
Towards  a  Markerless  3D  Pose  Estimation  Tool  
Amaan  Rahman  

amaan.rahman@cooper.edu  
M.Eng.  and  B.E.  in  Electrical  Engineering  ’23,  The  Cooper  Union  

USA  

ABSTRACT  
Evaluation  of  exoskeleton  performance  benefts  from  standards  to  
verify  proper  functionality  and  safety.  Currently,  there  are  limited  
evaluation  methods  for  exoskeletons.  Measurement  methods  to  
evaluate  human-exoskeleton  kinematics  include  optical  tracking  
systems  (OTS)  and  inertial  measurement  units  (IMUs).  However,  
OTS  and  IMUs  can  be  intrusive,  requiring  the  attachment  of  markers  
or  sensors.  This  research  focuses  on  investigating  markerless  3D  
pose  estimation  algorithms  with  low-cost  red,  green,  blue  (RGB)  
cameras  to  determine  their  viability  as  methods  for  tracking  human  
joint  positions  and  deriving  skeletal  frame  orientations.  We  present  
a  tool  that  utilizes  state-of-the-art  3D  pose  estimation  algorithms  
to  generate  3D  pose  estimation  data.  Future  experiments  will  be  
performed  to  evaluate  the  viability  of  3D  pose  estimation  algorithms  
as  markerless  methods  for  joint  position  and  orientation  estimation.  

CCS  CONCEPTS  
•  Human-centered  computing  →  User  models; •  Computing  
methodologies  →  Object  detection; •  Software  and  its  engi-
neering  →  Application  specifc  development  environments.  
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1  INTRODUCTION  
Wearable  robotics  are  manufactured  for  the  purpose  of  physical  
load  reduction  on  the  subject’s  body  [11].  In  an  industrial  setting,  
exoskeletons  are  utilized  to  reduce  work  fatigue  and  provide  heavy  
load  assistance.  However,  limited  exoskeleton  standards  and  certif-
cations  cause  difculty  in  adopting  wearable  devices  in  industrial  
settings  [20].  

The  current  technologies  for  quantifying  human-exoskeleton  
performance  include  optical  tracking  systems  (OTS)  and  inertial  
measurement  units  (IMUs).  The  primary  beneft  of  marker-based  
OTS  is  high  precision  results[27].  However,  marker-based  meth-
ods  sufer  from  uncertainties  such  as  erroneous  placement  and  
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movement,  and  especially  for  exoskeleton  evaluations,  physical  
constraints  in  marker  placement  [10].  The  OTS  and  IMUs  require  
adhering  markers  or  sensors  on  the  subject.  Exoskeletons  intro-
duce  physical  limitations  to  marker-based  technologies  such  as
an  increase  in  constraint  for  marker  placements  due  to  physical  
obstruction  by  the  exoskeleton.  Given  that  the  subject  is  equipped  
with  an  exoskeleton,  variations  in  marker  and  sensor  placement,  
to  avoid  occlusions  and  to  adjust  to  ft  with  the  exoskeleton  frame,  
can  both  introduce  additional  systematic  and  random  errors[22].
Similar  to  OTS,  IMUs  are  also  susceptible  to  soft  tissue  artifacts[22].
In  addition,  IMUs  are  limited  in  precision  due  to  drift,  interference,  
and  variations  in  the  rotational  reference  frames[9].  

Although  marker-based  technologies  are  a  standard  for  evaluat-
ing  human  biomechanics,  markerless  methods  have  the  potential  of  
measuring  3D  data  of  the  subject  [8]  through  a  non-intrusive  means  
of  extracting  joint  positions  and  orientation  data  from  the  subject  
and  can  result  in  less  limiting  and  more  cost-efective  experimental  
setups.  We  propose  the  investigation  of  markerless  methods,  specif-
ically  3D  monocular  pose  estimation  algorithms.  This  study  investi-
gates  whether  low-cost  RGB  cameras  can  be  utilized  as  the  primary  
medium  of  measurement  through  the  application  of  3D  pose  esti-
mation  algorithms.  This  research  introduces  a  measurement  tool  
comprised  of  state-of-the-art  3D  monocular  pose  estimation  algo-
rithms  for  evaluating  markerless  methods  for  human-kinematic  
evaluations,  with  the  OTS  measurement  method  as  a  baseline.  

2  BACKGROUND  
OTS  and  IMUs  have  been  used  for  clinical  evaluation  of  human  
biomechanics  [1,  4,  15,  22,  27].  OTS  yield  Mean  Per  Joint  Position  
Error  (MPJPE)  less  than  0.3  mm  [3,  24]  and  between  1◦  and  6◦
approximately  [7,  27]  in  joint  angle  error  for  human  kinematic  
analysis,  specifcally  for  the  knee  joint.  OTS  have  been  applied  to-
wards  synchronous  human-exoskeleton  pose  tracking  as  a  potential  
measurement  method  for  exoskeleton  performance  [7].  However,  
the  measurement  quality  is  limited  to  accurate  and  precise  place-
ment  of  anatomical  landmark  markers,  artifacts,  and  sensors  for  
high-precision  joint  position  and  orientation  estimation.  

Markerless  methods  introduce  a  non-intrusive  and  relatively  
low-cost  solution  to  pose  tracking,  but  have  limited  validation  of  
precision  and  accuracy  [10].  One  prominent  markerless  method  is  
pose  estimation  with  deep  learning  techniques.  This  pose  estima-
tion  algorithm’s  building  blocks  comprise  of  convolution  neural  
networks  (CNNs),  which  extract  learned  feature  sets  given  multi-
dimensional  data,  such  as  images,  for  classifcation  or  regression  
[17].  CNNs  are  basic  building  blocks  utilized  for  estimating  the  pose  
or  positional  information  of  a  particular  object,  or  in  the  case  of  
this  research,  human  joints  [26].  Diferent  algorithms  have  inno-
vative  frameworks  that  achieve  increased  positional  precision  and  
computational  efciency.  

https://doi.org/10.1145/3544549.3583950
https://doi.org/10.1145/3544549.3583950
mailto:amaan.rahman@cooper.edu
https://doi.org/10.1145/3544549.3583950
https://doi.org/10.1145/3544549.3583950
mailto:amaan.rahman@cooper.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544549.3583950&domain=pdf&date_stamp=2023-04-19


        Rahman,  et  al.  

Practiced  markerless  methods  applying  pose  estimation  algo-
rithms,  in  literature,  require  depth-sensing  camera  systems  or  active  
camera  systems  [10];  therefore,  a  hardware  constraint  is  generated.  
Although,  depth-sensing  or  active  cameras  can  be  relatively  low-
cost  compared  to  marker  based  systems,  a  more  cost  efective  mark-
erless  method  applies  pose  estimation  algorithms  with  low-cost  
RGB  cameras  in  a  monocular  confguration.  

Recently,  monocular  3D  pose  estimation  algorithms  have  yielded  
promising  results  that  are  competitive  with  stereophotogrammetric  
algorithms  (utilizing  multiple  cameras,  each  with  2D  pose  estima-
tion  algorithms  to  estimate  3D  pose).  This  research  applies  three  
monocular  3D  pose  estimation  algorithms,  GAST-Net[18],  VIBE  
[16],  and  Blazepose  [5],  for  an  alternative  markerless  method  of  
pose  evaluations.1  

3  METHODOLOGY  
3D  monocular  pose  estimation  models  were  selected  based  on  con-
tributions  in  dynamic  joint  detection  and  tracking  while  limiting  
the  efects  of  occlusions  and  optimizing  computational  efciency.  
Furthermore,  algorithms  were  selected  based  on  the  Mean  Per  Joint  
Position  Error  (MPJPE)  metric.  

The  selected  models  have  been  confgured  into  an  open-source2  

tool  to  execute  repeatable  tests  on  input  human  locomotion  video  
sequences.  The  tool  was  designed  to  easily  integrate  state-of-the-art  
models  and  to  generate  analysis  experiments  to  gain  insights  about  
human  kinematic  studies,  which  motivates  exoskeleton  kinematic  
studies.  Integration  is  motivated  from  Continuous  Integration  (CI)  
standards  in  industry  regarding  software  management  to  create  a  
modularized  pipeline  framework.  The  merit  of  such  a  framework  
is  the  ease  in  motivation  of  future  kinematic  studies.  

3.1  Models  
 3.1.1 GAST-Net.  3D  pose  estimation  algorithms  can  be  signif-

cantly  limited  by  joint  occlusions.  GAST-Net  is  a  model  that  pro-
poses  a  novel  method  of  recognizing  spatial  patterns  in  the  spatio-
temporal  domain  by  modeling  local  and  global  spatial  information  
with  convolution  and  graph  attention  mechanisms,  while  recogniz-
ing  temporal  features.  

The  pipeline  of  the  algorithm  is  initiated  with  human  detection  
to  capture  the  bounding  box  of  detected  humans  utilizing  a  high-
end  object  detection  algorithm,  YOLOv3  [23],  which  is  then  fed  
into  a  2D  pose  estimation  algorithm,  HRNet  [25].  Given  2D  pose  
estimation  data,  GAST-Net  utilizes  temporal  convolution  networks  
(TCNs)  to  capture  features  over  long  temporal  sequences.  Spatial  
information  is  estimated  through  a  local  spatial  attention  network  
and  a  global  spatial  attention  network.  The  local  spatial  attention  
network  models  the  kinematic  structure  of  the  pose.  The  global  
spatial  attention  network  encodes  non-local  joint  relationships  to  
control  depth  ambiguities  and  limb  occlusions.  

The  average  MPJPE  over  the  Human3.6M  dataset  (large  dataset  
of  human  locomotions  with  various  viewpoints)  [13]  is  documented  
to  be  about  44  mm.  
1Certain  commercial  products  or  software  are  identifed  here  to  describe  our  study  ad-
equately.  Such  identifcation  is  not  intended  to  imply  recommendation  or  endorsement  
by  the  National  Institute  of  Standards  and  Technology,  nor  is  it  intended  to  imply  that  
the  products  or  names  identifed  are  necessarily  the  best  available  for  the  purpose.
2https://github.com/amaan4152/3DPoseEvaluator  

3.1.2  VIBE.  The  VIBE  3D  pose  estimation  algorithm  addresses  the  
occlusion  problem  by  generating  natural  temporal  pose  sequences,  
mitigating  irregular  or  unnatural  human  locomotion.  Instead  of  
generating  a  skeletal  pose  structure,  a  3D  pose  mesh  is  generated  
called  Skinned  Multi-Person  Linear  model  (SMPL)  [19].  

A  pretrained  CNN  is  utilized  to  generate  2D  poses  given  a  frame,  
which  is  then  fed  into  a  gated  recurrent  neural  network  (GRN).  The  
GRN  enables  utilization  of  past  pose  estimation  data  to  constrain  the  
pose  in  future  frames.  The  output  is  latent  feature  data  utilized  to  
regress  SMPL  body  parameters  through  an  iterative  3D  regression  
model  analogous  to  Human  Mesh  Recovery  (HMR),  an  end-to-end  
algorithm  to  estimate  3D  joint  data  [14].  However,  constraining  
poses  in  future  frames  do  not  address  discontinuous  temporal  fow  
of  estimated  poses.  To  increase  continuity  to  generate  natural  es-
timated  pose  locomotion,  a  discriminator  network  is  utilized  to  
penalize  improbable  poses  or  motions  compared  to  a  ground-truth  
3D  motion  capture  dataset  called  Archive  of  Motion  Capture  As  
Surface  Shapes  (AMASS)[21].  

Compared  to  GAST-Net,  the  average  MPJPE  is  observed  to  be  
greater  (about  66  mm)  [16].  However,  VIBE  can  be  leveraged  to  
yield  reproducible  results  due  to  stability  improvements  of  pose  
data.  

3.1.3  Blazepose.  Another  key  issue  with  3D  pose  estimation  
algorithms  is  computational  inefciency.  Blazepose  introduces  an  
architecture  yielding  improvements  in  computational  efciency  
[5].  

Blazepose  architecture  starts  of  with  a  person  detector  moti-
vated  by  BlazeFace  [6].  The  architecture  is  analogous  to  a  convo-
lutional  block  structure  in  ResNets  [12],  which  reduces  depth  in  
overall  neural  network  architecture  yielding  faster  training  time  
and  improved  accuracy.  BlazeFace  has  BlazeBlocks  [6]  comprised  
of  depth-wise  convolutions  with  a  skip  connection  taking  the  input,  
processing  it  through  maximum  pooling  and  channel  dimension  
pooling,  to  the  output.  Blazepose  utilizes  the  aforementioned  struc-
ture  for  human  detection  and  estimates  alignment  parameters  in  
association  to  the  structure  of  the  Vitruvian  man  [5].  

After  human  or  pose  detection,  the  pose  tracker  is  triggered.  The  
pose  tracker  utilizes  heatmap  and  ofset  loss  for  supervised  training  
of  the  lightweight  embedded  network.  The  heatmap  and  ofset  loss  
aspect  of  the  network  are  removed  during  inference.  The  regression  
module  utilizes  the  lightweight  embedding  to  estimate  the  3D  pose  
of  each  joint.  Throughout  the  network,  skip  connections  are  utilized  
for  high-level  and  low-level  feature  balance.  

Instead  of  the  MPJPE,  Blazepose  utilizes  PCK@0.2,  Percent  Cor-
rect  Keypoints  evaluated  at  a  threshold  of  0.2  times  the  torso  diam-
eter.  Blazepose  achieved  about  84%  PCK@0.2,  which  is  about  1%  
increase  for  about  10  times  increase  in  output  Frames  per  Second  
(FPS)  [5].  
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3.2  Measurement  Tool  
The  measurement  tool  utilizes  GAST-Net,  VIBE,  and  Blazepose  
to  generate  3D  pose  estimated  data  to  evaluate  each  algorithm  
against  the  ground-truth  data  to  estimate  the  measurement  uncer-
tainty  for  each  method.  The  tool  is  comprised  of  two  parts:  pose  
data  generation  and  evaluation.  The  experiment  conducted  with  
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the  measurement  tool  consists  of  one  subject  for  demonstration  
purposes.  

  3.2.1 Data Generation.

Where  ⟨ · ⟩  represents  the  inner  product  operator.  The  orientation  of  
each  joint  is  computed  through  axis-angle  representation  of  quater-
nions.  The  cross  product  of  vfem  and  vtib,  is  the  axis  of  rotation  
in  3D  space,  u,  and  the  angle,  � ,  represents  the  angle  of  rotation.  
For  valid  representation  of  3D  orientation,  the  quaternion  must  
be  normalized;  normalized  axis  of  rotation,  û,  yields  a  normalized  
quaternion.  Given  the  aforementioned  scenario,  the  orientation  of  
each  joint  is  computed  as  follows:  

  An  input  video  sequence  is  processed  by  
a  specifed  model,  and  raw  pose  data  is  generated.  Joints  comprising  
two  adjacent  limbs  are  selected  to  extract  estimated  3D  pose  data,  
joint  angle  between  limbs  is  computed,  and  the  orientation  of  each  
joint  is  computed  as  a  quaternion.  Given  a  scenario  of  computing  
the  joint  angle  between  the  femur,  vfem,  and  the  tibia,  vtib,  the  joint  
angle,  � ,  is  computed  as  follows:  

      � = ������ (⟨vfem, vtib⟩) (1) 

   
 
   uq̂ = � 

� 
2 ˆ (2) 

  3.2.2 Evaluation. Given  pose  estimation  data  and  ground  truth  
data,  the  pose  estimation  data  must  be  temporally  aligned  and  
spatially  registered  with  the  ground  truth  data  for  proper  evaluation.  
Since  the  pose  estimation  data  is  sampled  at  60  FPS  and  the  ground  
truth  data  is  sampled  at  120  FPS,  downsampling  the  ground  truth  
data  by  half  yields  optimal  temporal  alignment,  as  can  be  seen  in  
Figure  2.  

Spatial  registration  is  achieved  with  a  Least-Squares  (LS)  method  
of  ftting,  called  the  Arun  method  [2].  

Given 3  X    R ×�  ∈ =  {x�  }  (pose  estimation  data  points)  and  
3Y    R ×�  ∈ =  {y�  }  (ground  truth  data  points),  where  N  is  the  

number  of  points,  the  LS  solution  is  R̃  and  T̃  ,  which  can  be  used  
to  register  X  to  Y.  Thus,  the  spatial  registration  algorithm  is  as  

 
 

           

 
 

             
 

       
    

               

      

X 
′ 
= x� − E[x� ], � = 1, 2, . . . , � (3) 

Y 
′ 
= y� − E[y� ], � = 1, 2, . . . , � (4) 

′ ′� 
� = X Y = � Σ�� (5) 

R̃ = ��� (6) 
T̃ = E[y� ] − R̃ E[x� ], � = 1, 2, . . . , � (7) 

˜ ˜ ˜ (8)X = RX + T 

 (a)  (b)  (c) 

3The  datasets  used  to  evaluate  the  software  tool  were  collected  in  accordance  with  the  
Institutional  Review  Board  (IRB)  at  the  National  Institute  of  Standards  and  Technology  
(NIST).  
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follows:  

Here,  E[ · ]  is  the  expectation  operator  and  T  represents  the  real  
transpose  of  a  matrix.  The  estimated  and  ground-truth  points  are  
normalized  with  respect  to  the  mean,  and  the  singular  value  de-
composition  (SVD)  of  their  outer  product  is  utilized  to  compute  the  
rotation  matrix.  The  rotation  matrix  can  then  be  applied  using  Eq.  
8  to  compute  the  translation  matrix.  Thus,  the  rotation  matrix  and  
translation  matrix  can  be  utilized  to  map  the  estimated  points  to  the  
ground-truth  data  coordinates,  given  a  video  of  human  locomotion  
for  analysis  and  a  specifed  range  of  frame  numbers.  

Provided  that  the  pose  estimation  data  has  been  registered  to  
the  ground  truth  data,  two  evaluation  metrics  to  determine  the  
efectiveness  of  3D  pose  estimation  data  are  computed:  Mean  Per  
Joint  Position  Error  (MPJPE)  and  Percent  Detected  Joints  (PDJ).  
MPJPE  is  computed  as  the  mean  Euclidean  distance  between  ground  
truth  data  and  pose  estimation  data  across  all  joints,  and  PDJ  is  
computed  as  the  percentage  of  joints  that  have  Euclidean  distance  
between  ground  truth  data  and  pose  estimation  data  less  than  0.2  
of  the  true  torso  diameter  of  the  subject.  

4  RESULTS  
The  measurement  tool  was  tested3  on  sample  side-view  video  se-
quence  of  three  sit-stand-sit  motions  of  a  single  individual  as  can  
be  seen  in  Figure  1.  All  tests  where  executed  in  CPU  mode  with  

Figure  1:  Pose  visualization  of  three  algorithms  at  a  particular  frame  of  a  video  sequence  of  three  sit-stand  motions:  (a)  GAST-Net  
pose  visualization:  The  pose  does  not  sufer  from  occlusion  and  all  keypoints  are  visible.  The  evolution  of  the  pose  as  the  
number  of  frames  increased  displayed  minimal  jitter.  (b)  VIBE  pose  visualization:  The  SMPL  mesh  structure  applies  a  constraint  
on  the  pose,  thus  detects  key  points  even  with  occlusions.  The  pose  exhibited  the  most  jitter  of  all  three  algorithms  as  the  
number  of  frames  increased.  (c)  Blazepose  pose  visualization:  Missed  detection  of  left  leg  keypoints.  Blazepose  sufers  from  
occlusion,  but  yields  the  most  stable  pose  as  the  number  of  frames  increase.  



 Model Kinematic  Chain  MPJPE  (mm)   PDJ  (%)  Execution  Time  (s) 
 Blazepose  Right  Leg  155.94  100  76.90 

 Full  Left  Leg  162.83  100  76.08 
 Blazepose  Right  Leg  147.02  100  254.64 

 Heavy  Left  Leg  157.79  100  269.92 

 VIBE 
 Right  Leg 

 Left  Leg 
 50.69 
 51.41 

 100 
 100 

 3786.66 
 3791.76 

GAST-  Right  Leg  35.89  100  3363.50 
 Net  Left  Leg  37.95  100  3357.21 

           

 (a) 

 (b) 
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Figure  2:  Plot  of  left  (a)  and  right  (b)  knee  joint  angle  between  right  tibia  and  right  femur  generated  by  GAST-Net,  VIBE,  and  
Blazepose  compared  against  ground-truth  data.  Joint  angle  data  represents  three  full  sit-stand-sit  motions  of  1683  frames.  As  
the  subject  rises  from  sitting  to  standing  position,  the  knee  joint  angle  rises  during  the  extension  phase,  whereas  the  falling  
edge  indicates  knee  fexion  from  standing  to  sitting  position.  The  ground-truth  data  is  sampled  at  120  FPS,  whereas  the  model  
data  is  sampled  at  roughly  60  FPS;  the  ground-truth  data  is  therefore  downsampled  by  half  for  proper  data  alignment.  

Table  1:  Left  and  right  leg  evaluation  metrics  summary  for  each  model  for  video  sequence  of  three  full  sit-stand-sit  motions  of  
1683  frames.  

the  following  hardware  specifcations:  64-bit  Ubuntu  20.04.4  LTS  
OS,  Intel(R)  Core(TM)  i7-9750H  CPU  @  2.60GHz  CPU,  16  GB  RAM,  
1.3  TB,  NVIDIA  GeForce  RTX  2070  GPU.  Each  model  required  suf-
cient  amount  of  shared  memory  in  order  to  be  operational.  Blazpose  
required  at  most  1  GB,  and  GAST-Net  and  VIBE  required  at  most  
10  GB.  

Furthermore,  models  such  as  Blazepose  and  VIBE  have  param-
eters  that  determine  performance.  Blazepose  parameters  

(min_detection_confdence,  min_tracking_confdence,  
model_complexity)  where  altered  from  (0.5,  0.5,  1)  to  
(0.75,  0.95,  1/2),  respectively.  The  implication  of  raising  
min_detection_confdence  and  min_tracking_confdence  is  
the  increase  in  robustness  levels  for  the  cost  of  latency.  The  
parameter  model_complexity  was  tested  as  either  1/2,  where  
model_complexity=1  is  Blazepose  Full  and  model_complexity=2  is  

https://suffi-(0.75
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Blazepose  Heavy;  higher  the  model_complexity,  the  greater  the  
accuracy  and  latency  of  the  model.  

VIBE  has  parameters  (tracker_batch_size,  vibe_batch_size)  with  
default  values  (12,  450),  respectively.  The  former  parameter  is  set  
for  batch  processing  size  for  the  bounding  box  tracker,  and  the  latter  
parameter  is  set  for  the  batch  processing  size  for  the  VIBE  model.  
The  parameters  where  reduced  to  (1,  64)  to  drastically  reduce  shared  
memory  requirements.  

The  kinematic  chains  of  interest  were  the  left  and  right  legs  of  
the  dataset  in  Figure  1  because  it  has  bone  markers  at  the  hip,  
knee,  and  ankle  regions  for  the  left  and  right  leg.  According  the  
Figure  2,  the  joint  angles  of  the  left  and  right  legs  are  computed  
by  each  model  and  the  ground  truth.  Based  on  Figure  1,  the  left  
leg  is  observed  to  be  occluded,  however  all  models  detect  joints  
successfully,  which  can  be  measured  as  PDJ  as  seen  in  Table  1.  
Although  Blazepose  is  observed  to  not  detect  the  left  leg  keypoints  
according  to  Figure  1,  the  pose  data  contains  no  null  points.  

Based  on  Figure  2  and  Table  1,  GAST-Net  performs  the  best  
based  on  joint  angle  tracking  and  joint  position  error  relative  to  
ground  truth  data.  Furthermore,  the  model  exhibits  minimal  jitter  
relative  to  VIBE,  which  yields  competitive  results  as  well.  However,  
VIBE  performs  better  tracking  the  left-leg  joint  angle  than  GAST-
Net  when  the  subject  is  standing.  VIBE  can  be  seen  to  exhibit  
greater  jitter  when  the  subject  is  sitting  down  compared  to  GAST-
Net  and  Blazepose.  Although  Blazepose  is  observed  to  have  the  
largest  MPJPE  errors  and  poorer  joint  angle  tracking,  the  execution  
time  or  latency  is  signifcantly  less  compared  to  VIBE  and  GAST-Net  
as  low  as  2  orders  of  magnitude.  

5  CONCLUSION  
3D  monocular  pose  estimation  algorithms  are  promising  non-
intrusive  low-cost  markerless  methods  for  evaluating  human  kine-
matics.  We  have  developed  a  tool  to  apply  3D  pose  estimation  
algorithms  to  estimate  the  measurement  uncertainty  of  3D  pose  
estimation  algorithms  compared  to  ground  truth  data.  The  measure-
ment  tool  is  intended  to  aid  in  efcient  non-intrusive  evaluations  
of  human  kinematics  using  a  low-cost  monocular  system.  Future  
experiments  are  needed  for  validating  whether  3D  pose  estimation  
algorithms  are  a  viable  markerless  method  in  comparison  with  
marker-based  methods.  Additional  evaluation  of  the  measurement  
tool  in  human  kinematic  experiments  such  as  gait  or  hurdle  tests,  
can  be  conducted.  
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