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Abstract— With the development of next-generation wireless
networks, the Internet of Things (IoT) is evolving towards the
intelligent IoT (iIoT), where intelligent applications usually have
stringent delay and jitter requirements. In order to provide
low-latency services to heterogeneous users in the emerging
iIoT, multi-tier computing was proposed by effectively combining
edge computing and fog computing. More specifically, multi-
tier computing systems compensate for cloud computing through
task offloading and dispersing computing tasks to multi-tier
nodes along the continuum from the cloud to things. In this
paper, we investigate key techniques and directions for wireless
communications and resource allocation approaches to enable
task offloading in multi-tier computing systems. A multi-tier
computing model, with its main functionality and optimization
methods, is presented in detail. We hope that this paper will serve
as a valuable reference and guide to the theoretical, algorithmic,
and systematic opportunities of multi-tier computing towards
next-generation wireless networks.

Index Terms— Intelligent IoT, task offloading, multi-tier com-
puting, resource allocation.
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I. INTRODUCTION

AS THE fifth generation wireless networks (5G) being
commercially deployed, research efforts of the sixth

generation wireless networks (6G) have begun to define 6G
requirements and use cases. Four promising use cases have
emerged. First, holographic telepresence allows realistic, full
motion, three-dimensional (3D) images of people and objects
to be projected as holograms into a meeting room to interact
with each other in real time [1], [2]. Such remote holographic
meeting, surgery, or distant learning will reduce the need for
travel. The second key use case is digital twin, which creates
a real-time, comprehensive, and detailed digital (virtual) copy
of a physical object, or system [3]. Digital twins help push the
boundaries of system reliability, used to support a wide range
of capabilities such as diagnostics and fault prediction. The
third one is connected industrial robots, such as Tactile Internet
and intelligent cars. In this use case, the components of a
control system (e.g., controllers, sensors, and actuators) are
distributed across a wide geographic region [3], and therefore
need to be connected via a wide area mobile infrastructure.
In addition, these intelligent applications usually require strin-
gent delay and jitter performance, with typical maximum
tolerable network latency below 1 milliseconds. The fourth use
case is automated network operation empowered by distributed
artificial intelligence (AI), intelligent Internet of Things (iIoT),
and big data technologies [4], [5], [6].

Many current and future applications require low latency,
high reliability, and high data security protection [7]. These
cannot be adequately met by the traditional cloud computing
model, which requires to upload massive data and computing
tasks to the cloud through fronthaul links and hence is difficult
to meet the requirements of low latency and high energy
efficiency. To provide low-latency services, a new computing
paradigm called multi-tier computing was proposed by effec-
tively combining edge computing and fog computing [8], [9].
With multi-tier computing, a large number of smart devices
with varying computational resources, located around the end
user, can communicate and cooperate with each other to
execute computational tasks. A comparison between multi-tier
computing and the current 5G-based edge computing is illus-
trated in Fig. 1. Multi-tier computing complements cloud
computing and edge computing by offloading and dispersing
computational (and communication and caching) tasks and
resources along the continuum from the cloud to things.

Multi-tier computing makes the convergence of networking
and computing possible by integrating with 5G and beyond
systems [10], [11], supporting computational-intensive appli-
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Fig. 1. Edge computing versus multi-tier computing.

cations that require low latency but high energy efficiency, high
reliability and high security, including a wide range of new
novel applications such as augmented reality (AR), dynamic
network slicing [12], Tactile Internet [13], industrial robots and
intelligent robotic cars, smart grids, and smart cities, etc. [14],
[15]. The effectiveness of multi-tier computing depends largely
on resource scheduling among edge and cloud nodes to
reduce service latency and ease network congestion [9], [16],
[17], [18]. Along the development of next-generation wireless
networks, all kinds of user equipments (UEs) will be online
all the time, promoting the advancement of iIoT and bringing
diversified applications. These novel intelligent applications
typically require low latency and demand prompt computations
for real-time task processing and high data rates. However,
mobile devices often have limited computation, storage, and
energy resources. To overcome these limitations, it is essential
to offload computational tasks from the end users to nodes in
the multi-tier computing systems. Such task offloading enables
distributed smart devices to share their idle computation
and storage resources, facilitating the efficient utilization of
multi-dimensional resources for low latency task processing.
In multi-tier computing, fog/edge conducts task computation
for delay sensitive applications at the network edge and cloud
supports time-tolerant tasks via local task offloading systems.
As a result, it realizes both real-time processing and local
computational system control, which is crucial for not only
robust control systems, but also for the low latency applica-
tions. Moreover, multi-tier computing systems will empower
new task offloading models with the advancement of B5G
and future 6G wireless communication system, as well as
the new generation of embedded AI. As computational power
moves from the cloud to edge and UEs, the computing
and networking will be deeply integrated along the develop-
ment of wireless communication systems. Therefore, cloud-
to-things computing capabilities should be better coordinated,

leading to a new stage of intelligent multi-tier computing
systems.

A. Task Offloading in Multi-Tier Computing-Based
Next-Generation Wireless Networks

Next-generation wireless communication systems present
various novel technologies, including massive multiple-input
multiple-output (MIMO), intelligent reflecting surface (IRS),
non-orthogonal multiple access (NOMA), millimeter-wave
(mmWave) communications, space-air-ground integrated net-
works (SAGIN) and edge AI, etc. A multi-tier computing
model integrates these radio technologies and AI to reduce task
execution latency, allows large-scale user access, and enables
efficient task offloading to realize efficient collaborative com-
puting and multi-dimensional communication, caching, com-
putation resource coordination. An example of multi-tier
computing-based next-generation networks is illustrated in
Fig. 2. Basically, it consists of two types of nodes, i.e., task
node (TN) and helper node (HN). In particular, multiple TNs
are able to offload their tasks to multiple HNs. It remains
a fundamental challenge to effectively map multiple tasks or
TNs into multiple HNs to minimize the total cost, such as
task offloading latency or energy consumption, in a distrib-
uted manner, known as the multi-task multi-helper (MTMH)
problem [19], [20].

Massive MIMO can provide array gains, diversity gains,
and multiplexing gains without increasing spectrum and power
resources. It has been shown in [21] that massive MIMO
schemes improve significantly the data rates at the cell edge
and also increase exponentially the spectrum efficiency, result-
ing in an order of magnitude increase in system capacity.
The integration of multi-tier computing and massive MIMO
has been proven to enhance task offloading performance in
terms of ultra reliability and low latency [17], [22], [23], [24].
In particular, Bursalioglu et al. [22] proposed an architecture
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Fig. 2. Illustration of multi-tier computing network.

of fog massive MIMO, and the system performance is ana-
lyzed by densely deploying a large number of multi-antenna
base stations (BSs), where the users are served by zero-
forcing beamforming (ZFBF). Wang et al. [17] proposed
an energy-efficient task offloading framework in a massive
multiple-input multiple-output (MIMO)-aided fog computing
system, where multiple task nodes offload their computational
tasks via a massive MIMO-aided fog access node to multiple
computing nodes for execution. In [23], Chen considered
an edge computing framework based on distributed massive
MIMO systems under fronthaul capacity constrain, aiming
to minimize energy consumption on user devices. In [24],
Mungara et al. proposed a new mechanism termed as dense
fog massive MIMO, where the users are served by a large
number of multiple antennas remote radio heads (RRHs),
leading to high-throughput and low-latency transmission links.
Although the above works demonstrate the advantages of
massive MIMO-based multi-tier computing, the influence of
imperfect channel condition on resource and task allocations
is not studied, which is of paramount importance for time-
varying multi-tier computing systems. On the other hand,
to compensate for cloud computing, multi-tier computing sys-
tems provide computational capabilities both at the edge and
center of the network. However, one of the major issues is how
to manage task offloading and execution. More specifically,
how to decide which tasks to perform at the end-user, fog/edge,
or in the cloud. At a more granular level, the issue boils down
to which node a particular task should be assigned to.

In B5G, the radio frequency may exceed 6 Gigahertz. Since
higher-frequency signal is more sensitive to the blockage by
obstacles, the coverage of each base station will be signif-
icantly reduced [25], [26]. Furthermore, devices at the cell
edge or behind obstacles suffer from low task transmission
rates, increasing both delay and energy consumption of task
offloading in multi-tier computing systems [27]. IRS with

a large number of low-cost reflecting elements, regarded as
an effective auxiliary wireless communication technology for
achieving high spectrum and energy efficiency, has attracted
increasing attention to circumvent these restrictions and is
listed as one of the candidate key technologies in 6G by
academia and industry [28], [29], [30], [31], [32], [33], [34].
Thanks to the combination of array aperture gain (achieved by
combining a direct transmission signal with an IRS reflection
signal) and the reflection-assisted beamforming gain (achieved
by controlling the phase shifts of IRS elements), IRS is able
to improve the successful task offloading rate and the effi-
ciency of resource scheduling in multi-tier computing systems.
Therefore, IRS will be a key technology for task offloading in
next-generation wireless networks. In [18] and [35], the impact
of IRS on computational performance is studied in a multi-tier
computing system, demonstrating the benefits of the IRS to
improve the task offloading, in comparison to the benchmark
schemes.

Unlike orthogonal multiple access (OMA) techniques, non-
orthogonal multiple access (NOMA) allows multiple nodes
to concurrently communicate with a centre node over the
same resource block, and hence enhancing the spectrum
efficiency [36], [37]. Owing to the multiuser detection tech-
niques such as successive interference cancellation (SIC)
implemented at the receiver side [38], [39], NOMA can
mitigate the co-channel interference, resulting in much better
performance in terms of the network coverage and throughput
compared to OMA techniques [40]. As expected, the integra-
tion of multi-tier computing and NOMA are able to boost the
performance of multi-node task offloading [41], [42], [43].
Since higher-frequency signals like mmWave communications
are highly correlated, making it conducive to the integra-
tion of NOMA, mmWave-NOMA is capable of supporting
ultra-high bandwidth applications and massive access of users
in multi-tier computing systems.
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Meanwhile, by integrating satellite systems, aviation sys-
tems and ground communication systems, SAGIN is widely
treated as a cornerstone of future 6G network. This new
architecture supports seamless and near-instantaneous hyper-
connectivity [44], aiming at global data acquisition with
high temporal and spatial resolution, high-precision real-
time navigation and positioning, and broadband wireless
communications. Being an essential component of SAGIN,
UAVs are deployed flexibly at the air-network layer, assist-
ing terrestrial network in task offloading and communica-
tions/computing/caching resources management due to their
flexibility and proximity [45]. However, even with efficient
task offloading, it is still not trivial to meet the quality of
experience (QoE) requirements of heterogeneous users in the
SAGIN.

Because of increasingly complex wireless networks, a typ-
ical 5G node is expected to have 2000 or more configurable
parameters. Therefore, a recent new trend is to optimize
task offloading and wireless resource allocation through AI
technologies [46], [47], i.e., applying AI at multiple protocol
layers (e.g., physical layer resource allocation, data link layer
resource allocation, and traffic control) [48]. Thanks to the
rapid development of mobile chipsets, the computational capa-
bilities of edge devices have been substantially improved. For
example, smart devices nowadays have as much computational
capability as computing servers a decade ago. In addition, edge
servers could provide end users with low latency AI services
that are not possible to achieve directly on the devices. Since
the computational resources of edge servers are not as much
as those of cloud centers, it is necessary to adopt joint design
principles across edge servers and edge devices to reduce task
execution latency and enforce privacy for task offloading [46].
As a result, advances in multi-tier computing systems offer an
opportunity to move the frontiers of AI from the cloud center
to the edge of the network, inspiring a new field of research
called edge AI, including both AI model training and inference
procedures.

In order to realize low-latency task processing and pro-
vision computing, storage and networking services, distrib-
uted AI and federated learning algorithms are performed on
multi-tier computing servers at the access network [49]. Wire-
less networks with AI can support the on-demand intelligent
low-latency services, commencing to emerge in complicated
wireless network management and resource optimization [50],
[51]. Since the data are processed at the edge server in the
close proximity of smart device, there is no need to transfer
a large amount of raw data to the back-end server. Thus,
using edge AI on task offloading infrastructure not only saves
network bandwidth on backhaul links, but also reduces greatly
the task execution latency. Edge AI will be a significant
step towards reducing task execution latency by intelligently
enabling task offloading and local caching of popular file and
content migration. In addition, intelligent task offloading for
computational tasks will make it possible to further virtualize
users’ handsets and improve battery lifetime. In all, edge AI
provides a new paradigm of optimization algorithms design for
efficient task offloading and service-driven resource allocation
in multi-tier computing systems [11]. By seamlessly inte-
grating sensing, communications, computing and intelligence,
edge AI will empower multi-tier computing systems to support

multiple intelligent applications, including industrial robots,
intelligent robotic cars, and intelligent healthcare etc.

B. Main Contributions

Although the above discussions have demonstrated the
benefits of task offloading in wireless communication systems,
to the best of our knowledge, the task offloading with multi-tier
computing resources in next-generation wireless networks has
not been well studied. In this paper, a vision of multi-tier com-
puting with intelligent task offloading is presented, focusing on
its interactions with various wireless techniques and resource
allocations. Future research directions and open problems are
then discussed, embracing the era of multi-tier computing
based next-generation wireless networks.

Against the above backdrop, our contributions could be
further detailed as follows:

• The vision, challenges and solutions for task offloading
in multi-tier computing systems towards next-generation
wireless networks.

• The task offloading in multi-tier computing systems
is presented, including the massive MIMO-aided task
offloading, the task offloading with IRS, the task offload-
ing with NOMA and mmWave, the task offloading in
Space-Air-Ground Integrated Networks (SAGIN), and
edge AI-empowered task offloading.

• The multi-tier computing resource allocation for task
offloading is elaborated. Specifically, we introduce the
main functionality and optimization methods as well as
the algorithms for task offloading in multi-tier computing
systems.

• We discuss the research directions and open problems
of task offloading for multi-tier computing-based next-
generation wireless networks.

C. Paper Organization

The rest of the paper is organized as follows. Section II
introduces the enablement of multi-tier computing for next-
generation wireless networks, while Section III presents
the resource allocation for multi-tier computing systems.
Section IV is focused on research directions and open prob-
lems for multi-tier computing. In Section V, we provide our
conclusions.

II. ENABLEMENT OF TASK OFFLOADING FOR MULTI-TIER

COMPUTING-BASED NEXT-GENERATION NETWORKS

In this section, we present the vision, challenges and
solutions for task offloading in multi-tier computing sys-
tems, including the massive MIMO-aided task offloading, the
task offloading with IRS, the task offloading with NOMA
and mmWave, the task offloading in SAGIN, and edge
AI-empowered task offloading.

A. Massive MIMO-Aided Task Offloading

With the advent of next-generation of wireless standards,
new high-performance technologies are introduced. One of
these key technologies is massive MIMO [52] that has been
increasingly adopted in different networking and computing
frameworks. However, the works of [9], [53], [54], and [55]
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Fig. 3. Illustration of a massive MIMO and IRS-enabled multi-tier computing
network.

mainly considered single-antenna computation offloading sys-
tems, by taking joint resources allocation and task offloading
into account, but failed to exploit the MIMO advantages for
task offloading efficiency. As we know that MIMO tech-
niques have the potential of achieving high spectral efficiency
(SE) [56], [57], [58], they have been introduced to boost the
performance of edge users by increasing the task offloading
data rate. In particular, equipping the base stations (BSs) with
a large number of antennas, widely known as massive MIMO,
has emerged as one of the most promising solutions [59], [60]
to significantly improve system SE and energy efficiency trade-
off. More specifically, as the number of antennas increases,
channels become more deterministic, known as channel hard-
ening. Data rates and communication resource allocations are
hence largely determined by large-scale fading. This implies
that resource allocation does not need to be updated frequently,
leading to significant savings in signal transmission overhead.
In summary, massive MIMO schemes improve spectrum and
energy efficiency and support an increased number of users,
both of which are critical for multi-tier computing systems.

As the core technology of wireless communication, relay
technique has been integrated into various wireless commu-
nication standards to improve network coverage and through-
put [61]. In particular, massive MIMO-enabled relay networks
can enhance spectral efficiency and achieve more reliable
data transmission for spatially distributed user nodes through
intermediate massive antenna relay nodes [62], [63]. Thus,
a massive MIMO-aided fog access node (FAN) serving as
a relay is capable of significantly improving the data rate
of offloaded tasks and the task execution efficiency. The
new computing model that combines massive MIMO with
multi-tier computing will facilitate efficient task offloading of
computation-intensive tasks to achieve efficient collaborative
computing and multi-dimensional communication, caching,
computation resource scheduling.

B. Task Offloading With IRS

Next, we will introduce a concrete example of implementing
IRS in multi-tier computing systems to reduce task offloading
latency and energy consumption, as shown in Fig. 3. Each
user could either offload its task to the multi-tier nodes such as
edge/fog server for computation via the IRS or to the cloud via
the IRS and massive MIMO node. In order to further improve
uplink task offloading performance for resource-limited end

users, IRS technology has attracted extensive attention due to
its advantages of low cost, easy deploymentation, fine-grained
passive beamforming, and directional signal enhancement or
interference nulling. By controlling surface reflective elements,
IRS can be reconfigured to provide a more favorable wire-
less propagation environment for communications. Obviously,
using IRS in multi-tier computing systems is an econom-
ical and environmentally friendly method to facilitate task
offloading [18].

In [35], Chu et al. studied the impact of an IRS on com-
putational performance in a mobile edge computing (MEC)
system, targeting to optimize the sum computational bits and
taking into account the CPU frequency, the offloading time
allocation, transmit power of each device as well as the phase
shifts of the IRS. In [18], Wang et al. investigated the task
offloading problem in a hybrid IRS and massive MIMO relay
assisted fog computing system, and formulated a joint task
offloading, IRS phase shift optimization, and power allocation
problem to minimize the total energy consumption. In [64],
Zhou et al. studied an IRS-assisted MEC systems, in which
IRS is deployed to assist task offloading from two users to the
fog/edge access point connected to the edge cloud. Under the
constraint of IRS discrete phase, the passive reflection phase
of IRS and the user’s computational task scheduling strategy is
designed to minimize the total task processing latency. In [27],
Bai et al. studied an innovative framework to employ IRS in
wireless powered MEC systems, and the task offloading is
based on orthogonal frequency-division multiplexing (OFDM)
systems. The objective is to minimize the total task offloading
energy consumption. On the basis of the above studies, it is
evident that IRS can provide an additional link both for
data transmission and for task offloading, so as to enhance
computational capability.

C. Task Offloading With NOMA and mmWave

As we all know, NOMA performs significantly better
in terms of the network coverage and spectrum efficiency
than OMA [40]. Under this circumstance, the integration of
multi-tier computing and NOMA is able to achieve far better
performance for task offloading compared to multi-tier com-
puting with OMA [41], [42], [43]. In particular, Wang et al.
in [43] proposed a NOMA-based fog computing framework
for industrial Internet of Things systems, where multiple task
nodes offload their tasks via the NOMA strategy to multiple
computing nodes for task computation. Accordingly, they
formulated a joint task offloading and subcarrier allocation
problem to minimize the total cost in terms of energy con-
sumption and latency subject to the given communication and
task computation constraints. In addition, Zhang et al. [41]
proposed a network architecture of NOMA-based Fog Radio
Access Networks (F-RANs), where the resource allocation
with power and sub-channel allocation is studied to improve
the network performance. Moreover, Wen et al. [42] and
Wang et al. [65] formulated an energy efficiency maximization
and a task completion time minimization problem in NOMA-
enabled fog/edge computing networks, respectively. All the
above works have manifested that the NOMA-based task
offloading scheme can significantly reduce the energy con-
sumption and latency cost compared to its OMA counterpart.
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Regrading task offloading with mmWave, Zhao et al. have
proposed single-user and multi-user mmWave task offload-
ing framework respectively in [66] and [67], both of which
aim to minimize the task offloading latency exploiting the
benefits of the mmWave communications. As mentioned
before, mmWave is conducive to the integration of NOMA.
Yu et al. [68] analyzed the impact of NOMA and mmWave on
task offloading, where the hybrid beamforming at the BS and
the resource allocation at the end user are jointly optimized,
and NOMA-mmWave is shown to improve the computation
efficiency by the theoretical and simulation results.

D. Task Offloading in SAGIN

IoT seeks to connect billions of resource-constrained
devices around us through heterogeneous networks. The
SAGIN is viewed as a major candidate to support such IoT
requirements, provisioning seamless and massive connectivity
for smart services [44], [69]. In the past two years, 5G wireless
networks have been commercialized and deployed around the
world. Although 5G is still in its development, academia and
industry have now shifted their attention to beyond 5G and 6G
wireless networks, in order to meet the demands of ultra-low
latency and high energy efficiency for iIoT [44]. Among the
discussions about 6G, from the perspective of computing,
communication, and caching, it is the trend to combine SAGIN
with multi-tier computing technologies in the 6G networks.

Specifically, it is widely recognized that SAGIN will be the
potential core architecture of the future 6G network to sup-
port seamless and near-instantaneous hyper-connectivity [44].
Thus, multi-tier computing with SAGIN promotes the task
offloading performance. As a key part of this, in the inte-
grated air-ground branch, unmanned aerial vehicles (UAVs)
are flexibly deployed at the aerial network layer, assist-
ing in communication, computing and caching of ground
networks due to their flexibility and proximity [45]. How-
ever, in 6G networks, SAGIN still faces challenges such
as the demands of temporal-spatial dynamic communica-
tion/computing/caching services, large-scale complex connec-
tion decisions and resource scheduling, and ubiquitous intel-
ligence demands within the network. To sum up, it remains
extremely challenging to realize these visions of 6G in SAGIN.

There have been heavy research efforts on the architecture
of SAGIN and multi-tier computing in the existing literature.
Cheng et al. [45] proposed a novel air-ground integrated
mobile edge network, by investigating the potential benefits
and applications of drone cells, and UAV-assisted edge com-
puting and caching. To support diverse vehicular services,
Zhang et al. [5] presented a software defined networking
(SDN)-based space-air-ground integrated network architec-
ture. Focusing on provisioning computing services by UAVs,
Zhou et al. [70] proposed an air-ground integrated MEC
framework to cater for the urgent computing service demand
from the IoTs. Furthermore, Kato et al. [71] conducted a
comprehensive study about how to deal with the challenges
related to the space-air-ground integrated networks by AI
techniques, including network control, spectrum management,
energy management, routing and handover management, and
security guarantee. In [72], Cheng et al. demonstrated a
SAGIN edge/cloud computing architecture for offloading the

computation-intensive applications, considering remote energy
and computation constraints, and developed a joint resource
allocation and task scheduling approach to efficiently allocate
the computing resources. In [73], Shang et al. studied MEC
in air-ground integrated wireless networks to minimize the
total energy consumption by jointly optimizing users asso-
ciation for computation offloading, uplink transmit power,
allocated bandwidth, computation capacity, and UAV 3-D
placement. However, how the air network layer allocate the
communication/computing/caching resources intelligently for
task offloading of the ground network layer in SAGIN has not
been adequately addressed.

E. Edge Intelligence-Empowered Task Offloading

With the continuing increase in the quantity and quality of
rich multimedia services, the traffic and computational tasks of
mobile users and smart devices have significantly increased in
recent years, bringing huge workload to the already congested
backbone and access networks. Even with the help of multi-tier
computing systems, it is challenging to satisfy the quality of
experience (QoE) requirements of users. The main difficulty
lies in the need of large amount of wireless data and task
transmissions for task offloading, causing wireless channel
congestion. Therefore, the optimization problem or decision
making of the combined wireless communication resource
allocation and multi-tier task offloading is the key. That is,
how to share the communication resources and computing
resources between edge nodes and the cloud. In response to the
increasing complexity of wireless communication networks,
AI technologies have been proposed as a new research trend
to optimize resource allocations [46], [47], including but not
limited to applying AI algorithms to physical layer resource
allocation, data link layer resource allocation, medium access
control, and traffic and congestion control [48]. Especially,
reinforcement learning is often applied to jointly manage com-
munication, computing, and caching resources. With learning
based multi-tier computing systems, we can optimize task
offloading, communication resource allocation, and content
caching at edge nodes. Further, federated learning [74], as a
distributed learning framework, always brings the following
benefits for task offloading: 1) great reduction of the amount
of data that must be uploaded through wireless uplink chan-
nel, 2) cognitive response to the changing wireless network
environments and conditions, and 3) strong adaptability to
the heterogeneous nodes in the wireless networks, 4) better
protection of personal data privacy.

In learning-based multi-tier computing systems, task
offloading decision and communication resource allocation
vectors generally are binary variables, turning out challenging
to find the optimal solution of resource allocations. Moreover,
the feasible set and the objective function of the optimization
problem are generally nonconvex, making the problem NP
hard. In addition, in time-variant systems, channel condi-
tions and computational cost are dynamic. Instead of solving
the NP hard optimization problem by utilizing conventional
optimization methods, the task offloading and communication
resource allocation problem in multi-tier computing systems
could be possibly solved using online learning algorithms.
During the online learning process, the deep reinforcement
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Fig. 4. Requirements and objective for designing multi-tier computing
systems.

learning methods might be applied to jointly optimize the
subcarrier allocation and task offloading in each time episode.
Online federated learning framework is recently utilized to
learn in a distributed way, in order to solve the task offloading
and communication resource allocation problem. Based on
the communication, computational resource allocation, the
multi-tier task offloading decisions can then be optimized.

Furthermore, edge learning methods have been investigated
in some edge/fog computing systems to simplify the opti-
mization algorithm or fulfill online implementations [16], [43],
[75], [76], [77], [78], [79], [80]. In [76], Huang et al. designed
a deep learning-based task offloading strategy to minimize
weighted energy consumption and latency. In [79], Wang et al.
leveraged deep reinforcement learning method for smart
resource allocation in a software defined network (SDN)-
enabled edge computing architecture. In [78], Huang et al.
proposed a deep learning-based task offloading strategy for
offloading decisions and resource allocation of a wireless
powered edge computing system. In [81], Yang et al. also
used deep reinforcement learning method in IRS-aided edge
computing systems to enhance system security and maximize
the sum rate of the down-link task offloading. In [82], a convo-
lutional neural network was constructed for channel estimation
of a large IRS-aided massive MIMO communication system
to estimate the direct and the cascaded channels, used for
multi-tier task offloading.

III. MULTI-TIER COMPUTING RESOURCES

ALLOCATION FOR TASK OFFLOADING

In this section, we first characterize the multi-tier computing
resource allocation in next generation wireless networks, and
then effective optimization methods are presented to achieve
efficient task offloading with multi-tier resources.

A. Main Functionality

In this subsection, the computational and communication
resources allocation, service placement, and security require-
ment are characterized for designing multi-tier computing
systems, which is illustrated in Fig. 4.

1) Computation: Multi-tier computing architectures were
envisioned to achieve rapid and affordable scalability by devel-
oping computation capabilities flexibly along the entire cloud-
to-things continuum [83]. In essence, multi-tier computing
systems distribute computing capability anywhere between the
cloud and the things to take full advantage of the computa-
tional resource available along this continuum, thus extending

the traditional cloud computing architecture to the edge of
the network. Thanks to multi-tier computing, some application
components can be performed at the network’s edge, like
delay-sensitive components. While other components, such as
time-tolerant and computation-intensive ones, are performed in
the cloud. Satisfying diverse delay requirements will require
both cloud computing with enormous resources to support
time-tolerant tasks, and distributed fog/edge computing with
limited resources and simple algorithms closer to the users to
support time-sensitive tasks. With heterogeneous computing
resources and collaborative service architecture, the proposed
multi-tier computing systems are able to effectively support a
full range of services in different environments. On this basis,
multi-tier computing provides the advantage of low-latency
task offloading since it allows task to be processed at the net-
work edge, close to the end devices. Obviously, cloud comput-
ing alone is not adequate for supporting all IoT applications,
while a multi-tier computing system can be complementary.

For smart devices with abundant computing resources,
multi-tier computing seeks to achieve seamless integration of
edge and cloud systems. This vision goes beyond treating
the network edge and smart devices as separate computing
platforms. Seamlessly integrating fleets and swarms of mobile
IoT entities into a dense multi-tier enclave is a new distributed
computing paradigm that improves the scalability, extensi-
bility and assemblability of cloud services through edge of
computing systems. Smart devices (cars, drones and robots)
have spare computational resource, allowing the multi-tier
computing platform to reduce energy consumption and task
processing latency compared to the traditional edge computing
scenarios relying on static and low-power edge servers.

2) Communication: Multi-tier computing systems distribute
communication functions anywhere between the cloud and
things to take full advantage of the communication resource
available along this continuum. In massive MIMO-aided multi-
tier computing systems, the achievable data rates are mostly
determined by large-scale fading, and so is the communication
resource allocation. This means that there is no need to
frequently update communication resource allocations, hence
reducing signaling overhead. IRS is capable of improving the
success rate of the task offloading. Given the potential gains,
if the line-of-sight (LoS) link between the task offloading
nodes and computing nodes is blocked by obstacles, the
task could be offloaded via the IRS reflected links. In this
manner, we attempt to optimize the link selection and wireless
communication resource allocation.

It is important to maintain the required data rates for task
offloading. Take the task offloading from a car as an example.
Given that a connected car produces tens of megabytes of
data per second, an autonomous vehicle may generate up
to a gigabyte per second [8]. Here, dense moving edge
nodes can support accelerated data communication by largely
utilizing directional high-rate communication in the massive
MIMO, IRS or the SAGIN. Edge nodes at the same time
provide novel strategies for smart devices to combine the
benefits of centralized and ad-hoc topologies into a unified
solution by using multi-hop, multi-connection mechanisms to
communicate with adjacent network infrastructure when facing
the intermittent connectivity.
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3) Storage: Because the edge nodes often have limited
storage resources, distributing the data among edge and cloud
nodes is vital for optimizing task offloading latency or energy
consumption at a given QoS level. On top of it, multi-tier
computing also brings a large amount of cloud-like services
closer to the end users. Caching computational data or services
at edge nodes is hence crucial, which relieves the burden of
backhaul transmission with transporting all the data to the
clouds.

Accordingly, elastic storage capacity of edge nodes might be
used to support applications running on resource constrained
IoT devices. Due to the inherent flexibility of multi-tier
computing systems, it is possible to integrate a large number of
densely distributed devices. Caching capacity of edge servers
is usually accessed by both smart devices and edge access
points. For example, user nodes are possibly consolidated
into special capacity areas. Then, multiple interconnected
edge infrastructures that coexist in space and time could
pool storage resources of adjacent edge networks together for
sharing by smart devices and end users.

4) Security: In cloud computing systems, massive data need
to be uploaded to the cloud data center through a front-
haul link, where data security cannot be guaranteed. However,
multi-tier computing systems present unique security chal-
lenges and opportunities. Dense edge nodes with established
dynamic trust chains are acting as a trusted authority for other
smart devices and systems. In particular, multi-tier comput-
ing systems with edge and cloud can handle responsibilities
such as trusted computing platforms, and secure storage of
short-term sensitive information. Multi-tier computing systems
also utilize edge systems to facilitate local threat monitoring,
detection, and protection for users and provide powerful
proximity-based authentication services for better authentica-
tion through proxy smart devices.

However, the multi-tier computing systems meanwhile incur
new security vulnerabilities, mainly from multiple hetero-
geneous nodes. For example, in a multi-node environment,
when multiple potentially competing service providers and
consumers share resources distributed across a set of hardware
platforms, advanced authorization and authentication mecha-
nisms should be created to effectively leverage this heteroge-
neous medium and devices between edge and cloud entities.
Fortunately, a trusted execution environment supported by
a public key infrastructure may be a suitable solution to
the above problems. Nevertheless, the intelligent integration
of hardware assistance and software security mechanisms
in multi-tier computing systems remains an open research
question.

Additionally, multi-tier computing systems have to cope
with changing environments compared to existing edge com-
puting systems that mainly operate under known conditions.
In this case, the security mechanism for multi-tier computing
systems is supposed to constantly adapt to the changing operat-
ing conditions. To address this challenge, multi-tier computing
systems must dynamically adjust their overall security posture.
It requires the design of new security protocols, which is
able to respond to any security threat without causing service
disruptions and to fulfill secured and uninterrupted operation
of the task offloading.

B. Optimization Algorithms

With the exponential growth of real-time services, delay
has emerged as a key figure of merits and become the design
metric of multi-tier computing systems [84], and the total task
offloading latency consists of the task computation latency at
multi-tier computing nodes plus the round-trip task transmis-
sion latency. For local computing, the latency only includes the
processing latency of local CPUs. For task offloading, if a task
is to be processed by the edge/fog or cloud, the node needs to
transmit the task through the shared wireless channel. Hence,
the latency includes the task transmission latency and task
computation latency in the edge/fog or cloud. In the mean-
time, IoT services urge for more and more computation and
communication resources due to the rapid increasing number
of connected devices. However, as these intelligent devices
usually have limited computation and energy resources, it is a
big challenge for the service providers to promote these novel
applications. In this subsection, the effective optimization
methods are presented to achieve low latency and energy
efficient task offloading with multi-tier resources, and to
decide which tasks to perform at the end-user, fog/edge, or in
the cloud with dynamic resources. Therefore, the differences
and difficulties in multi-tier computing systems need to solve
a series of non-convex optimization problems with binary
variables, as well as the stochastic variables.

1) Nonconvex Optimization: During task offloading process,
most of the resource allocation problems in multi-tier comput-
ing systems need to solve a series of nonconvex optimization
problems. For example, for IRS-aided multi-tier computing
systems, there are four blocks of optimization variables,
namely, task offloading ratio, power allocation at the relay
node, and IRS phase shifts of two hops’ task transmission.
The optimization of task offloading ratio is related to the
computing setting, while the optimization of power allocation
and phase-shift matrices affects the communication design.
However, the resource allocation problem in IRS-enabled
multi-tier computing systems is difficult to solve due to two
aspects. The first one is the coupling effect between the power
allocation vector and the IRS phase-shift vector. The second
one is that the objective function is non-convex with respect
to the phase shifts. Obviously, it is an open challenge to
obtain a globally optimal solution directly. In fact, alternating
optimization technique is a widely applicable and efficient
approach for solving optimization problems involving coupled
optimization variables, which has been successfully applied to
several communication resource allocation problems such as
hybrid precoding [85], power allocation [86], and IRS phase
shift optimization [28], [87]. In this case, a locally optimal
solution is usually provided. To be specific, the resource allo-
cation optimization problem can be transformed into a phase
shift optimization problem, a power allocation problem, and
a task allocation problem, respectively, by using the popular
alternate optimization technique to decouple communication
and computational design.

Remarkably, in contrast to the alternate optimization tech-
nique, distributed optimization algorithms for non-convex opti-
mization have appeared in the literature [88]. In [89] and [90],
Tatarenko et al. and Zeng et al. studied distributed gradient
descent methods for unconstrained non-convex optimization
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problems, respectively. Distributed optimization algorithms are
generally divided into two categories: discrete time algorithms
and continuous time algorithms. The existing work mainly
focuses on discrete time algorithms, while continuous time
problem has attracted extensive attention in recent years,
mainly because of the wide application of continuous time
setting in practical systems and the development of contin-
uous time control technology. In addition, discrete time and
continuous time algorithms are closely related to each other
due to the time scale transformation. Specifically, when the
time step size approaches zero, the optimization algorithm for
discrete time system is similar to the continuous one. Note that
coupled non-linear constraints are also an important constraint
in distributed optimization problems. However, distributed
algorithms dealing with coupled non-linear constraints are
basically convex problems, i.e., both the objective function
and the constraint are convex. In [84], Wang et al. devel-
oped distributed augmented Lagrangian based algorithms for
non-convex optimization problems of multi-tier computing
networks subject to local constraints and coupled non-linear
equality constraints, and investigated the joint design of the
task offloading, service caching and power allocation to min-
imize the total task scheduling delay.

2) Mixed-Combinatorial Optimization: Combinatorial opti-
mization problems have been analyzed in many works
(e.g., [91], [92], [93], [94]). Under the framework of combina-
torial optimization, an important trend is analyzing combinato-
rial optimization problem within the framework of Euclidean
combinatorial optimization, whose optimization is carried out
in a Euclidean space. In [93] and [94], Barbolina et al. and
Yemets et al. studied the Euclidean combinatorial optimization
problems, and investigated the properties of its convex hull and
methods of solving separate classes of Euclidean problems of
combinatorial optimization. Additionally, the general permu-
tation set problem is an important Euclidean combinatorial
optimization problem.

As previously mentioned, the resource allocation problems
in multi-tier computing systems involve optimizing computa-
tion, communication and caching. In general, task offloading,
task data caching and communication resource allocations
are binary variables. Specifically, in multi-tier computing for
next-generation wireless networks, we need to jointly opti-
mize the subcarrier and bandwidth allocation [95], [96], [97],
transmit power and receive beamforming [17], [43], passive
beamforming at IRS [18], device selection [9], [18], location
updates task offloading [16], and computational frequency
control [9], so as to reduce the latency and energy consumption
in the task offloading procedure. Therefore, these resource
allocation schemes can be formulated as a mixed combina-
torial optimization problem that requires joint optimization of
continuous value variables (e.g., beamforming, power control)
and discrete value variables (e.g., task allocation, service
placement, subcarrier allocation).

It should be noted that the existing optimization methods
for mixed combinatorial optimization problems are mainly
based on traditional iterative optimization approaches [18],
[98], [99], [100], [101], or adopt a direct end-to-end online
learning approaches [16], [79]. However, they may not achieve
good trade-off between algorithm complexity and resource

allocation performance. Additionally, reinforcement learning
(RL)-based approaches are often involved to solve combina-
torial optimization problems that are unconstrained or have
few constraints due to feasibility issues [43], [102]. Deep RL
requires a Markov process to achieve satisfactory resource
allocation performance [103]. However, Markov process may
not exist in practical combinatorial optimization problems,
as they have many non-convex constraints with memory.
This results in difficult design of reward features for Markov
optimization process, unfeasible solutions, and potential degra-
dation of overall performance.

3) Stochastic Optimization: In multi-tier computing sys-
tems, stochastic optimization approach only relies on the
probabilistic description about the uncertainty of computation
capacity and radio channel condition, and is able to provide
a trade-off between conservatism and probabilistic assurance
for the achievable task offloading performance. Stochastic
programming has been widely studied in the past decade
due to its wide application in machine learning and resource
allocation. In a stochastic optimization problem, the objective
function or constraints are the expectation of some function
of random variables (such as estimated computation capac-
ity and channel condition in learning approach) [104]. The
challenge of stochastic optimization is that the distribution
of the random variables is often unknown. Most existing
literature on stochastic programming assumes that the basic
distribution of random variables is fixed and that independent
samples are sequentially drawn from this common distribution.
However, the basic distribution of random variables involved
in stochastic optimization may change slowly over time in
many practical applications.

Stochastic optimization in state-based systems with discrete
or continuous time are often modeled as Markov chains.
Their effective optimization method is an important research
topic. The Markov model has a wide range of applications,
especially in the area of task offloading in multi-tier computing
systems. Specifically, some work modeled the task offloading
problem as a stochastic programming problem, and jointly
optimized the task allocation and the communication resources
allocation [105]. However, in all these works, system parame-
ters need to be acquired offline, which is impossible for a
time-varying system [106]. It should be noted that there are
multiple dynamic parameters in multi-tier computing systems.
Therein, user mobility and channel condition are intrinsic
features of wireless networks when nodes are usually in a
mobility state. Then, due to changes in network topology, these
parameters are time-varying, and the stochastic task offloading
framework is considered as a method of online learning where
users can learn time-varying system parameters.

In many multi-tier computing applications, optimization
criteria are trade-offs between several competing goals, such
as computational cost minimization and profit maximization.
In this tradeoff model, it is important to establish an optimal
strategy that may often not be intuitive. However, there are
also optimization problems with no tradeoff characteristics,
leading to counterintuitive optimal strategies. Therefore, the
use of Markov decision process (MDP) to optimize stochastic
systems should not be ignored. A reinforcement learning task
that satisfies the Markov property is called an MDP, which is a
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tool for modeling sequential decision-making problems. If the
state and action spaces are finite, then it is called an finite
MDP, which is crucial to the basis of reinforcement learning
(RL). In MDP, future decisions are based on recent state. Thus,
an optimal policy consists of actions based on the observed
history to maximize the expected reward. RL has been widely
adopted in the unknown environment, by continuously inter-
acting with the environment to achieve the optimal results
out of imperfect information. RL can further take advantage
of high-dimensional characteristics of deep neural network
(DNN), evolving into deep reinforcement learning (DRL). It is
worthwhile noticing that DRL is capable of characterizing the
infinite states caused by measurement error and environmental
noise. There exists extensive literature in online learning task
offloading for stochastic optimization, such as DRL [107],
[108], [109], [110], which generally target at a broader set
of learning problems in MDPs. As far as we are aware, high-
dimensional action spaces are still an urgent and challenging
problem in DRL. To make the problem tractable, the general
optimization problem is reduced into an MDP that only con-
siders a meaningful parameter. Furthermore, the Multi-Armed
Bandit (MAB) problem is a special case of MDP problems for
which regret learning frameworks are generally considered to
be more efficient of computational complexity. Additionally,
the use of the MAB model is appropriate and recognizable,
taking advantage of the fact that the resources of edge node
are limited. Based on the above analysis, MDP promises an
online learning framework for learning computing resources
and available communication, storage resources information
for stochastic optimization, aiming to minimize task offloading
cost.

IV. RESEARCH DIRECTIONS AND OPEN PROBLEMS

In this section, we present the research directions and
open problems for task offloading in next-generation wireless
networks, supported by the wireless network infrastructures in
Section II.

A. Multi-Dimensional Resource Management

Compared to cloud computing, the edge nodes and end users
in multi-tier computing systems may have limited resources.
Therefore, communication, computing and caching resource
allocation is a very important research issue in multi-tier com-
puting systems. Specifically, next-generation wireless com-
munication networks present various technologies, including
massive MIMO, IRS, NOMA, SAGIN, and AI etc. These
new communication technologies integrated with multi-tier
computing will reduce task offloading delay, grant large-scale
user access and promote rapid development of the intelligent
services, as well as realize efficient collaborative computing
and multi-dimensional communication, caching, computation
resource sharing through efficient task offloading.

However, the computation power of multi-tier servers is
typically limited. The wireless physical layer resource allo-
cation and user access techniques are the key challenges
that hinder the success of multi-tier computing for 5G and
beyond in executing compute-intensive and latency-critical
applications. The optimization of resource allocation may be
multi-objective in different situations, e.g., diverse nature of

applications, heterogeneous server capabilities, user demands
and characteristics, and channel connection qualities.

B. Multi-Tier Task Allocation

Since multi-tier computing systems provide extra computing
capability at the network edge, one of the core problems
is how to manage task allocation. More specifically, how to
decide which tasks should be performed on end-user devices,
at fog/edge systems, or in the cloud. At a more granular level,
the challenge is to which computing nodes should a task be
assigned. To achieve low latency and high energy efficiency
of task offloading, computing tasks need to be scheduled
to computing nodes with different capabilities according to
different task computing models, communication bandwidths
and channel qualities. Therefore, heterogeneity becomes an
important factor in multi-tier computing architectural design.
Dealing with different task computation and various commu-
nication protocols to manage task offloading becomes a major
problem.

C. Heterogeneous QoS Management

With the development of various novel technologies, intel-
ligent services are increasingly applied in many fields of
human life, including business, manufacturing, health-care,
entertainment, etc. On one hand, the number of smart services
deployed around edge and cloud servers is growing rapidly.
On the other hand, different service providers provision ser-
vices with similar functions, and different edge servers may
possess different service performance. Then, the smart devices
will require services with different QoS requirements. In light
of these descriptions, intelligent services are migrating to the
network, i.e., to edge servers residing near end users.

Note that QoS requirements in multi-tier computing systems
include task response time, throughput, reliability and avail-
ability, typically different for different users. However, user
mobility and different server capabilities turn the applicabil-
ity of traditional QoS management inapplicable. Therefore,
how to monitor and manage QoS attributes, and schedule
multi-dimensional resources timely and effectively to fulfill
specific QoS requirement for each user becomes the main issue
in multi-tier computing systems.

D. Data Privacy

In multi-tier computing systems, data and computation task
need to be collected close to the physically distributed edge
devices, and there exists a large number of devices in the
systems. When analyzing sensitive information from distrib-
uted nodes, data privacy cannot be compromised. We should
select computing nodes in a way that best protect the data
privacy, considering the computing nodes in different parts of
the network may have different privacy protection capabilities.
The tasks collected, transmitted, and processed at the edge or
in the cloud should be anonymized [111]. Then, multi-tier data
analysis and processing is achieved securely in multi-tier com-
puting systems. Note that distributed systems are in general
more vulnerable to be attacked than centralized systems, and
both the end devices and edge computing nodes in multi-tier
computing systems are typically less powerful than the cloud.
Therefore, these nodes may not have as adequate resources as
the cloud to protect themselves. In addition, the devices and
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edge computing nodes may not have enough intelligence and
capability equipped to detect threats due to limited resources.
In all, data privacy of multi-tier computing from things to
the cloud will be the focus of future research in multi-tier
computing systems.

V. CONCLUSION

In this paper, we investigated the key wireless communica-
tion techniques, effective resource allocation approaches and
research directions to embrace the era of task offloading for
multi-tier computing-based next-generation wireless networks.
In particular, the multi-tier computing system model, multi-tier
computing resources and optimization methods were presented
for better facilitating the task offloading. We hope that this
paper will serve as a valuable reference and guide to further
promote the theoretical, algorithmic, and systematic devel-
opment and advancement of task offloading with multi-tier
computing resources in next-generation wireless networks.
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