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ABSTRACT

With the rapid accumulation of text data produced by data-driven
techniques, the task of extracting “data annotations”—concise, high-
quality data summaries from unstructured raw text—has become
increasingly important. The recent advances in weak supervision
and crowd-sourcing techniques provide promising solutions to ef-
ficiently create annotations (labels) for large-scale technical text
data. However, such annotations may fail in practice because of
the change in annotation requirements, application scenarios, and
modeling goals, where label validation and relabeling by domain
experts are required. To approach this issue, we present LabelVizier,
a human-in-the-loop workflow that incorporates domain knowledge
and user-specific requirements to reveal actionable insights into
annotation flaws, then produce better-quality labels for large-scale
multi-label datasets. We implement our workflow as an interactive
notebook to facilitate flexible error profiling, in-depth annotation
validation for three error types, and efficient annotation relabeling
on different data scales. We evaluated our workflow in assisting the
validation and relabelling of technical text annotation with two use
cases and four expert reviews. The results show that LabelVizier is
applicable in various application scenarios, and users with different
knowledge backgrounds have diverse preferences for the tool usage.

Keywords: Workflow Design, Technical Language Processing,
Data Annotation, Model Interpretation

1 INTRODUCTION

Data-driven approaches have pervaded manufacturing in the age of
Industry 4.0, producing a large amount of digitized data in the form
of unstructured technical text [44]. For example in machine main-
tenance, machine operators and repairing technicians often create
maintenance work orders (MWOs) to record their maintenance activ-
ities. However, the rich text of asset management history in MWOs
usually sits untouched because of the potential inconsistency, incom-
pleteness, or incorrectness [4] in the descriptive text. Compared to
raw unstructured text, a set of high-quality annotations summarizing
the content is preferred for “robust and reproducible” [4] analysis
of large-scale technical text. In particular, these annotations can be
utilized for the systematic problem identification and classification,
root cause analysis, and product life cycle prediction [18], which
provides precious insights and facilitate the key performance index
(KPI) assessment and budget planning process. For instance, the
statistics of the label “too hot” in a heating, ventilation, and air
conditioning (HVAC) system maintenance log dataset (see Sec. 6.1)
could indicate how well the air conditioning system has been main-
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tained and thus inform maintenance budget planning. This is also a
critical research topic in technical language processing (TLP) [14].

However, it is not easy to create quality annotations and many
important annotated datasets are riddled with labelling errors [38].
Given the exponentially increasing volume of unstructured text, re-
searchers have gradually discarded conventional manual annotation
approaches and turned to more efficient state-of-the-art machine
learning (ML) techniques or commercial crowd-sourcing [26] plat-
forms. Particularly, recent advances in weak supervision [41, 50]
promise efficient large-scale text annotation. However, it is neces-
sary to sufficiently validate and improve the annotations generated
by such methods before delivering them to down-streaming tasks.
Limited research efforts have been devoted to validation and relabel-
ing of such large-scale technical text annotation. To facilitate this
process, we developed LabelVizier, a human-in-the-loop workflow
encapsulated as a visual analytic solution that supports reliable and
efficient annotation validation and relabelling for domain practition-
ers to meet their specific application requirements.

LabelVizier helps identify and correct three types of annotations
errors: (1) duplicate, (2) wrong, and (3) missing labels. Inspired
by the practice of debugging in software engineering, we profile
the potential errors in the existing labels and devise visual analytics
procedures to facilitate an efficient skimming of the labels and their
context based on the domain expert’s annotation preferences. We
supplement this validation process by training a surrogate model to
approximate the agnostic annotation process, visualizing the pre-
diction metadata to expose potential errors, and providing LIME
explanations [42] for root cause analysis. For the user-identified an-
notation errors, we support flexible relabelling of the dataset on the
corpus, sub-group, and record levels. We implement this workflow
as a web-based interactive notebook containing editable function
blocks and an interactive visual analytic interface designed in close
collaboration with the two domain experts on our team. We demon-
strate how LabelVizier can benefit different application scenarios
in two use cases and evaluate them with expert reviews from four
domain practitioners. The results show that the domain experts
appreciated the efficiency and accessibility of LabelVizier and are
interested in using LabelVizier for their text-based analysis tasks.
This work has the potential to impact a number of data-driven fields
that emphasize annotation quality and, in particular, benefit multidis-
ciplinary areas that deal with critical problems such as maintaining
the vital infrastructure and ensuring community resilience.

Our main contributions can be summarized as follows:

• We propose a human-in-the-loop workflow that supports domain
practitioners to efficiently conduct validation and relabeling tasks
for large-scale technical text annotations from weak supervision.

• We encapsulate this workflow as a web-based interactive notebook
with a visual analytic interface that facilitates the identification of
annotation errors and relabeling for different scales of data.

• We collect insights from domain experts in different application
domains and observe various preferences corresponding to their
backgrounds, which shed light on directions for improving La-
belVizier and cater to the needs of diverse domain practitioners.
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2 RELATED WORK

2.1 Technical Language Processing
Process monitoring, diagnostics, and prognostics have gained preva-
lence with the increased emphasis on smart manufacturing, and
reduced machine downtime. This trend—coupled with lower cost,
more accessible sensors and data storage solutions—has increased
the volume of maintenance data [5]. Despite the potential benefits,
companies frequently struggle to adopt advanced manufacturing
technologies due to cost of and lack of technical expertise in data
analysis [27]. Simple yet powerful solutions for data analysis are
necessary to aid manufacturers improve their practices. There has
been an increasing focus on sensor data and predictive maintenance
using AI techniques [6, 47]. However, these works often neglect a
large part of maintenance data: natural language contained short-text
maintenance logs, which leads organizations to turn to NLP.

Technical text, however, poses challenges to commonly used NLP
methods. Technical fields are often low-resource settings from an
NLP perspective; they lack available resources such as annotated
data and algorithms appropriate for specific analyses [15]. Transfer
learning is the traditional strategy for addressing low-resource do-
mains in machine learning [14]. Models that were generated from
annotated data from resource-rich domains are adapted for the low-
resource domain. Transfer learning approaches often assume limited
differences between two different domains. But the technical text
that appears in industrial information systems deviates considerably
from “standard” English [14], full of expressions like “1 W Mech
Insp Ball Mill BM001” and ”DSHT Cons Thkner rplace bed press”.

The lexical, grammatical, and terminological differences between
“standard” English and industrial technical text have spawned be-
spoke domain-specific NLP adaptations that are largely outside of
mainstream NLP [14]. TLP is a human-in-the-loop, iterative ap-
proach that addresses perceived shortcomings of applying standard
NLP (natural language processing) to technical text data [14]. Origi-
nating with manufacturing maintenance, it is an adaptation of NLP
that focuses on the technical text communicated within specialized
domains. TLP emphasizes the practical importance of semantic in-
formation and extends its system boundaries beyond algorithms and
pipelines to include human input and community resources [4]. The
short-text from maintenance work orders (MWOs) are important
analysis corpora for TLP [34, 45]. They record in detail the mainte-
nance history of equipment and collectively capture vital information
about inspections, diagnoses, and corrective actions [4]. Annotation
methods for MWOs have been the subject of recent research in TLP.
Tools, such as Nestor1 have been developed to support the manual
injection of critical real-world knowledge by allowing for the annota-
tion of the MWO text descriptions via tagging to facilitate automated
categorization and analyses. Machine learning systems can then use
these tags as a signal to help ensure correct outcomes [14].

2.2 Large-Scale Text Annotation
The exponential growth of text data has made the current manual
text annotation approaches, e.g., crowd-sourcing [26], deficient in
meeting the pressing demands for high-quality large-scale anno-
tations [32, 52]. As an alternative, researchers have developed the
weak supervision techniques [19,32,41] that leverage human-defined
labeling functions (LFs) [41], small labeled datasets [50], or existing
text paradigms with multi-type metadata [36] for more efficient text
annotating. However, most of these approaches trade off labeling
speed or cost with annotation quality [32, 36, 41, 50], and the gener-
ated labels are mainly evaluated by numerical performance matrices,
such as accuracies [41], F1 scores [50]. Without human review, it
is uncertain whether such annotations are of sufficient quality for
real-world applications. In light of the deficiencies of manual and
automatic text annotation approaches, a series of semi-automatic

1https://nist.gov/services-resources/software/nestor

text annotation frameworks have been proposed, allowing humans
to annotate large-scale text data with the help of automatic modules,
which can be coordinated labeling modules [54] or deep learning
techniques such as attention model [10], human-validated labeling
functions [17, 43], and transductive semi-supervised learning [12].
However, the annotation quality of such frameworks still lacks hu-
man validation—they either only verify quantitative performance
matrices [54], or sample a small subset for humans to inspect re-
sults [12, 17]. Although there are a few works for improving the
annotation quality [2, 33, 48], they are mainly designed for image or
video data and hence not directly applicable to technical language
datasets. Given the importance of high-quality annotations [16, 35],
a human-centered tool is needed to support the validation of large-
scale text annotations.

2.3 Technical Text Visualization
In the past decade, the idea of applying visualization and visual
analytics to technical text analysis has been broadly embraced.
Manufacturing enterprises are becoming aware of the value of
maintenance records they collect and are supporting visualization
research [1, 8, 9, 22]. Academic researchers have developed vi-
sual analytical strategies for maintenance records [53] and error
logs [30, 31, 37, 46]. In particular, La VALSE [21] and MELA [46]
are scalable visualization tools with multiple visualization interfaces
incorporating different logs for interactive event analysis. ViBR [7]
provides a visual summary of large bipartite relationships by via
minimum description lengths and is used for vehicle fault diagnos-
tics. However, existing solutions have prerequisites on either the text
format or the quality of the labels. Some assume that there exists a
well-defined set of labels [24] to train a classification modelfor the
annotation task or assume a trivial effort to define these labels in the
pre-processing stage [13, 55] when they are not available as input.
Others expect that the text can be generated from grammar or rules
so that the labels can be derived from clustering [21].

In this work, we address inconsistent technical text created by hu-
man maintainers that contains domain jargon and labels of unknown
reliability. Unlike other approaches, we do not have prerequisite
text formats nor do we make assumptions about the labels or their
quality. We also do not rely on the text’s grammatical structure

3 VALIDATION AND RELABELING FOR TEXT ANNOTATIONS

In this section, we define the problem we wish to solve and clarify
our assumptions. We also derive the annotation error types and
design requirements based on the industrial experience of two of the
authors and an exploration of a machine maintenance log dataset.

3.1 Problem Definition
Like software development, TLP often requires machine-assistance
in the validation of large, complex, and context-specific sets of text.
To fulfill this need, we aim to facilitate the validation of annotations
and the correction of labelling errors by designing visual analytic
techniques for domain practitioners.

Our target users are domain practitioners and data analysts in need
of assessing and improving the annotations for large-scale technical
text data. We expect they have the analytical skills to interpret the
model performance metrics and interact with LabelVizier. We also
make two assumptions about the technical log text and their labels:

• There exists a finite set of labels L = {l1, l2, ..., ln}. And the
mapping from each record si to the labels is defined by li = f (si),
where li ⊆ L. In the context of this paper, f (si) is agnostic and the
quality of L requires expert verification.

• There exists a finite set of label categories C = {c1,c2, ...,cn}.
Each label l in L belongs to one label category in C. Note that
the “label category” in our context is a higher-level taxonomy of
labels. For instance, label “air-conditioner” belongs to “Item” and
“too hot” belongs to “Problem” in Sec. 6.1.
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Figure 1: The LabelVizier workflow consists of three phases: Error Profiling, Annotation Validation, and Annotation Relabeling. It is implemented
as a web-based interactive notebook which takes technical text and the corresponding labels as input. With the actionable insights provided by the
surrogate model, XAI method, and visualization, users can identify three error types and improve annotation quality at three different data scales.

Given there is no formalized taxonomy of labeling errors in the
TLP domain, we target three dominant types of annotation errors
distilled from two coauthors’ long-term industrial experience:

• Duplicate Labels share duplicated words (e.g., “temperature”
and “room temperature”) and/or express semantic meanings (e.g.,
“too cold building” and “temperature too cold”).

• Wrong Labels involve labels with conflicting meanings (e.g.,
one record is labeled with “too cold” and “too hot” simultane-
ously). It can also refer to an unreasonable label name (e.g.,
“building building”) where the label refers to a non-existent class.

• Missing Labels refer to labels that should be assigned to tech-
nical records but are absent (see examples in Sec. 6.1). Missing
labels are relatively hard to detect if there are already other labels
assigned to the record.

The output of our workflow is a set of labels with improved quality.

3.2 Design requirements

After much discussion on a weekly base, our team, which included
two TLP domain experts, agreed to four design requirements for
LabelVizier to address the problem defined in Sec. 3.1:

R1 Label Overview: As the first step of label debugging, La-
belVizier needs to provide users with a summary overview of all
technical text and labels. The visual interface needs to present
label distribution in the finite label set L and illustrate their cate-
gories c (if available) intuitively. The visual interface also needs
present the currently assigned labels of one or multiple record(s)
si in different levels of detail and from different perspectives
per user demand to support intensive context comprehension.

R2 Label Quality Screening: LabelVizier need to support an ef-
ficient evaluation of the quality of existing annotations. In
particular, the visual interface needs to allow users to quickly lo-
cate labels that potentially fall into the three types of errors (see
Sec. 3.1). After that, it should help users confirm the error by
providing sufficient context information about the related labels
and explaining how they were assigned to specific records.

R3 Interactive Relabeling Support: Once the errors are identified
and confirmed, LabelVizier needs to interactively collect the
user’s relabeling suggestions and apply them to specific scales
of the dataset per user request. In particular, users should be
able to make suggestions to remove or modify an existing label
or insert new labels according to their best judgment. After
that, such modifications should be applied to entire corpus, a
sub-group, or an individual record per user demand.

R4 Accessibility and Flexibility: LabelVizier should be accessible
to domain practitioners of varying backgrounds. On the one
hand, the basic functionalities of the visual interface should
be intuitive enough for users without a computing background
during the validation and relabeling tasks. On the other hand,
LabelVizier should provide users with in-depth information on

demand and the flexibility to adjust the data processing or model
training settings so that the analysis process also satisfies experts
with more computing experience and special analysis needs.

3.3 Datasets
We involve two TLP datasets, HVAC and NLU, in this paper:

HVAC is an internal dataset from our industrial collaborators with
over 21,000 pieces of maintenance records from an HVAC system.
Each record contains two text fields: “LONG DESCRIPTION” and
“DESCRIPTION”. “LONG DESCRIPTION” describes the detailed
maintenance information, including the problem, the solution, the
maintainer, the corresponding machine, etc., while “DESCRIPTION”
is a concise version, which is often a sentence or a set of keywords.
There are also eight categories of labels available for each record,
including “P” (Problem), “S” (Solution), “I” (Item), “PI” (Prob-
lem Item), “SI” (Solution Item), “X” (Irrelevant), “U” (Unknown),
and “NA”. For example, the category “P” includes labels such as
“too hot”, “leak”, and the category “SI” includes labels such as “ad-
just thermostat”, “replace valve”, etc. These labels were produced
by a weak supervision method, and their quality remains agnostic.

NLU [3] contains over 25,000 human-robot interaction records
and the corresponding labels, collected from a voice AI agent serving
in an intelligent home system. Each record includes three text fields:
“question” is a pre-designed human-robot interaction question; “an-
swer” and “answer normalized” contain the original and normalized
user answers, respectively. There are three categories of labels, in-
cluding “scenario”, “intent”, and “suggested entities”. For example,
the category “scenario” includes labels such as “weather”, “music”,
and the category “intent” includes labels such as “request”, “send
email”, etc. These labels were generated from a crowd-sourcing
platform, and their quality requires validation as well.

4 METHODOLOGY

4.1 Workflow
We designed the LabelVizier workflow as an iterative framework
with three major phases: (1) Error Profiling, (2) Annotation Vali-
dation, and (3) Annotation Relabeling. A regular analysis process
starts from the Error Profiling phase, in which we train a surrogate
model with the technical text and their existing labels to approximate
the prior annotation process. Then, users can conduct the first round
of Annotation Validation through the integrated visual analytic
interface, where multiple coordinated views are provided to assist
an efficient investigation of labels (R1) and detection of three types
of errors. After that, users can move on to the Annotation Relabel-
ing phase and relabel the identified results at three different levels:
corpus level, sub-group level, and record level (R3). A more de-
tailed description of our visual and interactive support on these three
levels is provided in Sec. 5. After the first pass of the three phases,
users can iterate between Annotation Validation and Annotation
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Relabeling for multiple rounds till the annotation quality converges
with their standard of satisfaction. It is also worth mentioning that
LabelVizier simplifies the input and output of phase(1) so that users
only need to make minor hyperparameter adjustments to execute
different use cases with various analysis purposes (R4).

4.2 Surrogate Model for Error Profiling

In the first phase of the LabelVizier workflow, we train a surrogate
ML model [11] to approximate the generation process of existing
labels in the dataset. To ensure that the surrogate model can achieve
satisfactory performance and reflect potential annotation issues, we
tuned the model architecture with the interactive notebook to fit
the specific dataset. Then, by visualizing the model’s intermediate
results (e.g., prediction probability [29]) in the second and third
workflow phases, we help users uncover potential annotation flaws.
In this way, users start their label validation from those suspicious
labels related to unusual model behaviors (R2) and locate a group
of potential labeling errors for inspection. After addressing these
labels, users can retrain the surrogate model with the better-quality
dataset to obtain a reusable model incorporating domain knowledge
from human experts and save it for future annotation tasks.

The error profiling phase of LabelVizier require the surrogate
model to be: (1) lightweight, so that the model tuning is time-
effective; (2) accurate in producing similar results to existing an-
notations. For (1), we utilize lightweight and time-effictive word-
embedding and ML methods to process text data and train the anno-
tation classifier. For instance, to process the input technical text data,
we adopt computationally efficient and widely-used word embedding
techniques, including TF-IDF (term frequency-inverse document fre-
quency) [51] and truncatedSVD (Singular value decomposition) [20],
to encode the original text into real-valued vectors. For (2), we it-
erate multiple processes with different model training settings, and
audit quantitative performance matrices in the validation split un-
til reaching the best result. Thus, we ensure the surrogate model
achieves satisfactory performance, i.e., the alignment between the
predicted labels and the existing annotations is reasonable for the
surrogate model to simulate the annotating process and provide hints
for users. Specifically, the average hamming loss is 0.02, the mi-
cro f1 score is 0.8044, and the average macro f1 is 0.6703, where
smaller hamming loss, and larger micro & macro f1 scores indicate
better performance. Besides, the predicted probabilities predProba
of the fitted LinearSVC f ittedModel is obtained to act as the clue
of finding suspicious labels.

4.3 Model Behavior Explanation

LabelVizier utilizes one of the state-of-the-art eXplainable Artificial
Intelligence (XAI) techniques–LIME (Local Interpretable Model-
Agnostic Explanations) [42]–to support the annotation validation.
For each of the constructed surrogate models, LIME performs
perturbation-based analysis over a given text record and presents
the explanation by highlighting the rationale behind the model’s
prediction. It exposes the weakness of the model and the pitfalls of
the input technical text and thus could help users more accurately
inspect a potential annotation error and make a reasonable relabeling
decision. The LIME explanation is integrated into the “Explain”
tab of Record Projection View LabelVizier and is triggered when
users select a record from the “Categorize” tab for further inspection
(more details in Sec. 5 and examples Sec. 6).

4.4 Implementation

To maximize its accessibility for sharing and flexibility for cus-
tomization (R4), we implement the LabelVizier workflow as a com-
putational notebook. We use multiple Python data analysis libraries
including Pandas [39], Numpy [25], and Joblib [28] for data pro-
cessing and intermediate metrics analysis. In addition, the word

embedding techniques (TF-IDF and truncated SVD) and ML meth-
ods (LinearSVC) discussed in Sec. 4.2 are implemented with scikit-
learn [40], and the LIME technique is with LimeTextExplainer [42].
To ensure smooth integration and faster rendering speed, we embed
the visual interface (Fig. 2) in the computational notebook with
Plotly’s JavaScript Graphing Library and Plotly Dash. And we use
the t-distributed stochastic neighbor embedding (t-SNE) algorithm
for dimensionality reduction when visualizing the high-dimensional
word vectors and confidence vectors for the Record Projection View.
We also deliberately separate the functions in the notebook so that
users can easily plug in any word embedding and dimensionality
reduction algorithms for their specific analysis needs with minor
programming.

5 VISUAL ANALYTIC INTERFACE

To fulfill the design requirements in Sec. 3.2 and concretize the
LabelVizier workflow in Sec. 4.1, we design a visual analytic inter-
face (see Fig. 2) that contains three major components: (A) Label
Investigation View, (B) Record Projection View, and (C) Inspection
& Operation View. In this section, we demonstrate how we can co-
ordinate these views to locate the three types of errors and perform
multi-level validation and relabeling on annotations.

5.1 Annotation Validation

With the coordination among different components of LabelVizier,
users can efficiently validate the annotation quality and identify the
three major types of error introduced in Sec. 3.1 (R2).

5.1.1 Duplicate Label Detection

To support duplicate label detection, we designed the Label Inves-
tigation View (Fig. 2 (A)) and the “Inspect” tab of Inspection &
Operation View. We choose the sunburst diagram for Label Investi-
gation View to provide an overview of the hierarchical relationship
between labels and their category (R1), as well as the distribution
of the labels across categories – the size of the label sectors at the
outermost layer represents the number of records in the dataset as-
signed with the corresponding label. We also encode the possibility
of duplicate labels into the sectors colors to provide a priority rec-
ommendation for the user inspection. This duplication possibility is
the average of a ratio of co-occurrence number Co(li, l j) to the total
appearance Num(li) of each label li in the category:

Pduplication =
1

ncateg

ncateg

∑
i=1

(
1

noccur

noccur

∑
j=1

Co(li, l j)

Num(li)
) (1)

The sunburst diagram is expandable per user request. And in
the zoom-in view, we embed a chord diagram to illustrate the la-
bel co-occurrence in the same record, which is a strong indicator
of duplicate labels (e.g., Fig. 3 (A)). In this chord diagram, the
co-occurring labels are connected with white chords, with their
thickness representing the co-occurrence frequency. For example,
the chord between the label “room too hot” and “too hot room” is
thicker than that between “room too hot” and “water leak”, indi-
cating a heavier co-occurrence pattern and potential duplication of
the former pair. A larger number of thicker chords also indicates
a higher possibility of existing duplicated labels in this category,
which corresponds to the brighter sector color described above.

Users can further inspect the context of any suspect labels by
clicking on them and checking the updated data table under the
“Inspect” tab in the Inspection & Operation View (Fig. 2 (C)). This
data table presents all the records across the dataset assigned with the
selected label. In this way, users can efficiently locate and evaluate
the correctness of potential problematic labels.
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Figure 2: The LabelVizier interface with the HVAC dataset. (A) Label Investigation View visualizes the label and category hierarchy relationships;
each category can be expanded to present label co-occurrences (see Fig. 3 (A)). (B) Record Projection View presents the record distribution
oto support sub-group validation, layout by model confidence vectors or input word vectors. The color represents “model prediction confidence”
or “record info density”. (C) Inspection & Operation View includes multiple tabs, “Inspect” for record and label inspection, “Categorize” for
category-based investigation, “Explain” for model behavior interpretation (c1), and “Relabel” for relabeling operations.

5.1.2 Wrong Label Detection

Wrong labels can be detected with the Record Projection View
(Fig. 2 (B)) in coordination with the “Categorize” and “Explain” tabs
of Inspection & Operation View. To provide a two-dimensional (2D)
overview for all records (R1), we apply the t-SNE [49] algorithm
to project the customized record vectors onto the 2D space and
visualize each of them as a dot. The customized record vector can
be a “word vector” or a “confidence vector”. When the “word
vector” is used for layout, the distance among the dots indicates the
semantic closeness of descriptions in their corresponding records.
When the “confidence vector” is used for layout, the distance among
dots indicates the model behavior towards similarity when predicting
labels for the corresponding records. We provide two options to color
the record projections — “information density” and “confidence
score”. The “information density” is more useful in locating missing
labels, so we will discuss it in Sec. 5.1.3. The “confidence score” is
the mean value of all dimensions of the aforementioned “confidence
vector”, which could expose the records containing more labels
predicted with low confidence, and thus provide hints to locate
sub-groups that potentially contain labeling mistakes (Fig. 2 (B)).

Once a cluster with low confidence is identified and selected, a
heatmap under the “Categorize” tab in Inspection & Operation View
(Fig. 4 (c1)) will be triggered, where each row refers to a single
record; each column represents one label category, and the color
indicates the model’s average confidence score.

To support deeper understanding of the model reasoning process,
we provide LIME explanations under the “Explain” Tab (Fig. 2 (c1)).
The explanation includes three parts: the left bar chart visualizes the
top five predicted labels and their prediction probabilities; the middle
bar chart visualizes the “score of contribution” of the input words
to the top label; the right side shows more context information and
the original text record, where the positive and negative contributors
are highlighted with different colors. Combining these three kinds
of information, we aim to help users verify whether the rationale
behind the model’s decision aligns with their knowledge (R2).

5.1.3 Missing Label Detection
The detection of missing labels also involves the Record Projection
View (Fig. 2 (B)) and “Inspect” tabs of Inspection & Operation View.
We designed the “information density” metric to highlight records
more likely to have missing labels. This metric is determined by the
ratio of label count and the input text length:

DIn f o = log(
Count(labels)

WordCount(text)
) (2)

Once the users locate and select a cluster of records with low
“information density”, the “Inspect” tab of Inspection & Operation
View will be updated for verification of the label missing issue.
It is also worth mentioning that higher “information density” can
insufficiently indicate the existence of duplicate labels, but further
verification is required with the process in Sec. 5.1.1.

5.2 Annotation Relabelling
After confirming a labeling error, users can improve the annotation
quality of the dataset (R3) in three different data scales: corpus level,
sub-group level, and record level:
• Corpus level relabeling updates the label across the entire techni-

cal text dataset. It is achieved by clicking on a label from Label
Investigation View and use the “Relabel” tab of Inspection & Oper-
ation View to “remove”, “modify”, or “insert” it. For example, the
label “building building” is considered to be a “wrong label” error
at the corpus level. Users can select it from Label Investigation
View and remove it from all affected records.

• Sub-group Level relabeling involves a sub-group of records
within the dataset. It is achieved by selecting a sub-group of
records with the lasso tool in Record Projection View and relabel-
ing them with the “Relabel” tab. The number of records in one
sub-group can vary from a dozen to hundreds.

• Record level relabeling updates individual record(s) associated
with a specific label error. For example, a user looks over the
records through the “Inspect” tab and notice two records missing
the label “alarm”. They can select these two record(s) with the
checkbox and relabel them under the updated “Relabel” tab. These
relabeling operations are only applied to the selected records.
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Figure 3: Duplicate label validation with the HVAC dataset (Sec. 6.1). The chord diagram (A) shows that labels “office too hot”, “room too hot”,
“too hot building”, and “too hot room” co-occur frequently. Duplication is confirmed via record details in (c1) and fixed in “Relabel” tab (c2).

To eliminate waiting for dataset updates and projection re-rendering,
the visual interface is only re-rendered when the user request to apply
the changes. To achieve this, we record the relabeling operations as
a history list and sequentially apply them to the database per request.

6 USE CASE SCENARIOS

This section describes two use case scenarios where LabelVizier
assists domain experts in validating the quality of technical text
annotations and conducting efficient relabeling.

6.1 Case 1: Maintenance Management for HVAC System

This use case involves Amy, a maintenance manager who monitors
machine maintenance records to track maintenance-related issues
and to plan for future maintenance resources (e.g. budgets, main-
tainers, etc.). With the HVAC dataset, we demonstrate how she
uses LabelVizier to validate the label quality of MWOs and make
maintenance management based on the more accurate labels.

After finishing data processing and surrogate model training in
the programmable cells of LabelVizier, Amy starts validating labels
through the interface. Because the frequency of similar labels re-
flects the prevalence of a maintenance issue and influences decision
priorities and budgets, Amy chooses to screen duplicate labels at
first. She notices from the Label Investigation View (Fig. 2 (A))
that the category “PI” is the most likely to contain duplicate labels,
so she expands it to check for label co-occurrance (Fig. 3 (A)). As
indicated by the chord thickness, “office too hot”, “room too hot”,
“temperature too hot”, “too hot building”, and “too hot room” co-
occur very frequently. Because these labels have similar semantic
meanings, Amy further inspects their context in the “Inspect” table
(Fig. 3 (c1)) and confirms that they are duplicates. Such duplication
will overemphasize air-conditioner-related “too hot” issues and may
cause excessive allocation of maintenance resources. Amy removes
the redundant labels and unifies the rest with “room too hot” with the
“Relabel” (Fig. 3 (c2)). Now that Amy has created more accurate and
consistent labels for temperature-related problems, she counts their
frequency, evaluates the problem severity, and decides to arrange for
regular examination of all air-conditioners across the company.

Amy moves on to the Record Projection View (Fig. 2 (B)) to
screen for wrong labels which are another type of error that can
mislead maintenance planning. Amy notices that there are several
clusters with lower confidence scores (Fig. 4 (B)), indicating that
the surrogate model performed worse and might predict the wrong

labels for the corresponding records. After selecting one, she learns
from the updated “Inspect” tab that the labels “Richard” in category
“I” and “br richard” in category “X” appear in many records. Amy
browses the context to check if this is related to a maintainer’s name
or is an improper description but finds the phrase “br richard” doesn’t
appear to be semantically relevant to either “DESCRIPTION” or
“LONG DESCRIPTION”. Seeing this issue also appears in many
other clusters, Amy decides to further investigate its cause with
the “Categorize” and “Explain” functions. Under the “Categorize’
tab, she clicks on the cell indicating lowest prediction confidence in
category “I” and “X” (Fig. 4 (c1)) to trigger a LIME explanation. As
shown in the left bar chart in Fig. 4 (c2), the model’s top prediction
for the selected record is the label “br richard”. However, the middle
and right part shows that most positive contributors to this prediction
are HTML metadata such as “TEXT” and “RICH”. Amy realizes that
the wrongly-predicted label “br richard” might originate from the
presensce of HTML tags. After seeing similar LIME explanations
for more records in this cluster, her hypothesis is confirmed – the
model referred to HTML tags to predict the wrong labels. Amy
removes these wrong labels (Fig. 4 (c3)) and decides to conduct a
thorough cleaning of the dataset later to remove HTML tags.

Amy also checks the info density and does not find any severe
label missing issues. Then she reloads the updated labels into La-
belVizier and confirms that the new annotations are satisfactory.
Finally, Amy executes the code cells of the computational notebook
(Sec. 4.4) to re-train the surrogate model with the relabeled dataset.
In this way, she preserves her domain knowledge in the model that
can be used to annotate any future maintenance records.

6.2 Case 2: Data Cleansing for NLU Model Training
In this section, we demonstrate how LabelVizier can help modify the
annotations of the training data for a specific application scenario.
This use case involves Steven, a data engineer working in a company
that provides conversational agent (CA) services. Steven coordinates
the large-scale crowd-sourcing process to provide high-quality train-
ing data for the natural language understanding (NLU) model [3]
embedded in the CAs, which summarizes the semantic content of
user utterances by mapping it to structured, abstract representations
(labels) that support the decision making process.

Steven uses LabelVizier to validate and debug the crowd-sourced
annotation results before delivering the dataset for the downstream
machine learning tasks. The NLU model requires all labels to be
independent and accurate so that the voice AI agent can exclu-
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Figure 4: Wrong label detection in HVAC dataset using LabelVizier (Sec. 6.1). Users can select a sub-group with lower confidence in (B) and
inspect model confidence of each category in (c1). Then they can click on cells in (c1) to activate LIME explanation in (c2) for model behavior
interpretation. After confirming the error, users can remove the wrong labels with (c3).

sively query them in the search engine and provide correct an-
swers to the users. To remove those dependent labels with se-
mantic duplication, so Steven starts by looking for them via the
Label Investigation View. According to the coloring of the cate-
gories, the category “suggested entities” is most likely to include
duplicate, so Steven expands this category to inspect the label
co-occurrences. The thick chord indicates that the labels “cur-
rency source” and “currency target” heavily overlap (Fig. 5 (A)).
Steven inspects the detailed context of the corresponding records
with the Inspection & Operation View and finds that most of these
records are related to currency exchange questions. Although the
two labels “currency source” and “currency target” appear reason-
able, Steven still decides to merge them into the single label “cur-
rency source and target” to facilitate the down-streaming task.

When using the “Inspect” tab to investigate the duplicate label
issues above, Steven notices that missing labels are a common with
this dataset. He moves on to the Record Projection View to facili-
tate find more missing labels. He chooses the options of “Color by
Info Density” and “Layout by Word Vector” to highlight clusters
with similar semantic meanings and lower info density (Fig. 5 (b1)).
Then he uses the lasso tool to select the most notable cluster and
observes from the Inspection & Operation View (Fig. 5 (c1)) that all
the records in this cluster were labeled as “QA” under the category
“scenarios” and “object query” under the category “intent”, but not
assigned with any labels under the category “suggested entities”.
With a second look at the input “questions”, “answers”, along with
the model’s reasoning process from the “Explain” tab, Steven fig-
ures out the cause — the model only captured the information from
the records’ shared “question” but ignored the “answers”. To fill
the missing labels, Steven zooms into this cluster in the Record
Projection View (Fig. 5 (b2)) and uses the lasso tool to select each
sub-clusters with similar semantic meaning. After selecting one
sub-cluster (Fig. 5 (b2)), Steven notices similar semantic meanings
of the selected records – for “answer normalized”, those records
have sentences such as “how do you think the world ends”, “tell me
how the world begin” and “do you believe in god”, etc. Considering
these questions were asked by their CA users, Steven believes “apoc-
alypticism” or “philosophy” would be proper labels for the category
“suggested entities”. He inserts them into the selected sub-group of
records with the help of the “Relabel” tab. Steven conducts the same
operation to the few other low-info-density clusters, and fix the label
missing issues accros the entire dataset.

Finally, Steven applies his relabeling operations to the dataset and
updates the interface. After confirming the quality of the annotations,
he delivers the dataset to the machine learning engineers for the
downstream training tasks. With LabelVizier, Steven optimizes
the annotation quality from crowd-sourcing results and avoids the
potential flaws that can bias the training of the voice AI agent.

7 EXPERT REVIEWS

LabelVizier was developed with the participation of TLP domain
experts (Sec. 3.2) over the course of two years. To evaluate the
generalisability of our workflow and reveal insights from or practical
value to domain practitioners, we invited another two TLP domain
experts (E1 and E2) and two experts from other domains (E3 and
E4) into our expert review studies.

7.1 Expert Demographics

All experts were experienced in data analysis and performed data
annotation tasks in their daily work. E1 and E2 was research engi-
neers from the TLP community, who were familiar with and had
worked on the analysis of the HVAC dataset (Sec. 6.1) before the
study for several years. E3 was an economist and statistician who
analyzed large-scale tabular datasets to gain insights into commu-
nity resilience. E4 was a research social scientist who manually
annotated large-scale datasets about risk perception and evacuation
decision-making, and was in need of speeding up this process.

7.2 Tasks and Setup

We conducted two pilot studies to simulate the remote setup, test the
LabelVizier execution environment (online Colab via a local Jupyter
Notebook) and adjust the content of the tutorial sessions. Then we
finalized a semi-structured, open-ended expert review in which each
expert was asked to explore one of the two datasets described in
Sec. 6. Based on their domain of expertise and familiarity with the
dataset, E1 and E2 used the HVAC Dataset while E3 and E4 used the
NLU Dataset. We shared the original dataset and its documentation2

with E3 and E4 before the study so that they could get familiar with
it in advance. Because the existing annotation in the NLU Dataset
is relatively clean, we used an adapted version with two manually
inserted errors for each error type in Sec. 3.1 in the study.

2https://github.com/xliuhw/NLU-Evaluation-Data
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Figure 5: Finding duplicate and missing labels in NLU dataset using LabelVizier (Sec. 6.2). The chord diagram in the Label Investigation View (A)
reveals the duplicate labels “currency source” and “currency target”. The clusters with low information density in the Record Projection View (b1)
highlight records with missing labels. The “Inspect” view (c1) shows that the “suggested entities” for the selected records in (b2) are missing.
User-suggested labels can be inserted through the “Relabel” tab (c2).

The study was conducted online via a video conferencing where
the domain experts accessed LabelVizier from Google Colab Note-
book3 via their personal computers. We shared the tutorial document
with the experts no less than two days before the study.The online
study session started with a 25-min tutorial session that combined an
introductory presentation, a live demonstration, and the mini-tasks.
An example mini-task for the HVAC dataset was “Please use La-
belVizier to find one pair of duplicated labels under the category ‘PI’
(Problem Item), and then suggest how to modify it with the ‘Relabel’
tab”. After the tutorial session, the experts were asked to freely
explore their assigned dataset to validate and relabel the annotations
(20-25 minutes). During this process, the experts followed the think-
aloud protocol to verbalize their thinking and suggestions. Finally,
the experts responded to a questionnaire with their demographic
information and general feedback of LabelVizier.

7.3 Observations
In our study, all experts appreciated the value of LabelVizier for
facilitating annotation refinement and expressed willingness to use
it in their daily work, describing it as a very good tool (E2) that was
“helpful at a high level of quickly and...pleasantly...identifying issues
than just scrolling through a spreadsheet” (E4). Meanwhile, we
observed that domain experts with differing backgrounds interacted
distinctly with LabelVizier and sometimes provided divergent com-
ments towards the same features. We categorize the their behaviors
and feedback during the exploratory and describe them below.

Learning Curve. Based on their familiarity with the dataset and
the tool, domain experts required differing times to overcome the
learning curve (R4). For instance, E1 and E2 had previously worked
on the HVAC dataset with other annotation tools, so they spent less
time grasping LabelVizier compared to the other two experts (E3,
E4). E2 expressed great interest in the methodology “under the hood”
and asked many technical questions to understand the underlying
mechanism during the tutorial session. Although E3 and E4 needed
more hands-on instructions about using our tool, they were capable
of replicating the moderator’s operations and accomplishing the
exploration task after the tutorial sessions. They praised our tutorial
session design, saying “it helped very much...after (the moderator)
demonstrated, it very easy to replicate” (E2).

3https://colab.research.google.com/

Functionality. In all four studies, the experts were able to effi-
ciently evaluate the quality of the annotations (R2) and successfully
accomplish the relabelling (R3) by coordinating information from
the three major views of LabelVizier (Fig.2). Moreover, E1, E2, and
E4 successfully mastered the relatively complex “Categorize” and
“Explain” functions and utilized them to understand the root cause of
a potential wrong label. We also received requests for more delicate
annotation manipulations and more complicated information support
from experts with shorter learning curves, such as modifying the
name of a label category (E2) or showing the percentage value of the
duplicated labels (E1, E2). However, experts with longer learning
curves requested simpler operations and more exploration guidance
from the tool, such as simplified projection view (E3) or “pop-up
reminders...to remind people what these different tools are for in a
really obvious way” (E4). How to support more delicate label ma-
nipulation as well as ensure the accessibility of LabelVizier ((R4))
is an inspiring topic that we will discuss in Sec. 8.

Visualization. Interestingly, experts with different backgrounds
and experience using (semi-) automatic annotation tools also showed
different preferences towards our two major visualization compo-
nents – the Label Investigation View and the Record Projection View.
Though all experts expressed their favor of the Label Investigation
View, saying they “particularly like the chord diagram” (E3) be-
cause it was “very helpful”(E1), “intuitive enough” (E2) and they
“haven’t seen labels presented in this way” (E4), E2 mentioned “the
co-occurrence is less useful because I don’t have enough flexibility
to dive down into why there’s that co-occurrence.” For the Record
Projection View, experts knowing more about machine learning
(E1 and E2) picked it up faster and appreciated its value in finding
wrong and missing labels better. “I think the projection view is super
useful,” said E2. They “would like to see even more options of pro-
jection spaces and be able to play around with those.” In contrast,
E3 felt the same function was too complex and required “a lot of
playing around.” E4 didn’t even get a chance to try out the different
projection options because of the time constraint.

Interaction. During the study, we received precious interaction
improvement suggestions, including more cross-view coordination,
operation history tracking, and typing suggestions. E1, E2, and E4
suggested more flexible interactions, such as cross-view Boolean
operations and subset highlighting. For example, when E2 inspected
the label “time,” they mentioned that this label might involve differ-
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ent types of redundancy according to their prior knowledge about
the dataset. As a result, they requested Boolean operations between
the Label Investigation View and Record Projection View to sift
those records of their specific need. E3 and E4 suggested providing
ways to keep track of the editing history, such as an undo function
(E3), a history list (E4), and some hints of what the user has just
clicked (E4). E2 suggested adding typing suggestions for relabel
tab, such as auto-complete or alternative recommendation functions.
These suggestions reflected the experts’ tacit knowledge gained
from their long-term annotation practice and will direct us to a more
accountable annotation tool in the next development iteration.

8 DISCUSSION

The observations and feedback from the expert reviews indicated that
LabelVizier provides a means for domain practitioners to validate
and relabel the technical text annotations “quickly” and “pleasantly”.
They also suggest potential future work for our workflow and tool.
Below, we organize the lessons learned.

Accessibility v.s. Functionality. We observed in our expert
review that users with less machine learning and (semi-) automatic
annotation tool experience may go through longer learning curves
with LabelVizier. They requested more exploration guidance or
relabelling recommendations when using the tool, while the other
group of users requested more complex functions, saying LabelVizier
was “good to find gross errors, but not for perfectionism”(E2). This
is understandable because we required domain experts with diverse
backgrounds to learn a relatively complex system within a limited
time. We plan to alleviate this problem by leveraging user modeling
techniques [23] to analyze the user behavior and guide them to start
from different levels of complexity. This way, it will also be safe to
extend LabelVizier with more intricate functions, as recommended.

Automation v.s. Human Trust. As computer science researchers,
we tended to incorporate more automation in LabelVizier during the
development process, which was discouraged by our collaborators
with technical text annotation backgrounds. We observed that most
of the data analysts tended to be “over conservative” (E2) and had
to closely check the raw text before “starting to believe the systems
is working”(E1). They also said that many cases were ambiguous,
so they tended to examine more context before making relabelling
decisions. Because of this, LabelVizier currently still involves con-
siderable manual work, as demonstrated in Sec. 6. LabelVizier also
only provides recommendations and explanations instead of one-step
relabelling suggestions to supply users with a comfortable amount
of information. Indeed, there were no complaints about too much
manual work during the expert review but we did receive praise that
our tool helped “focus their energy”(E4).

Application Domains. LabelVizier was originally designed to
serve as a component of technical language processing, but it is gen-
eralizable to other annotation verification tasks. The error profiling
process can take any natural language descriptions and their labels
as input and allow users to perform validation and relabelling via
the interface. If label categories are available, as was for our use
cases (Sec. 3.1), there will be two layers in the Sunburst diagram of
Label Investigation View. Otherwise, the Sunburst diagram will de-
volve into a pie chart, with other LabelVizier functionality remaining
unchanged.

9 CONCLUSION

We presented LabelVizier, a human-in-the-loop workflow that can
help domain experts efficiently validate and improve the quality of
multi-labeled technical text annotations. LabelVizier utilizes a web-
based interactive notebook to enable flexible data processing and
model training, and integrates a visual analytic system to leverage hu-
man knowledge in annotation relabeling. The interface coordinates
different visual components for multi-type error detection (duplicate,
missing, and wrong labels) in different dataset scopes (corpus level,

sub-group level, and record level), and provides a human-centered
solution targeting the quality enhancement for large-scale text anno-
tations. We demonstrate the usability of LabelVizier via two use case
cases, and four experts evaluated the effectiveness of our workflow
through a study consisting of one-on-one qualitative evaluations. We
believe our work will encourage the design of visual analyticsfor
other domain-driven problems and inspire future research efforts in
creating higher-quality annotations for larger-scale text datasets.

NIST DISCLAIMER
The use of any products described in this paper does not imply rec-
ommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that products are necessarily the
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