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Abstract—In-situ measurements provide vast information 
for additive manufacturing process understanding and real-
time control. Data from various monitoring techniques observe 
different characteristics of a build process. Fusing multi-modal 
in-situ monitoring data can significantly enhance process 
anomaly detection, part defect prediction, and build failure 
diagnosis, thus improving AM part quality control. This paper 
compares the powder bed fusion in-process observations from 
two types of AM in-situ monitoring, coaxial melt pool imaging, 
and layerwise imaging, and investigates the correlation between 
the two observations for a build of parts with multiple geometric 
features and scan patterns. All data were collected from an open 
architecture powder bed fusion AM testbed. Data analysis 
shows that both datasets exhibit significant statistical changes 
when new features are introduced during the build. However, 
further machine learning-based modeling indicates that 
statistical features extracted from the two data sets do not 
correlate very well. Discussions are provided on how the 
statistical analysis of the observations from the two modality 
monitoring system can be utilized for data fusion strategy 
development, especially toward improving process anomaly 
detection.    

Keywords—Additive Manufacturing, Laser Powder Bed 
Fusion, Statistical Analysis, Machine Learning 

I. INTRODUCTION 
The powder bed fusion (PBF) additive manufacturing 

(AM) process uses laser beam to form parts layer by layer [1]. 
Every layer is a thin slice with the shape defined by 3D 
models. Upon one layer is finished, the build platform is 
lowered by a layer thickness and a fresh coat of powder is 
spread. Then either one or a set of laser beams is applied to 
scan the build surface, melt and join the material. A multitude 

of motion control and parameter regulation are involved 
during this cyclic process. Various advanced monitoring 
systems are developed and embedded into PBF machines to 
measure process variables [2]. Popular in-situ sensors for PBF 
include infrared pyrometer, high-speed coaxial camera, 
layerwise tower camera, and Galvo encoder [3]. Since each 
individual sensing system captures only certain characteristics 
of the process physics, fusing multi-modal in-situ monitoring 
data is expected to significantly enhance process anomaly 
detection, part defect prediction, and build failure diagnosis, 
thus improving AM part quality control [4]. However, sensing 
systems of different modalities generate different in-process 
monitoring data in scale, resolution, sampling rate, and meta 
information. Hence it is not feasible to fuse the raw data 
directly. Instead, data fusion can extract features from in-
process measurements. Correlations between registered 
features derived from different in-process sensing systems are 
useful information for data fusion. However, in-process 
measurements are commonly contaminated by noises, so it is 
necessary to quantify the impact of noises on the correlation 
[5, 6].  Identifying these hidden correlations may contribute to 
anomaly detection and decision making. This paper aims to 
investigate the correlation of multi-modality in-situ 
monitoring data for different geometric features using 
statistical analysis and machine learning methods. 

Overhang is a critical geometric feature for PBF, since it 
involves different levels of structural support during powder 
melting and solidification [7]. Solid support from the 
previously solidified layer is desired for uniform material 
properties and acceptable part dimensions. However, a part 
with complex geometry is likely to have overhangs with 
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various angles. Overhang is the term to describe the surface 
supported by non-molten powders  [8]. The weaker strength 
of loose powder in the overhanging regions causes defects 
such as craggy surface (or ‘dross’), lower density, and inferior 
geometric deviation  [9]. The same laser settings do not 
necessarily create regular sized melt pools in overhang regions 
due to the different heat conductivity [10]. One confirmed 
message is that the overhang geometry has a critical impact on 
the melting process, which is verified using coaxial melt pool 
monitoring (MPM) images in many studies [11].  

This work extends the investigation to another type of 
dataset - layerwise images (LWI) with a much larger field of 
view but lower resolutions, which provides an alternative way 
to capture the physical changes caused by geometric features 
such as overhang. Hence, two types of experimental data, 
coaxial MPM image and LWI data are involved in this. The 
co-axial high-speed camera is set up on the same optical path 
with the moving laser beam to consistently focus on melting 
spots. It is an ideal way to monitor the melt pool conditions at 
high frame rates and with resolutions of a few micrometers. 
With proper data registration techniques, each melt pool 
image and the pixels can be located accurately on the build 
platform [12]. LWI has a global view of the build platform, 
which provides a large-scale analysis for the entire layer [13]. 
For MPM, some studies have successfully approximated 
temperature based on the optical image pixel value. However, 
evidence implies that uncontrollable uncertainties present 
during an optical-temperature calibration [14, 15].  

The authors’ former research applied data registration and 
fusion techniques to combine multi-modality data for process 
state identification [13]. The preliminary result shows that in-
situ monitoring data demonstrate different characteristics 
when new geometric features are introduced. Other related 
studies also show that surface roughness, porosity, and melt 
pool size can also affect the in-situ data [16, 17].  Since every 
sensing technique only observes certain aspects of the process 
physical phenomenon, the observability of the process state 
depends on how each type of in-situ data is correlated to the 
process state. However, the relationships between in-situ 
observations and the process state are hard to model and 
measure, we start with correlating different types of in-situ 
observations and using that knowledge for data fusion. This 
paper aims to investigate the correlations between different 
modalities by statistical analysis and data-driven model. The 
outcome constructs the foundation of AM real-time control 
strategy which is urgently needed for the AM community.  

II. EXPERIMENTAL DESIGN 
This research is an experiment-orientated study. A PBF 

platform embedded in-situ monitoring system builds four 
identical 3D parts. The 3D part is designed with noticeable 
geometric features for experimental needs. Secondly, the raw 
data would be preprocessed and registered for statistical 
analysis. If the analytical result exhibits relevance of 
geometric features in both modalities, such machine learning 
models would be built to quantify the mathematical 
correlations. Sub-sections elaborate on the abovementioned 
steps. 

A. Experimental Platform 
Four 3D parts were created by the Additive Manufacturing 

Metrology Testbed (AMMT) at the National Institute of 
Standards and Technology (NIST). AMMT is a fully 
customized metrology instrument that enables flexible control 
and measurement of the Laser PBF process [2]. It equips the 
capability to realize precise laser beam control. In order to 
advance G-code, the digital commands that AMMT uses set 
precise laser beam position, laser beam power, and coaxial 
camera trigger every 10 µs [18]. More details about AMMT 
can be found in Lane et al, 2020. 

B. 3D Part with Overhang 
This experiment creates four nominally identical parts 

within the same build on a wrought nickel alloy 625 (IN625) 
substrate that is cut to 100 × 100 × 12.5 mm. All four parts 
have the same geometry: a bounding box 5 × 9 × 5 mm, a 45º 
overhang feature, and a cylinder cavity. According to the 
original report, data collected from the four parts has similar 
statistical features such as mean and standard deviation [18]. 
Post-measurement shows minimum difference in size, surface 
roughness, and mechanical behavior between parts. For 
demonstrative purposes, this study only uses the data from one 
part. The material is mixed recycled and virgin IN625 powder. 
The build consists of 250 layers at 20 µm per layer. The build 
employs a constant speed (800 mm/s) constant power (195 W) 
stripe scan pattern with skywriting. More details can be found 
in Lane and Yeung 2020 [18]. The general scan direction is 
designed to rotate 90º every layer. Table 1 lists the properties 
of the scan pattern and the abbreviation used in this paper. A 
‘vertical’ or ‘horizontal’ scan track means the scan track is 
oriented in the Y or X direction, respectively. ‘from right to 
left’ or ‘from top to bottom’ means the tracks are scanned 
sequentially in the X or Y direction. 

Table 1. Description of the scan patterns used in this work 
 Scan Pattern Name 
Layer 1, 5, 9… Vertical scan track from right to left V-R2L 

Layer 2, 6, 10… Horizontal scan track from top to 
bottom H-T2B 

Layer 3, 7, 11… Vertical scan track from left to right V-L2R 

Layer 4, 8, 12… Horizontal scan track from bottom to 
top H-B2T 

 

 
Figure 1. Part dimensions and key geometric features. (a) is 
the 3D view. (b) is cross-sectional view in YZ plane. It marks 
the key layers with new geometric features.  

Figure 1 shows the designed part dimensions and the key 
geometric features. The part is 5 mm x 5 mm x 9 mm with 250 
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layers, where the layer thickness is 20 µm. The part has three 
regions.  

A 3 × 5 × 9 mm region on one side with 45° overhang 
starts from Layer 51. Overhang edge in this region grows in 
the same size every layer. On the other side, a region of the 
same size has a cylinder cavity from Layer 25 to Layer 225. It 
aims to create a progressive overhang from Layer 126 to Layer 
226. Since the layer thickness is the same at every layer, the 
overhanging level is different. Figure 2 shows an example of 
the three regions on one typical layer with all features. 

 
Figure 2. The three regions on one layer from the top view. 
Yellow and red color on the top-left represent the overhang 
region caused by the cylinder cavity. Blue represents the 
regular non-overhang region. Green represents the overhang 
created by the 45° slope. White area marks the overhang 
edges. 

C. In-Situ Data 

 
Figure 3. Four parts with the same geometry were built 
parallel on the build plate. Images captured by the same layer 
camera under different LED flash conditions. This experiment 
selects the data from the top part. 

This experiment collects two types of in-situ data, LWI 
and MPM images. The experiment uses three LED flashlights 
shooting from different angles, namely LED A, B, and C, in 
the building chamber to capture the LWI at every layer. Once 
AMMT finishes scanning one layer, the tower camera would 
capture one image with each flashlight. A high-speed camera 
captures the coaxial MPM images with high frequency.   

Figure 3 shows the LWI of one layer under three flash 
conditions. Note that the images shown in the figure have been 
processed and registered to correct the shape [13, 19]. As 
shown, images from LED A have oversaturated brightness. 
Later paragraphs would only discuss LED B and LED C.  

Figure 4 shows two sample MPM images in the horizontal 
and vertical scan direction. The white spot located at the 
image center is the laser melting area named melt pool. MPM 
is 120 pixels by 120 pixels, where each pixel is 8 µm x 8 µm. 
The camera collects about 6000 MPM images at each layer. 
The accurate number of images depends on the scanning time. 
More than 1.5 million MPM data were collected and used in 
this work.  

 
Figure 4. Sample MPM images. 

III. STATISTICAL ANALYSIS FOR MPM AND LWI  
Data preprocessing is necessary to enable statistical 

analysis in both MPM and LWI. The first step is data 
preprocessing including image denoising and correcting 
distortion. Denoising an MPM image aims to remove the 
background low-intensity pixels and large spatters. This work 
deploys thresholding and autoencoder methods [19]. A low 
threshold grayscale value, 5-10, is usually sufficient for 
background noise removal. The autoencoder method is 
deployed to filter the MPM images to further remove the 
spatters, which usually have higher pixel values than the 
thresholding value. In some cases, the grayscale of high-
temperature spatters is indistinguishable from the melt pools.  

 
Figure 5. Part geometry in LWI is corrected by perspective 
image transformation.  

Preprocessing for LWI data focuses on correcting the 
distortion and deformation associated with the relative camera 
position and the focus lens angle. The layer camera does not 
locate vertically to the build plate, nor is it a perfect pinhole. 
As a result, the raw LWI images have both distortion and 
deformation. Figure 5 shows the process of LWI image 
correction using a 4-point homography method. Four corner 
points of an early layer with a rectangular cross-section were 
used to derive the homography matrix [20]. Assuming that the 
distortion is identical for all the images because the tower 
camera is still during the build process, the homography 
matrix is then applied to all the LWI images to align the pixels 
to the real-world coordinates.  
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A. Statistical Feature Extraction 
This study focuses on two statistical features of each 

modality. MPM analysis studies the average melt pool size 
and its standard deviation per layer. LWI analysis focuses on 
the layerwise grayscale average value and standard deviation. 
The statistical features are extracted for the overhang and 
regular regions separately. Note, regular region uses all the 
melt pools and the LWI pixels in the regular zone (blue in 
Figure 2). In fact, the majority area of the overhang zones 
actually are built on top of solidified material and have normal 
support conditions. 

Figure 6 explains how this study distinguishes the pure 
overhang area from the overhang zones. The figure shows the 
cross-sectional view of a four layers example, where each bar 
represents one layer. Layer i to Layer i-2 all have a newly 
grown area on the right side. Under global view, the combined 
colored regions can be considered in an overhang zone. 
However, only the red areas directly contact the underneath 
raw powder with weak support. The layers on top of the red 
area start to rebuild the support immediately. After several 
layers, the support can recover near the normal level. 

 
Figure 6. Both MPM and LWI only extract features of the 
pure overhang region. This study distinguished the area from 
each layer to purify the overhang effect.  

Consequently, only the melt pools and pixels on the pure 
overhang area would be included in the statistical analysis. 
That demands the feature extraction to precisely trim the data 
to the area with the strongest overhang effect. This study 
distinguished the pure overhang area based on the pixel size 
in the corrected LWI images. It analyzes the data from 1 to 4 
pixels, where is 0.0649 to 0.2596 mm. Similarly, melt pools 
within this range are included to calculate the layerwise and 
zone-specific average and stand deviation. Figure 7 shows an 
example of a maximum 4 pixels width.  

 
Figure 7. Overhang zone with 4 pixels width. 

B. Statistical Analysis for MPM data 
Figure 8 shows the average melt pool size of each layer for 

all four zones. The blue curve represents Zone-1 for the 
regular condition starts from Layer 1 to 250. Zone-2 for 45° 
overhang is in green starting from Layer 51. Yellow and red 
curves represent the progressive overhangs starting from 
Layer 126 to Layer 225. The only difference between Zone-3 
and Zone-4 is that they are located at the two ends of the 
cylinder hole opening. Based on the result, Zone-1 has the 

largest and the most consistent melt pool size than other zones 
due to regular support from previous layers and consistent 
volume. The overhang zones have significantly smaller melt 
pools and the variation between layers is much larger.  

 
Figure 8. Comparison of melt pool size of all four zones. This 
chart shows the average melt pool size for all four zones.  

 
Figure 9. Comparison of melt pool size of all four zones. This 
chart shows the standard deviation of melt pool size for all 
four zones.  

 
Figure 10. (a) Average melt pool size of Zone-2, separated by 
scan pattern. Melt pool size is increasing from Pixel-1 to 
Pixel-4. This indicates same energy tends to create a smaller 
melting surface area in severer overhang regions. Vertical 
scan is more consistent than horizontal scan. (b) Variation of 
melt pool size in Zone-2, separated by scan patterns. A severer 
overhang can cause larger melt pool uncertainty. 

However, the layerwise standard deviation of the melt 
pool size seems opposite to the previous observation. Zone-1 
stand deviation is significantly lower than any overhang zone. 
As shown in Figure 9, Zone-1 maintains the melt pool 
variation in a low and consistent range. However, Zone-2 to 
Zone-4 have a much wider range for standard deviation and 
the values seem more random. 
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Scan direction may also affects melting conditions since it 
determines how the laser beam pass the overhang zones. 
Figure 10 groups the layers based on the scan patterns listed 
in Table 1 for Zone-2. In this study, the part cross sections, 
regardless the layer number and the zone number, have longer 
length in y axis (3 mm) and significant shorter length in x axis 
(≤ 0.2596 mm). Consequently, the vertical scan pattern in the 
overhang zone has shorter scan duration than the horizontal 
scan pattern. The observations from these two figures verify 
this hypothesis. V-R2L and V-L2R are more similar than H-
T2B and H-B2T in both layerwise average and layerwise 
standard deviation of the melt pool size. Specific to Pixel-1 in 
H-T2B and H-B2T, the curves have a periodic behavior every 
25 layers. This might be caused by the combined effect of 
overhang growth and hatching center shifts.  

Figure 11 shows the result of Zone-1 for comparison. The 
average melt pool size is generally higher than Zone-2 and the 
standard deviation is significantly lower. Horizontal scan 
pattern, H-T2B and H-B2T are more consistent than vertical 
scan according to their low variation in (b).  

 
Figure 11. (a) shows the average melt pool size for Zone-1. 
(b) is the standard deviation. Legend marks the scan pattern. 

C. Statistical Analysis for LWI data 

 
Figure 12. Comparison of average grayscale value of all four 
zones using LED B. Zone-1 has the lowest grayscale value. 

Similarly, LWI data analysis reveals the grayscale 
differences between the overhang and non-overhang zones. 
This sub-section selects LWI data in Zone-2 using LED B and 
the result is shown in Figure 12. In general, Zone-1 has a 

significantly lower grayscale value than overhang zones. 
Note, that the first 10 layers have exposure issues that make 
the image almost saturated to pure white color. 

Figure 13 shows the same comparison for the layerwise 
standard deviation of LWI image grayscale values. As 
observed in MPM, the standard deviation overturns the trend 
from the average value. Zone-1 has the largest standard 
deviation.  

 
Figure 13. Comparison of the standard deviation of grayscale 
value of all zones using LED B. Legend marks the Zones. 

Figure 14 (a) groupedd the layers based on scan patterns. 
Not like the melt pool size result, grayscale values from LWI 
seems not sensitive to the scan pattern. For all four patterns, 
the grayscale value is generally decreasing from width Pixel-
1 to Pixel-4, though some layers have outstanding values. (b) 
shows the standard deviation of LWI grayscale is opposite to 
the average value. Pixel-1 now has the lowest variation. This 
value increases while the zone getting wider. Like Figure 15, 
the standard deviation seems not sensitive to scan pattern. All 
patterns show the same level of random errors. 

 
Figure 14. (a) Average grayscale values of Zone-2 of LED B. 
Closer to the overhang range, the average grayscale value 
tends to be higher regardless of the scan pattern. (b) Standard 
deviation grayscale values of Zone-2 using LED B. Lower 
variation observed on the edge of the overhang, 

Similarly, Figure 15 compares the result of Zone-1 as a 
reference. The average grayscale value of all pixels in Zone-1 
is generally lower than in Zone-2. However, the standard 
deviation is higher. Horizontal scan pattern, H-T2B and H-
B2T are brighter than vertical scan according to their low 
variation in (a). Result for the first 10 layers is contaminated 
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due to exposure issue. Brightness is saturated for these 
images. The issue is fixed after Layer 10. The contaminated 
result is included but would not be used for comparison.  

 
Figure 15. (a) shows the average grayscale value for all 
pixels in Zone-1. (b) shows the standard deviation.  

D. Hypothesis 
Preliminary analysis on MPM and LWI indicates that the 

overhang zones have significantly different statistical features 
from the regular zone. Though the detailed correlation 
between the features is still not fully understood, MPM and 
LWI simultaneously make noticeable reaction whenever 
overhang introduced to layer. It is worth to further investigate 
the correlations using machine learning techniques.  

IV. MACHINE LEARNING MODELING FOR MPM AND 
LWI DATA 

This study deploys backpropagation neural network 
(BPNN) for the correlation modeling, whereas the partial least 
square (PLS) regression is used as a reference model. Due to 
the multi-nature and non-linear relationship in the process of 
additive manufacturing, the BPNN algorithm is selected for 
the prediction case. BPNN performs well in understanding the 
complex relationship among the process parameters which 
helps to predict the accurate relationship between MPM and 
LWI quality index. The single hidden layer structure of the 
BPNN is utilized in the current case. The training and testing 
data are divided by 80% and 20%, respectively. The main 
purpose is to predict the LWI grayscale value based on the 
melt pool size. Furthermore, this work checks the effect of 
each offset pixel on LWI prediction to identify the best 
correction of MPI with flash conditions LED B and LED C. 

The predicted LWI quality can be expressed as follows: 

LWI(j, 𝑙𝑙)^ = g(∑w(j)X(j, 𝑙𝑙)+ B(j))               (1) 

X(j,l)= [F(I, 𝑙𝑙)]                                  (2) 

g(x)= 1/(1+𝑒𝑒(−𝑥𝑥))                                   (3) 

X(j,l) is the model input features of the model for the jth 
sample at lth layer number.  B(j,l) represents the bias of the 
model for the jth sample of the lth layer, F(I,l) is the features of 
the jth sample at the lth layer, and g(x) is the activation function 
of the BPNN prediction model. 

The final result of the mean absolute estimation error is 
essential to be less than a particular tolerance δ as presented in 
the subsequent equation [22]: 

� ǀ𝑦𝑦(𝑗𝑗, 𝑙𝑙)𝑚𝑚
𝑗𝑗=1 − 𝑦𝑦^(𝑗𝑗, 𝑙𝑙)ǀ ≤ 𝛿𝛿                   (4) 

The result section used the Zone-3 and Zone-4 to realize 
the purposed method’s accuracy. All width from Pixel-1 to 
Pixel-4, and both LED B and LED C were studied.   

A. Zone-1 Result   

For Zone-1, LED C has a better correlation than LED B. 
The prediction model from training data layers includes Layer 
61-100, Layer 111-200, and Layer 211-220. The testing data 
includes Layer 101-110 and Layer 201-210. Mean average 
error (MAE) is measured to evaluate the model result. MAE 
errors of the current model are 17.01 and 20.33 for BPNN and 
PLS prediction algorithms, correspondingly. Figure 16 
demonstrates the model robustness toward the original trend 
prediction with enough accuracy. In figure 16, the y-axis  
(VM) represents the virtual metrology value. The range of RI 
is between 0 to 1, and the reliance index (RI) describes the 
difference between PLS and BPNN results. It compares the 
prediction values.  The GSI is the global similarity index that 
checks the similarity between the input data and all historical 
sets of process data used for modeling. 

B. Zone-2 Result 
Based on the correlation analysis between input features 

and output of flash conditions, it was observed that LED C has 
a better correlation than LED B. This case predicts the LWI 
average grayscale of each layer. The input features to the 
prediction model are melt-pool average area, standard 
deviation, and scan pattern. MAE errors are 9.46 for BPNN 
and 9.41 for PLS. Figure 17 observes that the model prediction 
follows the LWI pattern well.   

 
Figure 16. Zone-1 LWI prediction 
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Figure 17. Zone-2 LWI prediction. 

C. Offset Pixel-wise Comparison with LED B & C 
In this case, we used all four pixel features of Zone-4 to 

check the LWI prediction accuracy. Table 2 and 3 list the 
MAE errors. It shows that pixel 3 and 4 have better prediction 
accuracy than pixel 1 and 2.  It also indicates that pixel 3 and 
4 are more sensitive to flash b. MAE are 7.10 for pixel 1 and 
8.63 for pixel 4. As listed in the table, BPNN and PLS 
algorithms for flash b is better than the flash condition c. This 
analysis is also verified by the correlation of the scan pattern 
with flash conditions. A stronger correlation is observed in 
LED B rather LED C.  In the case of Pixel 3 and 4, the 
prediction graph clearly shows that the model predicts the 
result close to real value and follows the trend very well also. 

Table 2. LED B result. 

Unit   
MAE  Correlation  

BPNN PLS MPI (scan 
pattern) 

LWI 
(target) 

Pixel(1)    10.73    10.78  0.396 
Pixel(2) 9.74  10.51  0.470 
pixel(3) 7.10  7.78  0.507 
Pixel(4) 8.63  9.16  0.521 

Table 3. LED C result. 

Unit 
MAE Correlation 

BPNN PLS MPI(scan 
pattern) 

LWI 
(target) 

Pixel(1)   19.04     19.13  0.075 
Pixel(2) 16.85  15.38  0.163 
Pixel(3) 11.46  10.74  0.199 
Pixel(4) 8.02  10.31  0.240 

V. DISCUSSION 
This study presents the preliminary findings to investigate 

the future AM data fusion research direction. It aims to 
analyze multi-modality AM data under complex conditions. 
Sometimes, AM machine may have limit choice of in-situ 
monitoring sensors, especially for commercial AM machines. 
It is common that the machine can embed only one sensor to 
monitor the building process. If the sensors have completely 
different conclusion for the same problem, it is difficult to 
help the AM user to make any useful decision. Which sensor 
the user should trust? The good news is this study has verified 

the MPM and LWI can both identify the overhang occurrence 
with enough sensitivity. Based on our approach, there is no 
significant delay or noise observed for overhang features. 

It seems that the machine learning models that try to create 
a point-to-point correlation between MPM and LWI are not as 
strong as expected. This is partially explainable based on the 
first principle that the MPM is representing the transient 
melting conditions, whereas the LWI is captured at the end of 
each layer. It is also presumably caused by the uncertainties in 
measurements. Each modality has its own noise, including 
both measurement error, and signal delay. These uncertainties 
cumulate in the input and output data for the model training. 
The findings from this paper suggest that point-to-point 
feature level data fusion (as defined in Figure 18) not working 
for the two modalities of the in-situ monitoring system. It 
might be more applicable if the data fusion is conducted at the 
decision level instead of the raw data level.  

 
Figure 18. AM data fusion reference model [13] 

A preliminary result using the Naive Bayes Classification 
model shows that overhang and non-overhang detection from 
MPM and LWI can be more effective to avoid false-positive 
defect detection [23]. Individual Bayes classifier is built 
according to a single data source. A soft voting system 
determines the final decision for geometric categories. It is 
more accurate than an individual classifier since each data 
source is sensitive to specific features without overlapping. It 
is also can help the users to better control the building process. 

VI. SUMMARY 
This study analyzed the statistical features from the in-situ 

monitoring data by two modalities. It is interesting to see both 
MPM and LWI are sensitive to the overhang features. Both 
melt pool size and grayscale value change abruptly when 
overhang occurs. Without knowing the geometry, AM users 
can identify the anomaly in the building process by analyzing 
the data. The low correlation between the datasets prevents the 
models to reach higher accuracy.  

Further research is needed to justify the correlation by 
formulating the problem using observability analysis. Many 
existing works can provide useful information and 
benchmarks in such domain in AM specifications and model 
development [24-29]. The challenges are improving 
observability and reducing noises. By solving these problems, 
data fusion can be formed quantitatively. Data, meta-data, and 
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related data schema can be found at the open AM data sharing 
platform, Additive Manufacturing Material Database [30]. 

DISCLAIMER 
Certain commercial systems are identified in this paper. Such 

identification does not imply recommendation or endorsement by 
NIST; nor does it imply that the products identified are necessarily 
the best available for the purpose. Further, any opinions, findings, 
conclusions, or recommendations expressed in this material are those 
of the authors and do not necessarily reflect the views of NIST or any 
other supporting U.S. government or corporate organizations. 
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