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ABSTRACT
We present parameter-multiplexed gradient descent (PMGD), a per-
turbative gradient descent framework designed to easily train emer-
gent neuromorphic hardware platforms. We show its applicability
to both analog and digital systems. We demonstrate how to use it to
train networks with modern machine learning datasets, including
Fashion-MNIST and CIFAR-10. Assuming realistic timescales and
hardware parameters, our results indicate that PMGD could train
a network on emerging hardware platforms orders of magnitude
faster than the wall-clock time of training via backpropagation on
a standard GPU/CPU.
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1 INTRODUCTION
Backpropagation is by far the most commonly used method of
computing the gradient for gradient descent in multi-layer neu-
ral networks, but has proved to be challenging to implement in
new hardware platforms [20]. However, training via the gradient
descent algorithm does not require backpropagation – backprop-
agation is only used to calculate the gradient. Other methods for
computing the gradient in neural networks exist, but are much less
efficient than backpropagation in software and so are rarely used
in machine learning. This is not generally true in hardware, where
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backpropagation may not only be challenging to implement, but
also may not be the most efficient way to compute the gradient.

Of particular interest in hardware are model-free methods, which
require no knowledge of the internal structure of the network (e.g
topology, activation function, derivatives, etc), only the ability to
perturb the network’s parameters and measure the network’s re-
sponse. The simplest example of such a method is finite-difference
[9], which has been employed for chip-in-the-loop training [17].
However, finite-difference has several other disadvantages that
prevent its widespread implementation in hardware including the
requirements for extra memory at every synapse and global syn-
chronization. Fortunately, there are a variety of other model-free
methods that overcome some of the issues associated with finite-
difference [5, 18].

In this paper, we describe and demonstrate parameter-multiplexed
gradient descent (PMGD), a framework for implementing model-
free perturbative methods in hardware. PMGD can be used to effi-
ciently train modern neural network architectures in a way that can
be directly applied to modern neuromorphic hardware. Model-free
perturbative methods were investigated for training VLSI neural
networks beginning in the 1990s [1, 4, 8, 10–13] but were extremely
limited in scale, comprising small datasets with only a few neurons.
Here, we take a new look at these techniques in the context of mod-
ern machine learning datasets and new neuromorphic hardware
platforms. We show that under realistic assumptions for analog and
digital neuromorphic hardware platforms, PMGD should be able to
train modern datasets such as CIFAR-10 significantly faster than
the wall-clock time of a GPU.

2 DESCRIPTION OF MODEL-FREE METHODS
We begin by assuming a hardware neural network that takes inputs
x and parameters (e.g. weights and biases) θ and uses them to
compute the output y = f (x ;θ ). The goal is to train the network
to produce outputs ytarдet via gradient descent on a cost function
C(y,ytarдet ). To perform gradient descent, the gradient dC/dθ
must be calculated and the parameters adjusted in order tominimize
C . In software machine learning, the gradient dC/dθ is commonly
calculated using backpropagation. However, backpropagation is
not the only way to compute dC/dθ . For instance, an alternative
way to estimate the gradient is via finite difference which perturbs
individual parameters and observes their effect on the cost output.

In finite-difference, one parameter θi is perturbed at a time by
∆θi while holding the remaining parameters constant, and the cor-
responding change in the cost ∆Ci is recorded. By repeating this
process for each parameter, a gradient estimate can be generated
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component-by-component as ∂C/∂θi = ∆Ci/∆θi . This has the ad-
vantage of being "model-free": the gradient computation can be
performed without any knowledge of the system’s model such as its
layer structure or the form of its activation functions. There are sev-
eral disadvantages to using finite-difference in practice. Before any
parameter can be updated using the gradient estimate, all parame-
ters must be sequentially perturbed and their corresponding effect
on the cost (∆Ci ) recorded, which may cause a significant delay
between parameter updates. During the update process, each value
of ∆Ci must be stored, requiring extra memory as compared to the
inference phase. A global sequence of perturbations must also be
implemented in hardware, requiring synchronization signals to be
sent to each parameter. Fortunately, other model-free perturbative
methods have been developed that avoid all of these disadvantages.
For example, if the update to the weight θi is applied immediately
after computing ∆Ci/∆θi (coordinate descent) the requirement for
the extra memory is eliminated.

Below we describe the PMGD framework for applying these
model-free techniques to neuromorphic hardware with an empha-
sis on creating simple, highly localized neuronal circuits. With a
single hardware instantiation, this framework allows the designer
to implement a wide variety of model-free gradient descent tech-
niques – all the way from finite-difference to SPSA [18] – by only
modifying three time constants (Sections 5-6) and the perturba-
tion type (Section 4). We then analyze these techniques’ training
performance in both analog and digital configurations (Section 7)
and on modern machine learning datasets (Section 8). A major ad-
vantage of this framework is that it can be used to perform online
training on any hardware platform with programmable weights–
including many hardware platforms originally designed only for
inference–while making minimal hardware modifications.

3 PARAMETER-MULTIPLEXED GRADIENT
DESCENT

Assume that we have the network shown in Fig 1 with time-varying
inputs x(t),ytarдet (t), outputsy(t) and parameters θ . Our goal is to
train the hardware parameters θ such that the inputs x produce the
desired outputsy = ytarдet . We begin by perturbing the parameters
θ from their static values θ0 by θ̃ (t) (Fig 1a)1. Depending on the
hardware (e.g. digital versus analog), the perturbations θ̃ (t) could
be either discrete or continuous, and can take a variety of patterns
as shown in Fig 1c.

As the parameters are perturbed in time, the hardware contin-
uously computes2 the output y(t) and the cost C(t). To compute
the gradient, the hardware must extract the variation in the cost
due to the perturbation C̃(t). In the discrete case, this is calculated
by subtraction of the unperturbed cost C0 from the perturbed cost
C[t] at timestep t (C̃[t] = C[t] −C0). In the continuous case this is
calculated via a high pass filter with time constant τhp on the cost
that extracts the time-varying (perturbative) component C̃(t). In

1We note that in principle the “static” value of θ 0 is also time varying, as it changes
due to gradient descent updates. However, for reasonable learning rates η this is a
much smaller change, and so we denote this θ 0 rather than θ 0(t ). Similarly for C0 .
2For the sake of simplicity, we assume y(t ) and C(t ) are computed instantaneously,
however this is not a strict requirement [5]
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Figure 1: The PMGD framework for training neuromorphic
hardware. (a) A perturbation θ̃i is applied to the static value
of every synapse/parameter θ0i in a network. Perturbations
are propagated through the network to influence the costC.
The time varying component of the cost C̃ due to perturba-
tions to the parameters is extracted and broadcast such that
it is available globally to every parameter. (b) The global pa-
rameter C̃ is multiplied locally with the time varying param-
eter perturbation θ̃k and integrated to generate an estimate
of the gradientGk with respect to that parameter. The static
value of the parameter θ0k is then updated by θ0k → θ0k − ηGk .
(c) θ̃ can take different forms, including both analog and dis-
crete cases.

both cases the C̃(t) signal is then broadcast globally such that it is
available to all synapses.

The key idea is that using only this global C̃(t) signal and the
local perturbation signal θ̃i (t), each parameter θi can compute its
own partial derivative ∂C/∂θi and autonomously update itself. This
is possible as long as the perturbations θ̃ (t) are small in amplitude
and orthogonal, which guarantees that when the product C̃(t)θ̃i (t)
is integrated over time, contributions due to other parameters will
cancel out. We denote the product C̃(t)θ̃i (t) as ϵi , the error signal
for parameter i . To ensure the magnitude of the perturbation does
not affect the magnitude of the error, this value is normalized by
A2, the square of the amplitude of the perturbation θ̃i .

Fig 1b shows how the error signal ϵk is continuously computed
and integrated over time, building up an approximation of the
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partial gradient Gk (t) for the parameter θk . In general, the longer
the parameter integration time τθ , the better the gradient approx-
imationG(t) will be when the parameters are updated. Although
individual updates generally do not follow the exact direction of the
gradient, over time the updates accumulate such that the system is
following the gradient with respect to the cost.

While the gradient approximation is continuously accumulated
in both the analog and digital cases, the details differ. In the digital
case, this accumulation is just a summation of the error signal
ϵi = C̃[t]θ̃i [t]/A

2 in each discrete timestep t as follows:

Gi [t] = Gi [t − 1] + ϵi (1)
where A is the amplitude of the perturbation signals θ̃ . After

time τθ , the accumulated gradient approximation Gi [t] is used to
perform the update θ0i → θ0i − ηGi [t], and G[t] is reset to zero.
Here, η is the learning rate.

In the analog case, the gradient approximation is accumulated
using a leaky integrator circuit applied to the error signal ϵi =
C̃(t)θ̃i (t)/A

2, taking the form:

Gi (t) =

∫ t

0
(ϵi −Gi (t)/τθ )dt (2)

and G(t) is never reset to zero. For this case, the integration can
be done via a low pass filter with time constant τθ , and the up-
date is performed continuously, in effect operating as an optimizer
with momentum. The value of the time constant τθ approximately
determines the amount of momentum.

The parameter update is always given by θ0 → θ0−ηG(t). In the
discrete case, ifG[t] is not reset to zero, it can be used to implement
momentum.

This technique allows hardware to be very localized – for in-
stance, each weight i in the network could have accompanying
circuitry nearby that generates its own perturbation (e.g. a unique
oscillator) and stores Gi (t) (e.g. in a capacitor). Each parameter
would then use only one non-local signal (the globally-broadcast
C̃(t)) in addition to local information to update itself, while the
system as a whole evolves in the direction of gradient descent. This
configuration represents a truly non-Von Neumann architecture
that avoids the "tyranny of wires" and bandwidth issues common
in bussed architectures. In a system in which such local circuits
cannot or have not yet been implemented, this can also be used in
a chip-in-the-loop technique for training, by computing C̃(t) and
the update to θ off-chip and applying only the perturbations and
final updates on-chip.

4 PERTURBATION TYPES
The perturbation signals θ̃ (t) can take many forms, but ideally they
are small-amplitude, zero-mean, and orthogonal to each other [5].
During operation, θ̃ (t) is temporarily added to the values of the
parameters θ as a means of estimating the gradient. These per-
turbations are distinct from the gradient descent updates to the
parameters. Here we discuss several types of discrete perturbations
suitable for digital hardware, and a single type of analog perturba-
tion.

Conceptually, the simplest perturbation is time-multiplexing
(TM), where one parameter per timestep τp is perturbed and the

remaining parameters have zero perturbation (coordinate descent).
In this scenario, the error signal ϵi = C̃(t)θ̃i (t)/A2 is only non-zero
for parameter θi once per period, where the period length is deter-
mined by the number of parameters. Time multiplexing has several
practical disadvantages for implementation on hardware, including
the fact that the parameter perturbations are not simultaneous,
requiring a global clock to synchronize timings. This is a result
of the fact that parameters must track when it’s “their turn” to be
perturbed.

A second discrete example is code-multiplexing, which refers
to simultaneous discrete perturbations on {−A,+A} for every pa-
rameter θi at every timestep τp . These can be either predetermined,
fully-orthogonal sequences (CM) or randomly generated sequences
of {−A,+A} that are statistically orthogonal (R-CM). Unlike time-
multiplexing, all parameters are updated simultaneously rather
than one at a time. In the R-CM case, since the perturbations are
only statistically orthogonal, it may take longer to converge to the
true gradient — however, in our tests it is not significantly slower,
and random perturbations may be easier to implement in hardware.

A third example which is more applicable for certain types of
analog hardware is frequency-multiplexing (FM) using sinusoidal
perturbations. For frequency multiplexing, each parameter gets
a unique frequency of perturbation, which in hardware may be
implemented with local oscillators. On the output of the network,
the cost will have components at each perturbative frequency rel-
ative to each parameter’s impact. The individual contribution of
each parameter to the cost can be extracted via frequency analysis,
which can be implemented locally with simple analog circuits, for
example using homodyne detection or with a lock-in technique.
Similar to code-multiplexing, during operation gradient informa-
tion is generated simultaneously for each parameter. Frequency
multiplexing is totally asynchronous, and parameters don’t have to
keep track of any global synchronization.

5 PARAMETER UPDATES/GRADIENT
INTEGRATION TIME

As noted in the previous section, the longer the system integrates
the error signal ϵ = C̃(t)θ̃ (t)/A2 before applying an update to the
parameters, the better the gradient approximation G(t) becomes.
We examined the the amount of time it took the gradient to converge
for the various multiplexing techniques. Fig 2a shows the angle
between the true gradient and the gradient approximation G(t)
versus time when used in a feedforward neural network with three
input neurons, three hidden neurons and one output neuron (3-
3-1 network) solving a single 3-bit parity problem using various
perturbation types. The time axis is in units of τp (discrete cases) or
1/2 bandwidth−1 (analog case), where the bandwidth is defined here
as the difference between the maximum and minimum perturbation
frequencies.

All the multiplexing techniques follow approximately the same
trajectory with time, but there are minor differences. Time multi-
plexing on average takes longer to decrease than the simultaneous
techniques at short time scales. R-CM takes slightly longer to con-
verge to zero because it is only statistically orthogonal, and thus
a given parameter cannot fully filter out its neighbors’ unwanted
signals. The oscillations occur in all of the periodic perturbations,
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Figure 2: (a) Angle between the gradient approximation
and the true gradient versus time for a single 3-bit parity
problem with 9 parameters in a 3-3-1 network. The solid
lines show the median cost value for randomly initialized
networks using the different perturbation types, while the
shaded regions show the third quartile values. (b) Basic
demonstration of PMGD training a 3-3-1 network using var-
ious perturbation types.

as generally after a full period the integrated gradient is approxi-
mately equal to the true gradient of the system – for example, in
the time multiplexing scheme the completion of a full period corre-
sponds to having accumulated error signals from every parameter.
Fig 2b highlights that despite minor differences in gradient conver-
gence time, all of these techniques have very similar performance
at minimizing the cost for a fixed bandwidth.

6 MINI-BATCHING AND TIME CONSTANTS
In real applications, one generally needs to to minimize the objec-
tive function over an entire training dataset. This can be difficult
due to the large sizes of these datasets, so software implementations
typically break these datasets into "mini-batches" that are used to
perform stochastic gradient descent. Similarly for hardware, there
may be a restriction in the number of input samples that can be
presented to the network at a time–in many cases for emerging
hardware, there may only be one sample at a time. Fortunately, by
integrating through time, we can perform a mathematical equiva-
lent to mini-batching even for hardware that can only accept one
sample at a time. During training, we need to introduce a new
x ,ytarдet sample periodically – we define this period as τx . As the
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Figure 3: Batching τx and τθ . (a) x , ytarдet and θ versus time
for a toy problem with four parameters, showing τx and τθ
for a batch size of four. (b) Angle between the integrated gra-
dient approximationG(t) and the true gradient with respect
to the full dataset versus time for various τx values for the
2-bit parity problem implemented on a 2-2-1 network. The
solid lines are the median values of 1000 random initializa-
tions and the shaded regions represent the third quartile val-
ues

sample changes, the integrated gradient approximation G(t) will
accumulate the error signal from each sample it is shown. After
time τθ , the parameters will be updated with this accumulated gra-
dient. The mini-batch size is determined by how many samples
the network is shown before the parameter update is applied. In
the discrete case, the mini-batch size is equal to the ratio τθ /τx .
For example, if τθ = τx the mini-batch size is 1, if τθ = 10τx , the
mini-batch size is 10.

Fig 3a shows an illustration of how the parameter update process
is affected by τx and τθ for the discrete case with two inputs, one
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Figure 4: Effect of τθ on the solution time of the 2-bit par-
ity (XOR) problem using R-CM perturbations. (a) Solution
time as a function of τθ and batch size. (b) Effect of τθ on the
learning rate (η) and minimum training time. For a given τθ ,
“max η” corresponds to the maximum η where the problem
converged for at least 50 out of 100 random initializations.

output, and four parameters. Fig 3b shows how long the integrated
gradient approximation G(t) takes to align with the gradient of
the full dataset for various τx values for the 2-bit parity problem
implemented on a 2-2-1 network. We see that it takes on the order
of τx to drop below 90◦ with respect to the true gradient. In Fig
3b, for a given integration time, G(t) is always more accurate for
shorter τx values. Therefore we can conclude that for the problem
explored here, a shorter τx is always the best choice.

To investigate the effect of varying τθ and τx on solution time,
we empirically analyzed the effect of changing τx and τθ for a par-
ticular problem. Fig 4a shows the effect of τθ on the solution time
of the 2-bit parity (XOR) problem using R-CM perturbations. We

define solution time in units of τp . Each datapoint represents the
median solution of 100 examples at each value of gradient inte-
gration/parameter update time (τθ ). As we varied τθ , we kept the
mini-batch size constant by making τx a multiple of τθ . Since the
2-bit parity dataset is composed of 4 x/ytarдet pairs, when τx was
4τθ , this was equivalent to full gradient descent – all samples were
integrated into the G(t) gradient estimation before performing a
parameter update. When τx = τθ , this was equivalent to stochastic
gradient descent with a mini-batch size of 1. As previously men-
tioned, τθ is a proxy for how accurately the gradient is measured
before performing each parameter update.

In the case where mini-batch size = 1, we observed that increas-
ing τθ increased the solution time. This is due to the fact that getting
some gradient information with respect to all training examples is
more important than accumulating an accurate gradient measure-
ment with respect to a single example. The conclusion is that if
doing stochastic gradient descent (i.e. the batch size is less than the
number of training examples), then waiting for a more accurate
gradient (larger τθ ) before updating hurts your overall solution
time, as was shown in Ref. [18].

In the case where batch size = 4, we are always getting the gradi-
ent with respect to the entire dataset. Since in our implementation
the size of the update to the parameters is proportional to τθ , if we
make τθ larger the effective step in the direction of the gradient
is larger and the time to solution therefore remains constant. Es-
sentially in the batch size = 4 case, the accuracy with which we
measure the gradient does not matter for a given learning rate η.

Even though Fig 4a appears to have a training time independent
of τθ for the larger batch size, this is not the full story because it only
shows results for a single low, fixed learning rate. To investigate
how changing τθ affects the convergence of training, we repeated
the simulation while varying both τθ and η. As we increase τθ , we
find that training does not converge at higher learning rates. The left
axis of Fig. 4b shows how the maximum learning rate for which the
problem converged versus the gradient integration/parameter up-
date time (τθ ) for the two different batch sizes. The right axis shows
the corresponding median solution time for this maximum η value,
i.e. the “minimum” expected training time for a given value of τθ .
We define convergence as at least 50% of the randomly-initialized
training problems converged to a mean cost of 0.01. Fig. 4b also
shows the median solution time when trained at that maximal η
value. The solution time was calculated by taking the median of the
converged solutions at the corresponding maximum η for a given
τθ . We observed that with larger batch sizes the learning rate can
be set higher and therefore train faster. Additionally, smaller values
of τθ also train faster. We note that in a hardware system, smaller
values of τθ mean more frequent updates to the parameters.

7 ANALOG AND DIGITAL
IMPLEMENTATIONS

Fig 5a illustrates the operational differences between the discrete
and analog algorithms for a network with two parameters. The dis-
crete version is shown with R-CM perturbations and the analog ver-
sion uses FM perturbations. To show how the training performance
for the different perturbation types compare, we also trained XOR
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Figure 5: Comparing analog versus digital implementations.
(a) Parameter (θ (t)), parameter perturbation (θ̃ (t)), cost (C(t))
and cost variation (C̃(t)) for (i) discrete R-CM and (ii) analog
FM perturbations on a toy optimization problem with two
parameters. (b) Cost versus epochs for four different per-
turbation types solving the 2-bit parity problem using the
same bandwidth. The dashed lines show the same problem
trained using backpropagation with three different learn-
ing rates. Inset shows statistics for each of the perturbation
types with 100 randomly initialized samples.

(2-bit parity) for four different perturbation types with different ran-
domly initialized parameters. Fig. 5b shows the cost versus epochs
for one randomly initialized configuration for each perturbation
type, along with cost versus epochs calculated via backpropagation
with three different learning rates shown in orange dashed lines.
The inset shows the solution time distribution for 10 randomly ini-
tialized 2-bit parity problems using the different perturbation types.
The bandwidth for FM was set to be 1/2τp . As expected, we found
that the different perturbation types are approximately equivalent
in terms of speed of training.

There are a few notable differences for their hardware implemen-
tation. The analog case requires a highpass filter (e.g. RC circuit)
at the network output that continuously approximates the pertur-
bative components of the cost C(t). As we have implemented it,
the analog case requires a lowpass filter at every parameter ele-
ment, and a single highpass filter on the network output to convert

C(t) to C̃(t). The discrete case requires one memory element at
the network output to store C0 (sample-and-hold), and a simple
subtraction operation to compute C̃[t] = C[t] −C0. The network
also requires some timesteps to be devoted to the measurement of
C0.

This means that for the simple case of τθ = τp , only a single addi-
tional memory element is required for training the entire hardware
system, located at the network cost output. However, in the case
where τθ > τp , an additional memory element is required for every
parameter (for instance, an analog capacitor or discrete memory)
to accumulate gradient information locally.

8 MODERN DATASET RESULTS
To see if this technique could be useful in real world hardware,
we ran a variety of standard machine learning tasks for different
network architectures and hyperparameters. The results are shown
in Table 1 using R-CM. We also timed (wall-clock time) how long
it took to reach the same accuracy on either a CPU (AMD Ryzen
1950X) or GPU (Nvidia 1080 Ti) using both backpropagation and
PMGD.

Based on literature, some realistic estimates of parameters that
could be implemented in hardware are below. The time below is
assumed to be the speed of perturbation (τp ) and sample change
(τx ). The weight update speed τθ shown in the table is in units of
τp . We are assuming that the inference time τinf is not the limiting
factor, i.e. τp >> τinf .

• (HW1) Timescale 1 millisecond. Examples: hardware-in-the-
loop using an external computer to perform parameter up-
dates (limiting the overall speed) for new neuromorphic hard-
ware under test, or custom electro-optic hardware [17, 19]
using thermo-optic weights.

• (HW2) Timescale 1microsecond. Examples: hardware-in-the-
loop using an external custom FPGA to perform parameter
updates [7] or custom electro-optic hardware using micro-
electro mechanical weights [15].

• (HW3) Timescale 10 nanoseconds. Examples: memristive
hardware with custom circuits [2] implemented for PMGD,
optical networks using piezo-optomechanical tuning [6]

• (HW4) Timescale 1 nanosecond. Examples: superconducting
electronic implementations [16] or hardware using optical
high speed modulators [14] or all-optical weights and inputs
[3].

The final rows in Table 1 show approximate estimates of how
long these problemswould take to solve in real time informed by the
realistic estimates of time constants above3. Based on the results
of the table, we see that using realistic estimates for emerging
hardware, online training could be significantly faster than current
implementations using backpropagation, andwith potentially much
lower energy costs.

Additionally, for many hardware platforms, training via back-
propagation is only done on an imperfect simulation of the hard-
ware, leading to significant degradation in performance when the
simulated parameters are deployed to the hardware platforms [20].
However, since PMGD uses the actual hardware for gradient esti-
mation and parameter updates this degradation may be avoided.
3Times include computation of C0
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Table 1: Modern machine learning datasets trained with gradient descent by PMGD and backpropagation

Task 2-bit parity CIFAR10 Fashion-MNIST
Network 2-2-1 3-layer CNN + FC layer 3-layer CNN + FC layer
Total number of parameters 9 26154 14378
τθ 1 1 1
Number of τp executed 104 5 × 106 106
batch size 1 1000 1000
Accuracy level 100% 60% 82.5%
Wall-clock time backprop CPU (HW0) 70 ms - -
Wall-clock time PMGD CPU (HW0) 200 ms - -
Wall-clock time backprop GPU (HW0) - 480 s 54 s
Wall-clock time PMGD GPU (HW0) - 14 hours 2.3 hours
Solution time HW1 (1 ms) 20 s 2.8 hours 0.55 hours
Solution time HW2 (1 µs) 20 ms 10 s 2 s
Solution time HW3 (10 ns) 0.2 ms 100 ms 20 ms
Solution time HW4 (1 ns) 0.02 ms 10 ms 2 ms

All the code was written in the Julia language. The n-bit par-
ity problems were solved on the CPU, while the larger problems
(CIFAR10 and Fashion-MNIST) were performed on the GPU. The CI-
FAR10 network is a 3-layer convolutional structure. Each filter has
a size 3 ×3 with 16, 32 and 32 output channels respectively, stride 1
and relu activation function. Each convolution is followed by 2×2
maxpooling. There is a final fully-connected layer at the output. The
median maximum accuracy obtained using backpropagation for
batch size 1000 over a range of learning rates and random initializa-
tions was 68.0%. This was limited by our choice of a relatively small
network and simple optimizer–to improve the accuracy further, a
more complex network architecture (e.g. more layers) or optimizer
(e.g. adding momentum) would be needed. The Fashion-MNIST
network used a 3-layer convolutional structure with each filter of
size 3 ×3 with 16, 32 and 64 output channels respectively, stride of
1 and relu activation function. Each convolution is followed by 2×2
maxpooling. There is a final fully-connected layer at the output.
The median maximum accuracy obtained using backpropagation
for a batch size of 1000 over a range of learning rates and random
initializations was 84.5%.

9 DISCUSSION AND CONCLUSIONS
We show that with realistic timescales for emerging hardware,
PMGD could be orders of magnitude faster than backpropagation
in terms of wall-clock time-to-solution on a standard GPU/CPU. Al-
though not examined in detail here, many of the hardware platforms
examined may also have several orders of magnitude improvement
in terms of energy usage as well. Our analysis has looked only
at the training speed as a performance metric, but there may be
time/energy tradeoffs for particular hardware platforms that lead
to a different optimization.

Current emerging hardware for machine learning show great
promise for increased speed and energy efficiency, but are often
limited by the lack of viable training algorithms. PMGD overcomes
this barrier – since PMGD is a perturbative technique, it is applica-
ble to a wide range of systems. It can be applied to both analog and
digital hardware platforms, and should be resilient to the presence
of noise and device imperfections. While implementing PMGD fully

in hardware may require significant redesign of existing hardware
implementations, it should be readily testable on almost any hard-
ware platform by using standard chip-in-the-loop techniques. In
this case, the speed will most likely be limited by communication
with an external computer. For example, perturbations can be in-
jected directly to the hardware from a computer, and that same
computer could capture the fluctuations in cost and perform the
gradient approximation and calculate the parameter updates. This
would allow testing of the algorithm without any changes to the
hardware.
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