDencode. These metrics measure different aspects of the en-
coding, with average JDencode and JDprior separately assessing
local and global structure of the learned latent space.
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We measure the probabilistic independence of latent dimen-
sions through the total correlation. While we can also assess
linear independence through the Pearson correlation matrix,
the total correlation identifies whether or not each latent di-
mension encodes unique information and is defined as

QTC =
∫

q(z) ln
q(z)

∏
Dl
k q(zk)

dz

=−Sq(z)+
Dl

∑
k

Sq(zk) (19)

In the second line, Sq(z) is the entropy of the full variational
distribution under the training data and the sum in the sec-
ond term is over the entropies of the marginal distributions
Sq(zk) of all Dl latent dimensions. Chen et al. 18 approximate
QTC through an asymptotically biased Monte Carlo method
that provides a loose lower bound. Locatello et al. 21 instead
apply a Gaussian approximation to estimate the total correla-
tion, analytically calculating QTC from the mean and covari-
ance matrix of q(z). Since we have learned a normalizing flow
defining P(z) that closely approximates q(z), we use this to
define a tight lower bound estimate of the total correlation.
Specifically, an upper bound on the entropy of the full distri-
bution in Eq. 19 can be estimated by using P(z) to estimate
the probability density of q(z).

Sq(z) ≈
〈
〈− lnP(z)〉q(z|x)

〉
P(x)

≈
〈〈
− lnN

(
f−1 (z) ;0,1

)
− lnRz→z′ (z)

〉
q(z|x)

〉
P(x)

(20)

Note that we expect this upper bound to be tight since Eq. 20
is minimized as part of the KL loss in Eq. 7. Entropies of
marginals are estimated through histogramming and numeri-
cal integration, which is appropriate when many samples are
available for single-dimensional data. High total correlation
indicates that different latent dimensions are not probabilisti-
cally independent and contain duplicate information.

For VAEs trained on data fully representing the configura-
tional space of a system, the fraction of accepted VAE-based
Monte Carlo (MC) moves facc is a general metric estimating
the accuracy with which the probability density of the train-
ing data is modeled41. In this technique, we use a trained VAE
to propose moves that are accepted or rejected according to a
Metropolis criterion satisfying detailed balance in the ensem-
ble of the training data — we utilize the potential energy func-
tion used to generate the data to define relative configurational
probabilities. Unlike VAE loss functions that are typically un-
bounded and vary with the system and chosen model, facc is
bounded from 0 to 1 and is system and model agnostic. A
description and detailed analysis of VAE-based MC moves is
presented in our previous publication41.

C. Model Systems and Simulations

The Mueller potential energy function governs sampling in
a 2D space and is defined as in the work of Noé et al. 42 . The

Deep Boltzmann package43 is used to evaluate the Mueller
potential with TensorFlow37. Default parameters are used but
the potential is scaled by a factor of 0.1, as in Ref.42. To gen-
erate samples in the ensemble defined by the Mueller poten-
tial, we perform 10000 MC simulations in parallel using 2D
Gaussian displacements with standard deviations set to 0.1.
Simulations are run for 100000 trials and configurations are
saved every 4000 trials after discarding the first 60000 tri-
als for equilibration, resulting in 100000 independent samples
used for training.

All 2D systems other than the Mueller potential are defined
using TensorFlow Probability30 to create distributions repre-
sented by class objects that allow calculation of negative log
probabilities (potential energies) and efficient sampling. Our
independent unimodal potential is a 2D normal distribution
with independent means of (-3, -3) and standard deviations
of (1, 1). The independent bimodal distribution consists of
identical Gaussian mixtures in each dimension. Independently
in each dimension, sampling from a normal distribution with
mean -3 and standard deviation of 1 happens with probability
0.6 and another normal distribution with mean of 3 and stan-
dard deviation of 1 is selected with probability 0.4. We also
consider a correlated bimodal distribution based on the same
means and variances just described, but with sampling in the
second dimension limited to the same normal distribution ran-
domly selected for the first. The “Beltway” potential consists
of two concentric rings of low probability separated by a bar-
rier in Cartesian coordinates. For convenience, we define the
potential in polar coordinates via a uniform distribution over
[−π,π] for angles and a 50:50 mixture of two gamma distri-
butions for the radial coordinate, one with concentration (α)
of 40 and a rate (β ) of 40 and the other with a concentration of
160 and rate of 80. This potential differs in mathematical form
from that suggested by Chen, Sidky, and Ferguson 16 , but re-
mains similar in its free energy surface and can be sampled
efficiently without MC simulations. In all 2D systems defined
by TensorFlow Probability distributions, we randomly gener-
ate 100000 independent data points for training.

We use OpenMM44 to simulate alanine dipeptide (or
capped alanine, Ace-Ala-Nme) in vacuum at 300 K with
a Langevin thermostat, calculating potential energies with
the AMBER99-SB45 forcefield. Full simulation details are
provided in a previous publication41. Simulations provide
100000 independent configurations used for training. All
training configurations have rigid translational and rotational
motion removed and are randomized in their order. Con-
versions between Cartesian and bond-angle-torsion (BAT)
atomic coordinates are performed using MDAnalysis46,47. In
training VAEs with BAT coordinates, the translational and ro-
tational reference frame is ignored along with all rigid bonds
as these degrees of freedom do not require probabilistic mod-
eling.

III. RESULTS

Fig. 2 reveals how decoder structure and regularization
strength both impact the properties of VAE models trained
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on Mueller potential data. The Mueller potential itself is
shown in Fig. 2a, revealing three basins of unequal depth sep-
arated by large barriers along a nonlinear coordinate travers-
ing a narrow valley and two saddles. While simple and low-
dimensional, the ability of VAE models to learn a meaning-
ful 1D collective variable for this system depends on both
the decoder and regularization strength. Distributions of la-
tent encodings in Fig. 2b commonly exhibit large and small
peaks spaced far apart at low regularization strength. The
large peak represents the lowest free energy basin while the
smaller roughly represents the region of phase space around
the second-lowest minimum, overlapping slightly with the
nearby highest free energy basin. As βreg increases, the peaks
shift closer together and eventually merge into a distribution
approximating a standard normal. A normal distribution with
zero mean and unit variance minimizes the full KL divergence
in Eq. 7 by maximizing the likelihood of the transformed prior
and driving the log-determinant term to zero. Note, though,
that any constant shift in the mean results in an equally low KL
divergence as long as the flow learns this shift, which is why
all curves in Fig. 2b have their means shifted to zero for ease
of visualization. We only observe a close match to a standard
normal in the case of the MSE decoder, with the transition
occurring at low βreg. At high enough βreg, however, all distri-
butions except for the autoregressive decoder lose the smaller
peak and resemble normal distributions.

Fig. 2c colors input data by the learned latent coordinate,
revealing that setting βreg = 0 leads all decoder models to
learn similar latent spaces that sharply trace out paths passing
through saddle points between free energy basins. With in-
creased weight on the KL loss, encodings become less sharp,
as indicated by blurrier colorings, and distinctions of points
within basins fade. At high enough βreg, the data are par-
titioned in two, with separation occurring across the highest
saddle. As implied by the disappearance of the smaller peak
in Fig. 2b, both the least and most complex decoder mod-
els (MSE and autoregressive flow, respectively) fail to encode
anything other than noise at high enough values of βreg. For
an MSE decoder, systematic coloring disappears and no col-
lective variable is identified for βreg ≥ 1, while this transition
occurs around βreg = 5 for the flow decoder.

Rather than coloring input data by latent values, we plot
and color reconstructions sampled from the probability distri-
butions defined by decoding models in Fig. 2d. It is readily
apparent that the MSE decoder, with a fixed variance of 1, is
unable to reproduce the data’s distribution, even though pre-
cise decodings, as well as decoder mean representations, are
learned with βreg = 0. With the KL loss equally weighted
against the reconstruction loss at βreg = 1, the MSE decoder
simply gives up on any type of useful encoding because the
reconstruction is essentially equally poor with or without the
latent space. The situation might be improved somewhat by
whitening the input data (in this system increasing its vari-
ance), but this cannot account for the fact that the local vari-
ance of the data changes for a given basin with unique cur-
vature. As a result, whitening may extend the threshold of
βreg for which a meaningful latent space is learned, but the
reconstructions will undergo only marginal improvement, un-

less a transformation is employed to somehow locally whiten
all free energy basins. A simpler solution is to predict both
means and variances of the decoder distributions, as in the
conditionally independent model. Reconstructions are signifi-
cantly improved over the MSE decoder and the regularization
strength can be used to tune the features learned in the latent
space.

For all decoders more powerful than the MSE, reconstruc-
tions are better in higher-probability (lower free energy) re-
gions of phase space, coinciding with sharper coloring that
indicates more precise encodings in these areas. With autore-
gression, and hence correlations between x and y, the shape
of the lowest free energy basin is maintained even when reg-
ularization strength becomes large enough to prevent precise
encodings altogether. Starting at βreg = 2 the latent space only
divides phase space in two and a conditionally independent
Gaussian model is unable to account for the covariance be-
tween coordinates around the free energy minimum. With an
autoregressive flow, the distribution of the data may be learned
without any latent information, which is why reconstructions
remain reasonable even after the encoder produces only noise.
Over three independent training runs, however, we observe
that the autoregressive flow consistently learns structured la-
tent spaces when βreg < 5, which we show later depends on
the training protocol and the presence of degenerate minima
in the loss.

Most of the behaviors discussed in Fig. 2 are summarized
more succinctly through the metrics shown in Fig. 3. As
explicitly defined in Eq. 14, the average JD between encod-
ing distributions measures the overlap between q(z|xi) and
q(z|x j) over many i and j from the training dataset. Large val-
ues are consistently observed for βreg = 0, indicating that each
data point is placed in its own small volume of latent space,
or that colorings are sharp in Fig. 2c. Such data memoriza-
tion is expected with only reconstruction terms in the loss and
no regularization effect encouraging minimal usage of latent
coordinates. Low average JDencode coincides with encoding
only noise and no systematic coloring in Fig. 2c. The middle
panel of Fig. 3 summarizes how closely a latent distribution
P(z) resembles a normal distribution with the same mean but
a variance of 1. Corresponding to Fig. 2b, we see that JDprior
decreases with increasing regularization strength, indicating
that the latent distribution becomes more like a standard nor-
mal. Though the average JDencode and JDprior are typically cor-
related, this need not be the case and they each provide useful
information for understanding the encoding. While both must
be low to obtain a low KL divergence and an unused latent
space, JDprior can become small while the average JDencode
remains large — the latent distribution is then simple and uni-
modal, but the latent dimension is still being utilized to dif-
ferentiate data (e.g., Fig. 4). The quality of reconstructions
in Fig. 2d are correlated to facc in Fig. 3. If the fraction of
accepted VAE-based MC moves is 1, the VAE model has ex-
actly learned the probability density of the data. Interestingly,
facc is always close to 0 when βreg = 0, which shows that this
metric distinguishes between memorizing data and learning a
probabilistic model for the data. An MSE decoder always has
a low facc for the Mueller potential, while the autoregressive
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(a) (b)

(c) (d)

FIG. 2. VAEs trained on data from MC simulations of the (a) 2D Mueller potential learn (b) 1D latent distributions P(z) that depend on both
the decoding model and regularization strength βreg. Coordinates of (c) 2D Mueller potential data and (d) reconstructions generated by trained
VAE models. Coloring in (c) and (d) is by the value of the latent space coordinate z drawn from encoding distributions of each input data point
(i.e., q(z|xi)) in (c) and in turn used to generate the decoding distribution P(xi|z) from which the reconstructions in (d) are drawn. Decoder
model complexity increases across rows and regularization strength increases moving down columns.

and autoregressive flow decoders maintain high acceptance
even with high regularization. When reconstructions begin to
break down around βreg = 2 for the conditionally independent
decoder, facc correspondingly drops.

We turn to a number of even simpler systems, starting with
an independent 2D Gaussian, to better understand the behav-
ior of our proposed latent metrics, as well as to highlight var-
ious issues that may arise in identifying latent spaces with
VAEs. For a simple 2D Gaussian of unit variance, all de-
coder models can exactly learn the probability density with-
out usage of the latent space. With no KL loss term, how-
ever, all decoders learn structure that is not present in the data,
as indicated by sharp coloring of training data (Fig. 4a) and

high values of the average JDencode (Fig. 4b). This is despite
roughly normal latent distributions, as indicated by low values
of JDprior. As with the Mueller potential, facc is close to zero
for the highly structured latent spaces at βreg = 0, alerting us
to the fact that the VAE has not learned an accurate model for
the probability density of the training data. With βreg = 0, the
MSE decoder will approach functioning as a standard autoen-
coder with a deterministic encoding and mean-squared error
loss. This is clear in Fig. 4a, where there is strong similarity
between the erroneously learned latent structures of the stan-
dard autoencoder and the VAE with an MSE decoder. The en-
coding distributions of the MSE decoder approach delta func-
tions to mimic a deterministic encoding without the influence
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FIG. 3. As a function of regularization strength βreg, we compare la-
tent spaces learned with different decoding models in terms of the av-
erage JD between encoding distributions (top), the JD of the learned
latent distribution P(z), or prior, from a standard normal with match-
ing mean and unit variance (middle), and the fraction of accepted
VAE-based MC moves (bottom). Error bars represent the standard
deviation over three independent training runs.

of the KL loss. Interestingly, the MSE decoder is the only
model that does not learn some structure in the latent space
when βreg = 1. Examining loss contributions across indepen-
dent training runs (Fig. S1), we see that the reconstruction
and KL losses tend to exactly compensate each other over a
moderate range of values so that the total loss with βreg = 1
remains the same. This exposes the presence of degenerate
solutions within some range of reconstruction and KL loss
values for all models but the MSE decoder, with higher reg-
ularization strengths driving the KL term to zero but leaving
the total loss unchanged.

A 2D distribution consisting of independent Gaussian mix-
tures (Fig. 5a) poses a challenge in distinguishing nearly equal
free energy basins within the latent space. VAEs with MSE
decoders are the only models that consistently learn a latent
space partitioned into four separate populations (Fig. S2).
Each of the Gaussian distributions in the mixture is of unit
variance with the mean shifted. A successful strategy for a de-
coder is to learn the locations of the means for each basin, en-
coding this information in latent space, and always setting the
variance to 1 for the decoding probability distribution. Since
its variance is already fixed to 1, the MSE decoder readily
learns a latent space distinguishing the four basins, but sim-
ilar latent space partitioning poses a difficulty for the more
complicated decoder models.

Fig. 5b demonstrates that different training runs arrive at
distinct solutions for βreg = 1 with different balances of re-
construction and KL divergence loss values with an autore-
gressive decoder. While variations in the total loss are rela-
tively small (ranging from 4.26 to 4.75), the lowest total loss
value of 4.26 (second lowest at 4.28 for three latent peaks)
is indeed associated with a learned latent space that contains
four distinct populations (run 1 in Fig. 5b-c). Interestingly,
facc is a more sensitive metric of VAE and latent-space qual-
ity for this system, displaying larger differences than the total
loss with acceptance rates of 0.88 and 0.69 for latent spaces
with four and three peaks (runs 1 and 2 in Fig. 5b-c). Due to
the highly flexible nature of the prior with a flow, it is possible
for any VAE, regardless of decoder model, to learn a partition-
ing of the free energy basins in latent space, but this is difficult
due to the presence of many local minima in the optimization
landscape for all but the MSE decoder. Variations in loss val-
ues across training runs at βreg values of 1 and 2 for the con-
ditionally independent and autoregressive decoders (Fig. 5b
and Fig. S3) provide evidence for these local minima. Both
the conditionally independent and autoregressive decoders are
theoretically capable of matching the performance of the MSE
decoder in Fig. 5d, where facc is high and the latent space re-
mains utilized and structured (high JDprior) at high regulariza-
tion strength. However, this is only observed for a single run
of the autoregressive decoder, with all other runs falling into
local minima that partition the data into two or three peaks in
latent space. The flow decoder instead exhibits issues with
degenerate minima, as observed in Fig. S3, with different
training runs resulting in identical total loss values yet dif-
ferent balances of reconstruction and KL terms at βreg = 1.
Correspondingly, total losses (Fig. S3) and facc (Fig. 5d) re-
main indistinguishable within fluctuations for disparately or-
ganized latent spaces in Fig. S2, including for those that are
unstructured at higher βreg values. These results point to the
fact that a flow decoder is capable of modeling the 2D inde-
pendent bimodal Gaussian probability density without a latent
space, which is also clear from simultaneously high values of
facc and low average JDencode for all βreg ≥ 1 (Fig. 5d). Taken
all together, our results for this system indicate that the most
meaningful latent space, and the most control over the latent
space, will be attained with a decoder model that best matches
the physics of the underlying data. This does not necessarily
mean the most expressive model should be selected, but rather
the decoder that is most effectively constrained in its prob-
abilistic modeling capabilities to best match the underlying
probability density to be learned.

Next, we consider a “Beltway” potential similar to that pro-
posed by Chen, Sidky, and Ferguson 16 , where the choice of
input coordinates significantly changes the difficulty of the
modeling task. Though this touches on feature engineering,
that is not our focus — as we will show, the choice of co-
ordinate system should also impact which decoder model is
selected. Fig. 6a reveals that VAEs trained to learn the dis-
tribution of data in Cartesian coordinates tend to learn latent
encodings that are mixtures of the radial and angular coordi-
nates. This balance is strongly shifted to angular coordinates
for a standard autoencoder with a deterministic encoding and
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(a) (b)

FIG. 4. (a) Data drawn from an independent 2D Gaussian distribution (mean of (−3,−3) and unit variance in both x and y dimensions, as
described in Section II C) are colored by encoded 1D latent values for single training runs of various VAE models at differing regularization
strengths. AE indicates a standard autoencoder with no variational distribution (a deterministic encoding) and a mean-squared error loss for
the decoding. Decoder model complexity increases across rows while regularization strength βreg increases moving down columns. (b) Latent
space metrics as in Fig. 3 but for VAE models trained on independent 2D Gaussian data are plotted versus regularization strength. Error bars
represent the standard deviation over six independent training runs.

for a VAE with an MSE decoder. While the natural coordinate
system is clearly polar due to the spherical symmetry, and
the encoders are capable of learning non-linear mappings to
radial distances or angles, training consistently favors recon-
structions of Cartesian coordinates based on a single latent co-
ordinate that encodes some combination of Cartesian values.
Specifying that the decoding probability distributions should
apply to polar coordinates instead leads all decoder models
but MSE to learn a latent space matching the radial direction
(Fig. 6b). As the data are uniform in the angular coordinate,
VAEs focus on modeling the bimodal radial probability den-
sity, which cannot be modeled without latent space informa-
tion except in the case of the flow decoder. The MSE decoder
cannot differentiate radial values due to a variance along this
coordinate smaller than 1. Instead, the MSE decoder focuses
on the higher variance angular coordinate since it is possible
for it to partition this space. Overall, much higher acceptance
rates are observed for VAEs predicting polar coordinates, as
shown in Fig. 6c. While average JDencode values drop for all
models around βreg = 2 and the latent space is no longer uti-
lized, the powerful flow decoder continues to maintain high
facc values.

Molecular systems, even simple ones like alanine dipep-
tide, increase both the dimensionality and complexity of the
underlying probability density of the training data. With an
internal coordinate system (bond-angle-torsion, or BAT, co-
ordinates), modeling of the data’s probability density is sig-
nificantly improved, as shown by much higher facc values
in Fig. 7 compared to translationally and rotationally aligned

Cartesian atomic coordinates. Average JDencode values drop
off more quickly with βreg when predicting BAT coordinates
for all models but the MSE decoder (Fig. 7). This suggests
that modeling the probability density of BAT coordinates is
an easier task, not requiring significant latent space usage for
either the autoregressive or flow decoders. Easier modeling of
BAT representations compared to Cartesian coordinates likely
stems from reduced correlations between degrees of freedom
and simpler distributions that better match the chosen decoder
distributions (e.g., Gaussian or von Mises distributions, as de-
scribed in Section II). Since modeling Cartesian data (with all
or only heavy atoms) is more difficult, the MSE decoder more
quickly gives up on using the latent space whereas all other
decoder models maintain a similar JDencode for all βreg ≥ 1.
In contrast to all other systems and models, values of JDprior
increase with βreg for the autoregressive and flow decoders
predicting alanine dipeptide Cartesian coordinates (with or
without hydrogens). In these training runs, slight increases in
encoder distribution overlap (lower average JDencode) allows
the KL loss to decrease with increased βreg even as P(z) be-
comes less like a standard normal distribution. This means
that conformational space is more sharply partitioned by the
latent space but that configurations within each partitioned re-
gion are less precisely encoded. These results reinforce the
use of both the average JDencode and JDprior to understand la-
tent space structure.

Fig. 8 provides information on the probabilistic indepen-
dence and usage of latent dimensions. As described in Sec-
tion II, the total correlation is lower if latent dimensions are
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FIG. 5. (a) The free energy is shown for independent, identical Gaussian mixtures in each dimension, as described in Section II C. Data
generated from this distribution are used to train VAE models with varying decoders and regularization strengths. (b) Contributions to the
loss throughout independent training runs are shown for VAEs with autoregressive decoding models. Vertical dashed lines indicate the end
of the annealing period in moving from a lower to a higher value of βreg, with training within each run occurring sequentially from one
regularization strength to the next. (c) Learned latent distributions P(z) are shown for all runs of the autoregressive decoding model at the ends
of training periods at different regularization strengths. (d) Various latent space metrics defined in Section II B and in Fig. 3 are plotted versus
regularization strength. Error bars represent the standard deviation over six independent training runs.

independent from each other in a probabilistic sense. This
does not necessarily imply that these directions are orthogonal
in a spatial sense, but does indicate that they encode unique
information. As we increase βreg we observe a decrease in
the total correlation (Fig. 8), which is typical and is the ba-
sis for the idea that increased weighting of the KL loss term
leads VAEs to learn more “disentangled” representations15.
However, total correlation may decrease when the KL loss
decreases due to lower utilization of latent dimensions, which
does not necessarily lead to meaningful disentanglements. We
have noted throughout that the average JDencode tends to in-
dicate if a latent space is utilized — if this quantity is low,
encoding distributions overlap significantly and do not distin-
guish between input configurations. Examining data over all
trained models for all systems (Fig. S5), a threshold of−1 for
the base-10 logarithm of the average JDencode seems to dis-

tinguish between active and inactive latent spaces. We apply
this threshold in a dimension-wise fashion to VAEs trained on
alanine dipeptide data in the bottom panel of Fig. 8, calculat-
ing the average number of active latent dimensions versus βreg
for models with either 2 or 4 latents. With Cartesian coordi-
nates, all models but the MSE decoder are able to maintain
high numbers of active dimensions while total correlation de-
creases. The situation is reversed for BAT coordinates up to
βreg = 5, again indicating that this coordinate representation is
easier to model and powerful decoders do not need to make as
extensive use of the latent space. Techniques have also been
proposed to enforce more meaningful disentanglements (i.e.,
independent latent dimensions) by only penalizing the total
correlation and not the entire KL loss18. However, encod-
ing independent noise is always a trivial solution to minimiz-
ing the total correlation, which may result from increasing the
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FIG. 6. Training data generated by a “Beltway” potential described
in Section II C are colored by learned 1D latent values for VAEs
trained to reproduce (a) Cartesian or (b) polar coordinates. AE indi-
cates a standard autoencoder with no variational distribution (a deter-
ministic encoding) and a mean-squared error loss for the decoding.
Decoder model complexity increases across rows while regulariza-
tion strength βreg increases moving down columns. (c) Latent space
metrics defined in Section II B and in Fig. 3 are plotted versus regu-
larization strength for each coordinate system. Error bars represent
the standard deviation over three independent training runs.

weight on both the full KL divergence or the total correlation
alone. Further, as Locatello et al. 21 point out, even latent
spaces with low total correlation may not be meaningfully
disentangled to a human due to natural degeneracies, such
as equivalent linear combinations. Indeed, 2D latent spaces
learned for alanine dipeptide tend to distinguish free energy
basins, but identify nonlinear combinations of the φ and ψ

backbone dihedrals rather than cleanly separating them (Figs.
S6-8). Error bars in Fig. 8 also indicate a large amount of vari-
ation over independent training runs, which was also observed
by Locatello et al. 21 and led the authors to conclude that there
is no significant difference in disentanglement between penal-
izing the full KL loss or only the total correlation.

IV. DISCUSSION

Across all systems, we observed many local minima due
to significant compensation between reconstruction and KL
divergence contributions to the loss. In some cases, these
represent minima of indistinguishable total loss values, while
in others the losses differ by small yet significant amounts,
differentiating local from global minima. Either way, this
presents difficulties with training VAEs and can impact the
learned latent space, which in turn will change the perfor-
mance of an enhanced sampling protocol or the interpretations
drawn from an encoding. Fu et al. 48 suggested more sophis-
ticated annealing protocols involving both increasing and de-
creasing βreg to alleviate these issues. In this spirit, we trained
VAE models for the Mueller potential in reverse, starting with
the trained models at βreg = 10 and annealing back to βreg = 1
in the same manner as described in Section II. Figs. S9-S11
reveal that results are reversible for the MSE and condition-
ally independent decoders, but not for the autoregressive and
flow decoders. Moving back to βreg = 1, the autoregressive
decoder does not regain the latent structuring observed in the
lowest free energy basin, instead keeping the KL term low at
the expense of a higher reconstruction loss (Figs. S10-S11).
This represents a degenerate minima, as the total loss averaged
across three independent training runs varies by less then 1%
between the forward and reverse annealing protocols. Based
on Welch’s t-test, the total losses do not significantly differ,
with a p-value of 0.886 (Table S1). Similarly, the flow de-
coder produces solutions of equal total loss with many differ-
ent latent structures, including encoding no information in the
latent space, also indicating degenerate minima (Table S1).
While annealing in both directions may thus help in identi-
fying degenerate solutions, it does not change the fact that
such solutions seem common in sufficiently powerful decod-
ing models.

Nonetheless, adjusting the regularization strength tips the
balance between the reconstruction and KL loss terms and can
adjust the resolution of the latent features that are learned.
This was consistently observed across all systems through
merging of distinct populations in latent space and overall
less specific encodings (i.e., decreasing JDencode). Transitions,
however, may be quite sharp depending on the system and de-
coding model, with latent features dropped suddenly. Another
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FIG. 7. Latent space metrics defined in Section II B and in Fig. 3 are plotted versus regularization strength for VAEs trained to model
alanine dipeptide data in different coordinate systems. All results shown are based on VAE models with 2D latent spaces, though results
are qualitatively similar in 1D and 4D cases (Fig. S4). VAE-based MC simulations are not possible for VAEs that only predict heavy-atom
coordinates, and so facc values are not displayed for that case. Error bars represent the standard deviation over three independent training runs.

way to adjust learned latent features is of course through the
choice of decoder model. While we have focused here on
adjusting the modeling power of the decoding model, our re-
sults demonstrate that the focus should be on utilizing flexible
probabilistic models with prior knowledge incorporated into
restraints on their form. This is what led the less powerful
MSE decoder to excellent performance on the toy Gaussian
systems discussed in Figs. 4 and 5. A similar strategy was
also outlined by Chen et al. 13 to tune the convolution filter
size in autoregressive decoding models for images in order to
focus the latent space on more global features of an image.
In all of our autoregressive and flow decoders, we allow full
coupling between degrees of freedom. We can easily mod-
ify this by adjusting masks on neural networks composing the
autoregressive models so that only local correlations between
spatially nearby degrees of freedom are built into the decoder.
This represents a promising strategy for focusing VAEs on
global CVs of biomolecules or self-assembling fluids.

Though we have employed highly flexible prior distri-
butions throughout, more tailored models for P(z) taking
prior knowledge into account could also help focus atten-
tion on specific desirable aspects of CVs. For instance,
applying Gaussian mixture priors and matching encoder
distributions10,11 explicitly encourages a VAE to learn latent
spaces that cluster data. Priors with flows also allow for clus-
tering, but this must be interrogated from the latent space after
training and, as we saw in Fig. 5, learned clusters may be dif-
ferent with every training run due to many local minima in the
optimization.

More flexible encoding distributions, such as those allow-
ing multimodality, could also improve the expressivity of the
latent encoding. This might be desirable in some cases, but

generally the encoding should represent a compression and
loss of information, and so simpler encoding distributions are
desirable to focus on obtaining minimally complex yet maxi-
mally informative low-dimensional representations. Nonethe-
less, a relatively simple modification to enable simultaneous
learning of both non-periodic and explicitly periodic latent co-
ordinates, as discussed by Chen, Tan, and Ferguson 3 for stan-
dard autoencoders, would be to make the variational encoding
distributions follow von Mises forms. This requires that sam-
pling from the von Mises distribution be performed such that
gradients of the sampling operation exist, which is possible
through recently proposed, efficient, unbiased approximations
of gradients49. The flows that we have applied can preserve
periodicity50, if present, further generalizing the prior in our
VAE model. While relatively simple and worthy of study, the
proposed switch from Gaussian encoding distributions would
require investigations outside the scope of this work. Beyond
these modifications, flows on priors could include full autore-
gression. We argue, however, that probabilistic independence
of latent coordinates is a desirable quality and so encouraging
this through conditionally independent encoding distributions
and non-autoregressive flow is sufficient.

Most importantly, our results highlight the interplay be-
tween system complexity, decoder power, and latent space
usage. We have shown that decoder models of intermediate
modeling power, the conditionally independent and autore-
gressive models, tend to identify meaningful CVs over a wider
range of βreg values than either the less expressive MSE de-
coder or the powerful flow decoder. However, the specific
regularization strength at which a model stops encoding in-
formation in the latent space depends on the specific system
features that the decoder can capture. Across all systems and
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FIG. 8. (top) Total correlation assessing the probabilistic independence of latent space dimensions, and (bottom) estimates of the number of
active latent dimensions based on the average number of latent dimensions with log10 of the average JDencode less than −1. For all VAEs
trained on alanine dipeptide data in various coordinate systems, results are shown for models with either 2 or 4 latent dimensions. Error bars
represent the standard deviation over three independent training runs.

decoder models, JDencode sharply distinguishes latent space
usage (Fig. S5). However, each transition of JDencode occurs
at a different level of regularization strength depending on the
system and model. Both the total loss and facc indicate the
appropriateness of different decoders for modeling a particu-
lar system, though only facc can be compared across systems.
Low facc, however, does not necessarily mean that a model
fails to utilize the latent space. Modeling the Cartesian coor-
dinates of alanine dipeptide results in low facc for all decoders
but typically involves high latent space usage, likely because
the difficulty of the modeling task means large improvements
in the reconstruction loss are possible at a small cost to the
KL loss. Alternatively, high facc can occur in situations where
the latent space is not utilized, as is commonly observed with
the powerful flow decoder or when the system is exceedingly
simple, as in the case of 2D independent Gaussians. While
JDencode identifies a utilized latent space, we are not aware of
general metrics agnostic to system and model that can be used
to identify generic boundaries to define when this will occur.
Though intriguing and potentially useful, we expect metrics
measuring the difficulty of the modeling task and model suit-
ability to be elusive. As for facc and the total loss, such met-
rics will tend to depend on the specifics of the system, the
chosen number of latent dimensions, and the specific proba-
bilistic form of the decoder.

V. CONCLUSIONS

Our results clearly illustrate that, when an appropriate bal-
ance is found between reconstruction and KL loss terms, VAE
training focuses on learning the probability density of the in-
put data. This leads to many desirable features of learned CVs,
including smoothness and less of a tendency than standard au-
toencoders to “memorize” data, which can result in unnec-
essarily (and misleadingly) structured latent spaces (e.g., for
simple 2D Gaussian data shown in Fig. 4). With a flexible,
learned prior, here implemented through normalizing flows,
VAEs can learn complicated CVs and their probability den-
sity P(z) (or equivalently the free energy along the CV) with-
out introduction of prior assumptions, such as the number of
expected clusters in the data. Our results demonstrate, how-
ever, that the learned latent space will only reflect information
useful to the decoding model. This leads to unused latents
for either too simple or overly powerful decoding probabil-
ity distributions, as was particularly clear when applying the
MSE and flow decoders to Mueller potential data (Fig. 2).
Adjusting the regularization strength (relative weight of re-
construction and KL loss terms) can help ensure that a VAE
learns more than noise for a CV and can also help tune the
resolution of learned low-dimensional features, or structure of
the latent space. Enabling these insights, especially in more
complicated molecular systems like alanine dipeptide, is the
set of quantitative metrics we present here for characterizing
VAE performance and latent space structure. In particular,
JDencode usefully probes latent space usage and facc assesses
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VAE model quality.
Decoder power itself can also tune the resolution of learned

features within the latent space, which suggests promising op-
portunities in designing decoder probabilistic structures that
incorporate knowledge of molecular physics to focus learn-
ing of CVs on global, long-range structure of the data. At a
minimum, however, we recommend including prediction of
decoder variances and caution against fixing the variance of
the decoder model (i.e., using the MSE loss). Such assump-
tions are likely to lead to blurring of multimodal features in
the latent space (e.g., Fig. 2b) and the resulting models will
not be capable of capturing the common scenario of multi-
ple free energy basins with differing shapes and depths, as
was observed for both the Mueller and “Beltway” potentials.
MSE decoders only outperformed other models for the cases
of 2D independent Gaussians and Gaussian mixtures (Figs. 4-
5), where the assumption in the MSE model of unit variance
exactly matched the data. If there is good reason to believe
a degree of freedom has a unimodal, approximately Gaus-
sian distribution in a simulation, a fixed variance decoder with
whitened input may be appropriate, though we argue this is
relatively uncommon in simulations of molecular fluids or
biomolecules. While normalizing flows represent a powerful
method for modeling probability densities, we also encour-
age moderation in their use within decoders. In most systems
studied here, flow decoders increase facc by a factor of at least
2 over even autoregressive decoders. However, they also fre-
quently drive the average JDencode to less than 10−1, indicating
an unused latent space at even low values of βreg, with such
scenarios appearing as degenerate solutions with low KL loss
contributions. Future research is necessary to identify how
such powerful decoding models can be applied (e.g., design-
ing a flow for local versus global probabilistic dependence)
while ensuring that the latent space is utilized. Decoding mod-
els more tailored for molecular simulation applications may
also alleviate difficulties associated with increasing numbers
of degenerate minima with higher decoder complexity.

SUPPLEMENTARY MATERIAL

Supplementary figures and tables as well as schematics de-
tailing the architectures of all models.
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