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Machine learning (ML) has the 
potential to influence our dig-
ital world in a variety of criti-
cal application domains. Busi-

nesses make better decisions via product 
recommendations, advertising, and trading 
algorithms based on artificial intelligence 
(AI), while users benefit from automated 
machine translation, speech recognition, 
and voice assistants enabled by AI. Recently, 
advances in the development of new deep 
learning architectures, such as transformer 
models, have led to impressive accuracy in 
machine translation and natural language 
processing (NLP). With the success of AI in 
these domains, we expect more advances 
and deployment in other critical areas, in-
cluding medical domains, cybersecurity, 
and autonomous vehicles, in the near future.

With the wide adoption of ML and deep 
learning, motivated adversaries will have 
strong incentives to manipulate the results 
and models generated by these algorithms 
and influence the systems that depend 
on ML. We argue that the security of AI 
needs to be studied in more depth before 
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the methods and algorithms can be 
actually deployed safely in critical 
settings. The area of adversarial ML, 
which studies the resilience of AI al-
gorithms against attacks, has revealed 
numerous mechanisms attackers 
could exploit in different phases of the 
learning process to achieve their mali-
cious goals. 

In poisoning attacks, attackers can 
deliberately add malicious samples 
in the training phase to manipulate 
the trained ML model and change the 
generated predictions. An evasion 
attack is developed after the model is 
deployed in practice, and it requires 

an attacker to modify specific data 
samples (called adversarial examples) 
to induce their misclassification to 
a desired output label. For example, 
an attacker could try to poison a mal-
ware detection classifier by adding 
poisoned data to a crowdsourced ser-
vice, such as VirusTotal, used by many 
security companies to extract samples 
for training ML models. To evade a 
malware classifier deployed in a Win-
dows machine, the attacker needs to 
transform a malicious binary file into 
an adversarial example to induce a be-
nign classification while preserving 
its functionality.

The difference between evasion 
attacks, which are used at model de-
ployment time, and poisoning at-
tacks, which require training data 
modification, is shown graphically 
in Figure 1. In evasion attacks, an 
adversary creates adversarial exam-
ples by adding small perturbations 
to testing samples to induce their 
misclassification at model deploy-
ment time. Poisoning attacks require 
the modification of training data 
(either the data samples or labels) to 
poison a model at training time. The 
impact of the poisoning attacks at 
model deployment time is to induce 

FIGURE 1. A comparison between (a) evasion attacks and (b) poisoning attacks.
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misclassification on a subset of test-
ing samples.

The vulnerability of AI against both 
poisoning and evasion attacks is one 
of the main impediments of AI devel-
opment in industry and, especially, in 
critical settings, such as cybersecu-
rity, health care, and connected cars. 
Several previous works recognize the 
risk of adversarial attacks on AI.1,2 
We discuss, in the rest of this article, 
the threat of poisoning attacks during 
the training phase of ML and the chal-
lenges of developing defenses.

POISONING ATTACKS IN ML
An important threat against ML sys-
tems is the potential adversarial con-
trol of the training data or the training 
process, with the goal of modifying 
model predictions at deployment time 
on a subset of the testing data, as shown 
in Figure 1. Poisoning attacks have 
a long history, with the first attacks 
being developed for worm signatures 
more than 15 years ago.3 Recently, a 
Microsoft industry survey revealed 
that poisoning attacks are perceived 
as the most critical ML vulnerability in 
industry, being the main reason why 
companies might not deploy ML in 
production.4 In addition, we are expe-
riencing the rise of supply chain vul-
nerabilities introduced in software, as 
seen in the SolarWinds attack in 2020, 
and ML software pipelines are equally 
vulnerable to these threats. 

While the ML training algorithms 
themselves need to be protected 
against these types of software vul-
nerabilities, ML relies on good-quality 
training data for learning accurate 
models. Data poisoning attacks con-
sider the risk of training data being 
partially under the control of an adver-
sary, while model poisoning attacks 
consider the risk of the ML model be-
ing compromised.

In 2018, the National Institute of 
Standards and Technology created a 
framework for the attack taxonomy 
and classification of adversarial ML 
techniques.5 In that report, the authors 
developed a conceptual hierarchy that 

includes the main types of attacks, de-
fenses, and consequences. This termi-
nology can be used for assessing and 
managing the security of ML systems. 
Given the advances in poisoning re-
search in recent years, we describe an 
updated taxonomy for data poisoning 
attacks that distinguishes poisoning 
attacks based on the attacker objective 
and, in particular, the testing samples 
impacted by the attack at model de-
ployment time:

 › Availability attacks: The entire 
ML model is corrupted in an 
availability attack, resulting 
in model misclassification on 
the majority of testing samples. 
A simple availability attack is 
label flipping, in which a class 
is attacked by inserting samples 
selected from that class, with 
labels from a target class. Op-
timization-based attacks have 
been originally shown against 
support vector machine (SVM)6 
and, subsequently, against other 
models such as linear regres-
sion7 and neural networks.8 
A successful availability attack 
reduces the model accuracy con-
siderably, making it unusable in 
realistic scenarios.

 › Targeted attacks: In contrast, the 
impact of a targeted attack is lo-
calized to one or a small number 
of testing samples.9 The model 
performs well on the majority of 
testing samples but not on the 
targeted samples, making this 
attack particularly difficult to 
detect. There is a requirement 
that the attacker have knowl-
edge of the exact targeted test-
ing samples at training time.

 › Backdoor attacks: An attacker 
introduces backdoors into a set 
of training examples, which 
trigger the model to misclassify 
samples with the same backdoor 
pattern at testing time. In the 
original backdoor attacks, the 
backdoor patterns are fixed10 
(for example, a small set of 

pixels in the corner of an image), 
while, in more recent attacks, 
they might be dynamic11  
or semantic.12

 › Subpopulation attacks: These 
attacks impact a subpopulation 
of the attacker’s choice, while 
retaining model accuracy on 
the rest of the testing sam-
ples.13 Subpopulations consist 
of points with similar feature 
representations, and the size of 
the subpopulations determines 
the overall impact of these 
attacks. Subpopulation attacks 
interpolate between targeted 
and availability attacks (de-
pending on the subpopulation 
size), and they generalize to 
misclassify points from the 
target subpopulation at model 
deployment time.

In addition to the poisoning attack 
objective considered for this classifica-
tion, other dimensions of interest are 
as follows:

 › The attacker’s knowledge: White-
box attacks assume full knowl-
edge of the training data and 
model parameters, black-box 
attacks operate under no adver-
sarial knowledge, and gray-box 
attacks have partial knowledge 
of the model and training data.

 › The attacker’s capabilities: These 
describe the means through 
which the attacker can exercise 
control over the training process. 
For example, can the attacker in-
sert new poisoned data or modify 
existing training samples? What 
percentage of the training data 
is under adversarial control? 
Can the attacker change the 
label of poisoned data or only 
the features? Can the adversary 
modify the testing samples? A 
class of realistic attacks is that 
of clean-label attacks, in which 
the adversary controls only the 
features of the poisoned samples 
but not their labels.
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Table 1 shows these four categories 
of poisoning attacks as well as the at-
tacker’s capabilities and goal, the ML 
models the attacks have been eval-
uated against, and data modalities 
the attacks have been applied to (for 
example, vision, text, cybersecurity, 
and tabular data). A recent survey 
provides more detailed classification 
of poisoning attacks.14 In the next 
section, we describe two case studies 
of poisoning attacks in cybersecurity 
and NLP applications.

CASE STUDIES

Poisoning attacks  
in cybersecurity
The first poisoning instances in cy-
bersecurity were the attacks against 
worm signatures by Perdisci et al.3 and 
the attack against spam classifiers by 
Nelson et al.15 More recently, Severi et 
al.16 created clean-label backdoor poi-
soning attacks against malware clas-
sifiers trained on data crowdsourced 
from threat intelligence platforms, 
such as VirusTotal. Using techniques 
from ML explainability, in particular, 
SHAP values, they show how to select a 
small set of relevant features and their 
values to create a backdoor trigger in 
benign files. When the same backdoor 
trigger is inserted into malicious files 
at testing time, the classifier is misled 
to output the benign class. With only 

a small number of poisoning samples 
(on the order of 1 or 2%) and a small 
backdoor trigger (eight to 32 features), 
a LightGBM model and a deep neural 
network model trained on the Ember 
data set of 600,000 Windows PE files 
are vulnerable to this attack. An im-
portant lesson from this work is that 
ML interpretability methods, while 
crucial to help understand ML predic-
tions, might also open up new avenues 
of attack against ML.

Poisoning attacks in NLP
Unlike image classification, the construc-
tion of meaningful and hard-to-detect 
poisoning samples is more challeng-
ing because changing even one word 
of a paragraph can change its meaning. 
While, in computer vision tasks, poi-
soning samples are unconstrained in a 
continuous space, in NLP tasks, the ad-
versarial text needs to consider the 
grammar correctness, syntax correct-
ness, and semantic preservation. Early 
backdoor attacks in NLP did not respect 
the semantic meaning of the poisoned 
samples, but several recent papers ad-
dress the semantic constraints when 
generating poisoned samples. Chen 
et  al.17 introduce semantic-preserv-
ing character-level, word-level, and 
sentence-level triggers for sentiment 
analysis and neural machine transla-
tion and perform user studies to evalu-
ate the methods.

Li et al.18 generate hidden back-
doors against transformer-based NLP 
models using generative language 
models for three NLP tasks: toxic com-
ment detection, neural machine trans-
lation, and question answering. These 
attacks are stealthy and difficult to 
detect by humans, demonstrating that 
poisoning is a real threat in NLP.

POISONING DEFENSES AND 
REMAINING CHALLENGES
Several approaches for defending 
against poisoning attacks have been 
proposed in the literature. Among 
these, we would like to highlight the 
following categories:

 › Training data sanitization: This 
class of defenses analyzes the 
training data to detect and 
isolate the poisoning points by 
using outlier detection meth-
ods, clustering, or anomaly 
detection. The challenge of 
sanitization is to retain relevant 
data samples, which are critical 
for the model’s generalization. 
The provenance of training 
data could also help determine 
the source of the data and the 
amount of trust that can be 
placed in each sample.

 › Robust optimization: These de-
fense methods work by modify-
ing the optimization procedure 

TABLE 1. The taxonomy of poisoning attacks.

Attack Attacker Capability Attacker Goal ML Models Data Modality

Poisoning 
availability

Poison a large percentage of 
training data

Modify ML model 
indiscriminately

• Linear regression
• Logistic regression,  

SVM, and DNNs

• Vision
• Tabular data
• Security

Backdoor 
poisoning

Insert a backdoor in training 
and testing data

Misclassify backdoored 
examples

• DNNs
• LightGBM, DNNs, RF,  

and SVM

• Vision
• Tabular data 
• Security

Targeted 
poisoning

Insert poisoned points in 
training

Misclassify targeted point • DNNs
• Word embeddings

• Vision
• Text

Subpopulation 
poisoning

Identify subpopulation 
Insert poisoned points from 
subpopulation

Misclassify natural points 
from subpopulation

• Logistic regression  
and DNNs

• Vision
• Tabular data
• Text

DNN: deep neural network; RF: random forest. 
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for training the ML model. For 
example, robust loss functions 
can be used as objectives in the 
optimization formulation of 
ML training instead of stan-
dard loss functions to limit the 
influence of poisoned samples 
to the model.7 Certified defenses 
based on randomization provide 
strong guarantees of resilience 
for a certain percentage of  
corrupted samples for label- 
flipping attacks.19

 › Model inspection and repair: A 
class of defensive techniques 
based on inspecting the ML 
model has been proposed for 
backdoor attacks, for example, 
by Liu et al.20 These are based on 
the observations that backdoors 
exploit spare capacity in com-
plex deep neural networks and 
that samples with the backdoor 
trigger induce a difference in 
neuron activation. Some of the 
methods reverse engineer the 
trigger and also attempt to re-
pair the model without retrain-
ing it from scratch.

Most poisoning defenses have been 
proposed and evaluated in computer 
vision applications. Severi et al.16 
showed that some of the vision de-
fenses do not transfer directly to cyber-
security, and finding a defense against 
backdoor poisoning in security is still 
an open problem. Additionally, Jagiel-
ski et al.13 proved an impossibility re-
sult on defending against subpopula-
tion data poisoning attacks, under the 

assumption that the ML model makes 
local decisions. (That is, a prediction 
on a point is based on neighboring 
points in the training set.) These re-
cent results highlight the remaining 
challenges on designing resilient ML 
models against data poisoning at-
tacks. At the same time, it would be 
desirable to develop certified defenses 
in safety-critical applications with 
provable guarantees of model robust-
ness for certain adversarial behavior. 
So far, we are aware of only one cer-
tified defense against label-flipping 
attacks,19 but more work is needed for 
certification against more sophisti-
cated attacks. 

One last challenge we would like 
to mention in designing poisoning de-
fenses is the tradeoffs between model 
robustness and accuracy. Techniques 
such as randomization or data sanitiza-
tion typically induce a high cost in the 
model’s generalization and accuracy.

W e discussed the threat of 
poisoning attacks against 
the training phase of ML. 

Poisoning attacks could be classified 
into availability, targeted, backdoor, 
and subpopulation attacks, and they 
can be applied to data from multiple 
modalities and a diverse set of mod-
els. We described two case studies 
in cybersecurity and NLP. Finally, 
we highlight some remaining chal-
lenges for designing resilient defenses 
against poisoning attacks, a precon-
dition before deploying ML in critical 
applications. 
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