

NISTIR 8290-upd1

SCAP Composer User Guide

Joshua Lubell

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8290-upd1

INCLUDES UPDATES AS OF 05-2022; SEE PAGE IV

https://doi.org/10.6028/NIST.IR.8290-upd1

NISTIR 8290-upd1

SCAP Composer User Guide

Joshua Lubell
Engineering Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8290-upd1

INCLUDES UPDATES AS OF 05-2022; SEE PAGE IV

March 2020
Revised May 2022

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Undersecretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8290-upd1

Certain commercial entities, equipment, or materials may be identified in this
 document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8290-upd1

Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8290-upd1, 26 pages (May 2022)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8290-upd1

https://doi.org/10.6028/NIST.IR.8290-upd1

i

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Abstract

SCAP Composer is a software application from the National Institute of Standards and
Technology (NIST) for creating Security Content Automation Protocol (SCAP – pronounced
“ess-cap”) source data stream collections. A source data stream collection is a bundle of
Extensible Markup Language (XML) documents, each of which must be valid with respect to
a schema defined in an SCAP component specification. SCAP Composer’s limited scope and
small footprint make it easy to install, use, and integrate with other SCAP content
development tools. SCAP Composer uses the DITA Open Toolkit, an open source publishing
engine for content authored in the Darwin Information Typing Architecture (DITA). SCAP
Composer may be used with the NIST SCAP Content Validation Tool to check the
conformance of SCAP source data stream components to content requirements and
recommendations.

Disclaimers

Any mention of commercial or other third-party products in this guide is for information
purposes only; it does not imply recommendation or endorsement by the National Institute of
Standards and Technology (NIST). For any of the web links in the software and this user’s
guide, NIST does not necessarily endorse the views expressed, or concur with the facts
presented on those web sites.

SCAP Composer was developed at NIST by employees of the Federal Government in the
course of their official duties. Pursuant to Title 17 Section 105 of the United States Code, this
software is not subject to copyright protection and is in the public domain. This software is
an experimental system. NIST assumes no responsibility whatsoever for its use by other
parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any
other characteristic.

SCAP Composer can be redistributed and/or modified freely provided that any derivative
works bear some notice that they are derived from it, and any modified versions bear some
notice that they have been modified. NIST would appreciate acknowledgement if the
software is used.

Key words

SCAP; Security Content Automation Protocol; Source Data Stream Collection; DITA;
Darwin Information Typing Architecture; DITA Open Toolkit; cybersecurity.

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Table of Contents

 Introduction ... 1

 Why SCAP Composer? ... 2

 SCAP Composer Architecture, Functionality, and Benefits of DITA 4

 Obtaining and Installing SCAP Composer ... 6

4.1. Installation for Use with GNU Emacs and Self-installed DITA-OT 7

4.2. Installation for Use with Oxygen Editor/Author ... 8

 SCAP Composer Document Type .. 9

5.1. Editing Using GNU Emacs nXML Major Mode .. 13

5.2. Editing Using Oxygen XML Editor/Author DITA Maps Manager 16

 Using the Transformation Plug-ins .. 20

6.1. Invoking the Transformation Plug-ins using the dita Command 21

6.1.1. Generate SCAP Without SCAPVal Validation ... 22

6.1.2. Generate SCAP With SCAPVal Validation .. 22

6.1.3. SCAPVal Validation of Component OVAL resource ... 22

6.1.4. Split SCAP Collection into Component Resources .. 23

6.2. Invoking the Transformation Plug-ins from Oxygen Editor/Author 23

 Concluding Remarks ... 24

References .. 25

List of Tables

Table 1. SCAP Composer document type elements: content models, attributes, and SP 800-
126 equivalents. .. 10
Table 2. Element definitions. .. 11
Table 3. Attribute definitions. ... 12
Table 4. SCAP Composer plug-in inputs and outputs .. 21

List of Figures

Fig. 1. SCAP Composer functionality in concert with an XML authoring tool and SCAPVal.5
Fig. 2. Imported transformation scenarios. ... 9
Fig. 3. Associating a schema... 13
Fig. 4. Missing @href nXML error message. ... 14
Fig. 5. Valid SCAP Composer document. .. 15
Fig. 6. Additional scapComponent elements added. ... 15
Fig. 7. Completed scapDataStream element. .. 16
Fig. 8. DITA Maps Manager view with errors highlighted. ... 17

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 9. mycollection-oxygen.ditamap now valid. .. 17
Fig. 10. Inserting an scapComponent element .. 18
Fig. 11. “Insert scapComponent” dialog box: defining a key. .. 18
Fig. 12. “Insert scapComponent” dialog box: choosing a target. ... 18
Fig. 13. Four scapComponent elements. ... 19
Fig. 14. Inserting an scapDictionaries element. .. 19
Fig. 15. Error message: Missing required element “scapCpeListRef”. 19
Fig. 16. Appending an scapCpeListRef child element. .. 19
Fig. 17. Setting the scapCpeListRef element’s @keyref attribute. 20
Fig. 18. Nesting a second scapOvalRef element. .. 20
Fig. 19. SCAP Data Stream Collection – “componentkey” scenario. 23
Fig. 20. Console output with “Transformation successful” message in status bar. 24

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Changes

This table contains changes that have been incorporated into NIST Interagency or Internal
Report (NISTIR) 8290-upd1. Updates can include corrections, clarifications, or other minor
changes in the publication that are either editorial or substantive in nature.

Date Type Change Page

05-2022 Editorial Section 3 (“Fitness for purpose” bullet): Change
“SCAP Composer document type’s” to “SCAP
Composer document type”

4

05-2022 Editorial Table 3 (@keyref row): Change “element’s” to
“element”

12

05-2022 Substantive Section 5.1 (step 1): Add instructions and a new
figure (Fig. 3) for associating a schema with a
DITA map in nXML mode

13

05-2022 Editorial Section 5.1 (step 4): Change “component’s” to
“component”

15

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

 Introduction

SCAP Composer is a software application from the National Institute of Standards and
Technology (NIST) for creating Security Content Automation Protocol (SCAP – pronounced
“ess-cap”) [1] source data stream collections. A source data stream collection is a bundle of
Extensible Markup Language (XML) [2] documents, each of which must be valid with
respect to a schema defined in an SCAP component specification.

SCAP Composer uses NIST’s SCAP Content Validation Tool [3], also known as
“SCAPVal”, to check the conformance of SCAP Composer output to the SCAP source data
stream collection data model. This data model is defined in NIST Special Publication (SP)
800-126 Revision 3, NIST Special Publication (SP) 800-126 Revision 3, The Technical
Specification for the Security Content Automation Protocol Version (SCAP) 1.3 [1].
SCAPVal produces two validation reports: one in an XML format useful for integration with
other NIST-developed SCAP software tools and one in Hypertext Markup Language
(HTML) intended for humans to view in a web browser.

SCAP Composer is distributed as a set of plug-ins to the DITA Open Toolkit (DITA-OT)
[4]1, an open source tool for generating content authored in the Darwin Information Typing
Architecture (DITA) [5]. As such, you can easily deploy SCAP Composer with XML
authoring software products containing a built-in DITA-OT. Alternatively, if you lack a
DITA-OT-enabled XML authoring software product, you can deploy SCAP Composer with a
self-installed DITA-OT. Both scenarios are covered in this guide.

This guide assumes you are familiar with SP 800-126 Revision 3 [1], particularly the “SCAP
Content Requirements and Recommendations” section. Prior familiarity with DITA,
although helpful, is not necessary.

SCAP Composer is different from other SCAP authoring tools and environments in that its
scope is limited to source data stream bundling and validation. It does not help users create
documents using the individual languages comprising SCAP, such as the Open Vulnerability
Assessment Language (OVAL) [6] or the Extensible Configuration Checklist Description
Format (XCCDF) [7]. Nor is it part of a large, complex development environment with a
long list of installation requirements (although SCAP Composer could be a useful piece of
such an environment). SCAP Composer’s limited scope and small footprint make it easy to
install and to integrate with other SCAP content development tools.

Secs. 2 and 3 discuss SCAP Composer’s rationale, its DITA-based architecture, and how the
plug-ins function in concert with an XML authoring product and SCAPVal. Secs. 4 through 6
provide step-by-step instructions for obtaining, installing, and using SCAP Composer.
Specific instructions are provided for two SCAP Composer deployment scenarios. The first
deployment scenario assumes use with a standalone DITA-OT and the open source GNU
Emacs [8]1 text editor. The second deployment scenario assumes use with Oxygen XML
Editor/Author [9]1, a commercial software product with a built-in DITA-OT. Both
deployment scenarios use the same source data stream collection containing both locally

1 Certain commercial and third-party software products are identified in this paper to document SCAP Composer adequately. Such
identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the software identified is necessarily the best available for the purpose.

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

stored resources and an Internet-accessible remote resource. This source data stream
collection is included with the SCAP Composer download.

These two deployment scenarios are not the only ones that exist. However, they serve as
exemplars for the two general scenarios of (1) deployment using authoring software with
built-in DITA-OT support and (2) deployment using an XML authoring tool plus a self-
installed DITA-OT.

 Why SCAP Composer?

Like any information standard, SCAP’s success depends on the existence of standard-
conforming content and on the ease of producing that content. Several organizations provide
freely or commercially available SCAP content. Some examples of such organizations are
the nonprofit Center for Internet Security (CIS) [10], the United States Government
Department of Defense Cyber Exchange [11], and the RedHat-supported ComplianceAsCode
GitHub project [12]. These content producers have extensive knowledge of the SCAP XML
languages and create large, broadly applicable, and comprehensive SCAP-conforming
benchmarks. CIS defines a security benchmark as constituting “best practices for the secure
configuration of a target system.”

But there is also a need for SCAP content that achieves a highly organization-specific
operational purpose. For example, suppose a small manufacturer needs to secure a Windows
10 workstation running Human-Machine Interface (HMI) software that allows a human
operator to control a piece of factory equipment. A new version, 2.0, of the HMI software has
recently been released that fixes a vulnerability whose exploitation could adversely impact
the state and behavior of the factory equipment controlled by the HMI.

The manufacturer uses a configuration scanner software product certified by the SCAP
Validation Program [3] that accepts SCAP source data streams as input and produces an
SCAP result data stream as output. The manufacturer wishes to use this product to monitor
the configuration of the HMI workstation, and thus ensure that good security practices are
being followed. Doing so requires SCAP content that checks not only whether Windows 10
is properly configured, but also whether the new version of the HMI software is installed.
The manufacturer has limited in-house SCAP expertise. A single employee is familiar with
SCAP, but work responsibilities leave this employee little time to spend learning the
intricacies of SCAP source data streams and XML languages.

The employee obtains an existing general-purpose SCAP-encoded benchmark for mission-
critical Windows 10 systems from a trusted source. However, this benchmark lacks the rules
for checking the HMI software version. The employee determines that the Windows 10
benchmark would be suitable for monitoring the HMI workstation’s security, but only if it is
supplemented with the rules needed to determine that (1) the scanning target is in fact a
system running Windows 10 with the HMI software installed and (2) the HMI software
version is 2.0 or greater.

This is the sort of situation for which SCAP Composer is intended. Although creating the
new HMI-specific rules requires some XCCDF and OVAL expertise, a significant part of the

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

work is extracting relevant components from the Windows 10 benchmark and re-combining
them with newly created HMI-specific components into a new source data stream collection.

Source data stream manipulation is governed by the SCAP source data stream collection data
model, an XML schema [13] defined in SP 800-126. This data model, discussed in detail in
Refs. [14] and [15], has the following desirable properties:

• Self-containment. A source data stream collection contains all the data a scanner tool
needs to perform an assessment on a target system. There are no references to
information objects outside the collection, thus enabling lossless exchange of SCAP
content between SCAP-conforming software products.

• Reversibility. Components in a source data stream collection are bundled such that
the XML resources they contain, e.g., XCCDF checklists and OVAL definition
collections, are unmodified from their original states. Resources can therefore be
extracted and re-bundled into new collections without any changes to the XML,
facilitating reuse.

• Globally unique identifiers (GUIDs). Data stream collections, data streams,
components and component references all must have GUIDs following naming
conventions stipulated in SP 800-126. GUIDs reduce the possibility of name clashes
and ambiguous references.

• XML Catalogs [16]. The SP 800-126 data model uses this standard to handle
resource-to-resource references from within a source data stream collection, while
maintaining self-containment and reversibility. Many low-cost XML parsers and code
libraries support XML Catalogs, enabling implementers of SCAP scanners to
leverage these tools and reduce software development costs.

But the same properties that are desirable for SCAP scanner software developers and users
are undesirable for SCAP content authors. Self-containment and reversibility result in added
schema complexity. GUID formatting requirements result in long, repetitive identifiers.
XML Catalog syntax is verbose and author unfriendly.

The following example of a component reference within a source data stream illustrates how
XML conforming to the SP 800-126 data model is verbose, hard to read, and challenging for
content authors.

<sds:component-ref id="scap_gov.nist_cref_xccdf"
 xlink:href="#scap_gov.nist_comp_xccdf">
 <cat:catalog>
 <cat:uri name="oval.xml" uri="#scap_gov.nist_cref_oval"/>
 </cat:catalog>
</sds:component-ref>

The XML below shows the same component reference represented using the SCAP
Composer document type, discussed in Sec. 5. The long GUIDs, namespace prefixes,
repetition, and XML Catalogs markup are gone, making for a more concise and easier to read
source data stream collection. Furthermore, XML editing software typically allows authors to
auto-complete long tag names such as “scapBenchmarkRef”, making it even easier to use the
SCAP Composer document type.

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

<scapBenchmarkRef keyref="xccdf">
 <scapExternalLinks>
 <scapUri keyref="oval"/>
 </scapExternalLinks>
</scapBenchmarkRef>

SCAP Composer provides an intuitive and concise vocabulary for authors that is
transformable to the more complex vocabulary that SCAP scanner software products require.
Doing so provides authors with the best of both worlds. They can compose source data
streams and collections using a data model consistent with their mental model with assurance
that the transformed result will conform to the SP 800-126 data model.

 SCAP Composer Architecture, Functionality, and Benefits of DITA

SCAP Composer’s architecture is a specialization of DITA, an XML-based architecture for
authoring, managing, reusing, and transforming technical content [5]. Standardized by the
Organization for the Advancement of Structured Information Systems (OASIS), DITA
consists of a set of architectural building blocks with standardized processing semantics. The
DITA standard specifies guidelines for constructing element types from these building
blocks. DITA also specifies rules for creating an element type’s document type, an XML
document grammar to aid in authoring an XML document valid with respect to the element
type.

The SCAP Composer document type uses RELAX NG [17] as its grammar mechanism
because, out of the three document type grammar mechanisms the DITA standard allows,
RELAX NG has the easiest-to-use syntax and enables grammars with the strongest
constraints. Because the SCAP Composer uses a RELAX NG document type, SCAP
Composer requires an XML authoring solution that supports RELAX NG, as discussed
further in Sec. 4. But you, as a user of SCAP Composer, do not need to learn RELAX NG. If
(1) your XML authoring software supports RELAX NG and (2) you use the SCAP
Composer-provided template for authoring your source data stream collections, an
understanding of the SCAP Composer document type documentation in Sec. 5 is enough.

The SCAP Composer element type is a specialization of DITA’s built-in map element type,
so it inherits DITA’s built-in processing for maps. A DITA map is a structured collection of
references to other resources, which may not necessarily be DITA element types. The SCAP
Composer element type references the non-DITA XML resources comprising a source data
stream collection. The SCAP Composer DITA-OT plug-ins add additional SCAP-specific
processing, needed for producing SP 800-126-conforming output, to the built-in DITA map
processing.

Fig. 1 shows how SCAP Composer functions in concert with an XML authoring tool and
SCAPVal. An SCAP Composer user creates a source data stream (SDS) collection DITA
map with an XML authoring tool. The map contains references to the XML resources
bundled in the collection. The authoring tool uses the SCAP Composer document type
(defined using RELAX NG) to ensure the map is syntactically valid. The XML authoring
tool may provide diagnostic messages in real time, hence the bidirectional arrow between the
user and RELAX NG validation process. Once done editing, the user invokes the SCAP
Composer plug-ins (via DITA-OT) with the SDS collection map as input.

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 1. SCAP Composer functionality in concert with an XML authoring tool and
SCAPVal.

After DITA-OT performs initial preprocessing of the input map, the SCAP Composer plug-
ins check whether the user provided an optional input argument requesting SCAPVal
validation of a single component (i.e., a reference in the map pointing to an XML resource).
If so, SCAPVal is invoked to validate only that resource (e.g., an XCCDF checklist or set of
OVAL definitions) and produce a report on the component’s conformance to its
corresponding specification (e.g., the XCCDF [7] or OVAL [6] specifications). Otherwise,
the plug-ins first transform the map into a single XML file whose contents is a self-contained
source data stream collection formatted in accordance with the SP 800-126 data model [1],
and then invoke SCAPVal to report the collection’s conformance to SCAP Validation
Program test requirements [3].

After reading the preceding paragraphs, you may wonder why no box in Fig. 1 explicitly
refers to the SCAP Composer element type. The reason is that the element type is essentially
the RELAX NG definitions and transformation code contained in the DITA-OT plug-ins.
Thus, you can think of the SCAP Composer element type as the large middle box labeled
“SCAP Composer Plug-ins”. The interior box labeled “DITA-OT Preprocessing” represents
processing semantics the SCAP Composer element type inherits from DITA’s built-in map
element type. The remaining interior box, diamond, and connecting arrows represent
additional processing semantics needed to produce SP 800-126-conforming output.

Another point worth noting is that the XML Authoring Tool, SCAP Composer Plug-ins, and
SCAPVal boxes in Fig. 1 are groupings of functionality and not look-and-feel. Invocation of
SCAPVal is invisible to a user of the SCAP Composer application because, due to the DITA-
OT plug-in mechanism, SCAPVal functionality feels as if it is built into DITA-OT.
Similarly, if the SCAP Composer software application is deployed within an XML authoring
tool with built-in DITA-OT support, then DITA-OT feels like an extension of the XML
authoring tool rather than a separate entity.

To summarize, DITA provides the following implementation, deployment, and usage
advantages:

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

• Fitness for purpose. DITA is a perfect fit for the problem of authoring and
transforming SCAP content. DITA’s built-in reuse mechanisms, exemplified by the
SCAP Composer document type @keys and @keyref attributes (discussed in Sec.
5), reduce repetition of long GUIDs (as shown in the example at the end of Sec. 2).
DITA map processing semantics support source data stream self-containment and
reversibility requirements more elegantly than the SP 800-126 data model.

• Specialization. DITA specialization allows SCAP Composer to inherit built-in DITA
semantics and DITA-OT functionality, reducing software maintenance effort and
enabling interoperability with other DITA-based implementations. Specialization also
allows for constraints on inherited elements, enabling the SCAP Composer element
type to omit DITA elements and functionality not needed for SCAP source data
stream collections. As a result, the SCAP Composer document type is simple and
easy to use.

• Robust ecosystem. Many authoring and content management tools use DITA-OT,
and a wide variety of DITA-OT plug-ins are available. DITA-OT’s plug-in
architecture plus an active developer community facilitate integration with other tools
and addition of new functionalities.

• Choice of deployment options. Because DITA is a standard well-supported by open
source and commercial developers, SCAP Composer users have multiple deployment
options and are not locked into a single software product, operating system, or
development environment.

 Obtaining and Installing SCAP Composer

SCAP Composer requires either:

• XML editing software that bundles DITA-OT 3.1 or newer and supports RELAX NG
compact syntax, or

• A standalone DITA-OT (obtainable from https://www.dita-ot.org), a Java Runtime
Environment (required for DITA-OT and SCAPVal), and XML editing software that
supports RELAX NG compact syntax. Refer to “Installing DITA Open Toolkit” in
the DITA-OT documentation for Java version requirements and compatible Java
distributions.

SCAP Composer also requires SCAPVal. The Security content automation protocol (SCAP)
version 1.3 validation program test requirements (NISTIR 7511 Revision 5) [3] includes
guidance on obtaining and installing SCAPVal.

The latest release of SCAP Composer is available as a zip file from the NIST website at
https://www.nist.gov/services-resources/software/scap-composer. Unzip this file to obtain a
directory tree containing:

• A plugins directory containing the DITA-OT plug-ins,

• An examples directory containing sample SCAP Composer DITA maps,

https://www.dita-ot.org/
https://www.nist.gov/services-resources/software/scap-composer

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

• An exported scenarios file, scapComposer.scenarios, for use with Oxygen XML
Editor or XML Author (see Sec. 4.2).

The plug-ins in the plugins directory are:

• gov.nist.scap.doctypes – the SCAP Composer document type plug-in,

• gov.nist.scap.datastream – a plug-in for transforming a source data stream
collection DITA map into an SP 800-126-conforming source data stream collection
XML file and performing SCAPVal validation of DITA map components or the
transformation result,

• gov.nist.scap.split – a plug-in for splitting an SP 800-126-conforming source
data stream collection XML file into resources comprising its components.

The gov.nist.scap.doctypes document type plug-in includes a template_folders
directory containing the following authoring templates for use with SCAP Composer:

• SCAP SDS Collection (RNC).ditamap – a “stub” serving as a starting point
for authoring an XML document using the SCAP Composer document type,

• Map (Single XML Resource).ditamap – a “stub” for authoring a simple DITA
map referencing a non-DITA XML document. Needed as input to the
gov.nist.scap.split plug-in2.

4.1. Installation for Use with GNU Emacs and Self-installed DITA-OT
1. Download DITA-OT from the DITA-OT website [4] and extract the zip file to your

desired installation location. To easily run the dita command from anywhere on
your filesystem, you may optionally add the absolute path for the bin directory to
your PATH environment variable.

2. If you do not already have GNU Emacs (some Linux distributions include it by
default), obtain and install it as per the instructions on the GNU Emacs website [8]. If
you are new to Emacs, start the application, type ‘h’ while holding down the ‘Ctrl’
key, release both keys, and then type ‘t’ to invoke a self-paced tutorial.

3. Emacs has many major modes for editing different kinds of text. nXML mode is a
major mode for editing XML with RELAX NG support. If you are new to nXML,
review the nXML manual, which is included as part of the Emacs “Info” manual. The
“Getting More Help” part of the tutorial (see previous step) includes instructions for
accessing the Info manual.

4. Configure nXML to edit DITA maps as follows:

a. Add the following code to your .emacs file:
(setq auto-mode-alist

2 The gov.nist.scap.datastream plug-in generates a simple single-reference DITA map as part of its output, which can serve as
input when using gov.nist.scap.split to split a collection created using SCAP Composer. Thus, you only need to use this
template when splitting an SP 800-126 source data stream collection that was not created with SCAP Composer.

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

 (cons '("\\.ditamap\\'" . nxml-mode)
 auto-mode-alist))

b. Save and close your .emacs file.

c. Restart Emacs and select “Customize Emacs” from the “Options” menu.
Select “Specific Group…” from the cascading submenu. Type ‘nxml’ at the
prompt at the bottom of the window. A list of nXML mode-specific options
will appear. Search for “Nxml Slash Auto Complete Flag” and toggle its value
to non-nil. Scroll to the top of the window and click the “Apply and Save”
button.

5. Copy the contents of the SCAP Composer plugins directory to the DITA-OT
plugins directory.

6. Install the SCAP Composer plug-ins with the following command:
dita --install

4.2. Installation for Use with Oxygen Editor/Author
Oxygen XML Editor is a commercial XML software product for creating XML content and
designing schemas and transformations. The Oxygen XML Author product is the subset of
Oxygen XML Editor for creating XML content, without the additional capabilities. Oxygen
XML Editor and XML Author both include the DITA-OT. The following instructions apply
to both products. These instructions, as well as the instructions in Sec. 5.2 and Sec. 6.2, are
based on version 21 of Oxygen Editor/Author, the current version as of January 2020. Older
versions and future versions may require different configuration, behave differently, or
provide a different look-and-feel.

Install SCAP Composer as follows:

1. Copy the contents of the SCAP Composer plugins directory to
OXYGEN_INSTALL_DIR/frameworks/dita/DITA-OT-DIR/plugins, where
OXYGEN_INSTALL_DIR is the location on your hard drive where Oxygen is
installed3 and DITA-OT-DIR is the location of Oxygen’s built-in DITA-OT.

2. Start Oxygen. Select and run the DITA-OT Integrator transformation scenario,
following the instructions for “Installing a DITA-OT Plugin” in the Oxygen XML
Editor User Guide [18].

3. Import the scapComposer.scenarios transformation scenarios file, using the
“Import Transformation Scenarios” action in the “Options” menu.

4. From the “Window” menu, choose “Show View” and then “Transformation
Scenarios” from the cascading menu. Type “scap” in the Transformation Scenarios
search bar to narrow the scenario choices to the imported SCAP Composer scenarios,
as in Fig. 2.

3 This requires write access to the Oxygen installation location. If you lack write access and cannot obtain it from your system administrator,
an alternative is to install a standalone DITA-OT in a location where you have write access and install the SCAP Composer plug-ins there.
See “Using an External DITA Open Toolkit in Oxygen XML Editor” in the Oxygen XML Editor User Guide for additional guidance.

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 2. Imported transformation scenarios.

5. Two of the scenarios – “SCAP Data Stream Collection – SCAPVal” and “SCAP Data
Stream Collection – componentkey” – use SCAPVal. Therefore, you must edit them
so that the “sds.scapval” parameter value is the relative URI of your SCAPVal jar
file. To edit each scenario, right-click on it and choose “Edit” from the context menu.
An “Edit DITA Scenario” dialog will appear listing all the parameters. Select
“sds.scapval”, click the “Edit” button, and click on the folder (“Browse”) icon.
Navigate to and select the jar file.

 SCAP Composer Document Type

This section describes the SCAP Composer document type in detail and then provides
instructions for editing a source data stream collection. Three tables describe the document
type. Step-by-step editing instructions provide guidance for both the GNU Emacs and
Oxygen deployment scenarios. Both sets of editing instructions use the same example.

Table 1 lists the content model, attributes, and SP 800-126 source data stream collection data
model equivalent for each SCAP Composer element. The content model is an ordered
sequence of allowable child elements. The leftmost column lists each element in the
document type. The middle column lists the content models and attributes. The rightmost
column lists the element from the SP 800-126 source data stream collection data model to
which the element in the leftmost column corresponds.

Table 1 uses the following shorthand symbols:
• “?” – means “optional”,
• “+” – means “one or more”,
• “*” – means zero or more,
• “@” – prefaces an attribute,
• “sds:” – indicates a namespace prefix assumed to map to the SCAP source data

stream collection schema namespace provided in SP 800-126.
For example, scapDataStreamCollection – the SCAP Composer document root
element – contains an optional title, followed by one or more scapComponent elements,
followed by one or more scapDataStream elements. scapDataStreamCollection has
three required attributes: @reverseDNS, @scapName, and @schematronVersion.
scapDataStreamCollection corresponds to sds:data-stream-collection in SP
800-126.

Table 2 and Table 3 define each SCAP Composer document type element and attribute,
respectively.

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Table 1. SCAP Composer document type elements: content models, attributes, and SP
800-126 equivalents.

Element Content Model and
Attributes

SP 800-126
Equivalent

scapDataStreamCollection title?
scapComponent+

scapDataStream+

sds:data-stream-
collection

@reverseDNS

@scapName

@schematronVersion

title No element content None

scapComponent No element content sds:component

@keys
@href
@scope?

scapDataStream scapDictionaries?

scapChecklists?

scapChecks

sds:data-stream

@scapName

@scapVersion

@useCase

scapDictionaries scapCpeListRef+ sds:dictionaries

scapChecklists scapBenchmarkRef+

scapTailoringRef+

sds:checklists

scapChecks OvalRef+

OcilRef*

sds:checks

scapCpeListRef

scapBenchmarkRef

scapTailoringRef

scapOvalRef

scapOcilRef

scapExternalLinks? sds:component-
ref

@keyref

scapExternalLinks scapUri+ cat:catalog

scapUri No element content cat:uri

@keyref
@localUri?

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Table 2. Element definitions.

Element Definition
scapDataStream-
collection

The top-level element for a data stream collection. It contains all
components and data streams.

title The data stream collection’s title. SCAP Composer processing
ignores this element. It exists only for display of the DITA map
in a DITA authoring or content management system.

scapComponent A source data stream collection component whose key is the
@keys attribute value, and whose XML document location is the
value of the @href attribute.

scapDataStream A source data stream, represented as a structured collection of
component references.

scapDictionaries Contains one or more references to Common Platform
Enumeration (CPE) [19] dictionary components.

scapChecklists Contains one or more references to XCCDF benchmark or
tailoring components.

scapChecks Contains one or more references to OVAL or Open Checklist
Interactive Language (OCIL) [20] components.

scapCpeListRef

scapBenchmarkRef

scapTailoringRef

scapOvalRef

scapOcilRef

Each of these elements references a component (CPE dictionary,
XCCDF benchmark, XCCDF tailoring component, OVAL
definitions, OCIL questionnaire). The @keyref attribute value
specifies the component’s key.

scapExternalLinks Contains scapUri mappings to each component internally
referenced within the XML document pointed to by the
containing component reference element.

scapUri Resolves a reference from within an XML document to another
XML document, enabling both documents to be bundled within
a self-contained SCAP source data stream. The DITA-OT
transformation plug-in uses the @href attribute value of the
scapComponent whose @keys attribute value matches
scapUri’s @keyref attribute value to construct an XML
Catalogs [16] mapping to the corresponding location within the
context of the data stream generated by the plug-in.

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Table 3. Attribute definitions.

Attribute Definition
@reverseDNS

The namespace portion of all GUIDs in the collection4.

@scapName Provides the name portion of all GUIDs in the collection4.

@schematronVersion Specifies which version of the SCAP Requirements Schematron
[21] schema SCAPVal should use for checking conformance of
a transformation result (discussed in Sec. 6) to SP 800-126
requirements.

@keys Defined in the DITA standard to provide a list of key names but
SCAP Composer further constrains it to represent a single key
name as shorthand for an XML resource. @keyref uses this
name in place of an XML resource location (provided
by @href).

@href The location of the XML resource a component encapsulates.

@scope Optional attribute specifying whether @href points to a local
resource (the default) or an external resource on the Internet.

@scapVersion The version of the SCAP standard to which the data stream
content should conform.

@useCase A data stream's use case. One of CONFIGURATION,
VULNERABILITY, INVENTORY, or OTHER.

@keyref References a component using the short name corresponding to
the scapComponent element @keys value.

@localUri Optional attribute overriding the URI obtained when SCAP
Composer resolves a @keyref. This may be needed when an
XML resource (e.g., an XCCDF benchmark document)
contains references to another resource (e.g., an OVAL
document) in a different local directory or Internet location.

Sec. 5.1 and Sec. 5.2 provide step-by-step instructions illustrating use of the SCAP
Composer document type to author a source data stream collection DITA map referencing
the following SCAP XML resources:

• A CPE dictionary,
• An XCCDF benchmark document,
• An OVAL definitions document containing checks needed for testing compliance

with rules in the XCCDF benchmark document,

4 As discussed in the “Globally Unique Identifiers” subsection of SP 800-126 [1].

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

• An OVAL definitions document containing checks needed to identify platforms listed
in the CPE dictionary.

To follow these steps as a hands-on tutorial, first copy the nist-example subdirectory from
the SCAP Composer examples directory to the directory where your DITA map will reside.
The source data stream collection DITA map will reference XML resources from the copied
directory except for the reference to the OVAL definitions for checking XCCDF rule
compliance, which will be to an external location on the Internet at
https://raw.githubusercontent.com/usnistgov/sctools/master/dita/exa
mples/nist-example/checklist-content/oval.xml. This will show how you can
use the SCAP Composer document type to create a source data stream collection with a mix
of local and external XML resources.

5.1. Editing Using GNU Emacs nXML Major Mode

1. Start Emacs and open the directory where your SCAP Composer DITA map will
reside. Create a new file mycollection.ditamap. Select “Set Schema” from the
“XML” menu and “File…” from the cascading submenu as shown in Fig. 3. Navigate
to gov.nist.scap.doctypes/rnc and set the schema to the file
scapDataStreamCollection.rnc.

Fig. 3. Associating a schema.

2. Insert the contents of the file SCAP SDS Collection (RNC).ditamap, which is
in gov.nist.scap.doctypes/template_folders/Maps/Relax NG
(Compact Syntax). mycollection.ditamap now contains an incomplete (and
therefore invalid) “stub” XML document. Errors are highlighted in red. Choose “First
Error” from the “XML” menu. Fig. 4 shows that the first error in the document is a
missing @href attribute.

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 4. Missing @href nXML error message.

3. Choose “Next Error” from the “XML” menu to display the next error message.
Repeat again to display the third error message. You now know that you need make
the following fixes:

a. Add missing @href values to both scapComponent elements,

b. Add a @useCase value to scapDataStream.

Add the missing values. In addition, since the scapComponent element with
@keys=”oval” references an external resource, give its @scope attribute the value
‘external’. mycollection.xml is now valid, as shown in Fig. 5.

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 5. Valid SCAP Composer document.

4. Add additional scapComponent elements for the CPE dictionary and its associated
OVAL definitions document. Give the CPE dictionary component @keys attribute a
value of “cpedict” and its OVAL definition component’s @keys attribute a value
of “cpe-oval”. The DITA map now has four scapComponent elements, as shown
in Fig. 6.

Fig. 6. Additional scapComponent elements added.

5. Edit the scapDataStream element to complete the source data stream collection
DITA map as follows:

c. Add an scapDictionaries element, with a nested scapCpeListRef,
before scapChecklists. Because nist-example/cpe-
dictionary.xml references an OVAL definitions document with relative
URI of cpe-oval.xml, scapCpeListRef needs nested
scapExternalLinks markup (like that of scapBenchmarkRef) to
translate this relative URI to reference the scapComponent using
@keyref=”cpe-oval”.

d. Add a second scapOvalRef child element to scapChecks referencing the
scapComponent using @keyref=”cpe-oval”.

The scapDataStream element now appears as shown in Fig. 7.

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 7. Completed scapDataStream element.

5. Save mycollection.ditamap for later use.

5.2. Editing Using Oxygen XML Editor/Author DITA Maps Manager
1. Start Oxygen. Use the “New” action in the “File” menu. Type “scap” into the text

field at the top of the dialog box to narrow the choices. Choose the “SCAP SDS
Collection (RNC)” file template. Oxygen will display a dialog box asking where you
want the DITA map file to be opened. Choose DITA Maps Manager, which displays
a map as a table of contents5. Save the file in DITA Maps Manager by clicking on the
disk icon (or using the Control-S keyboard shortcut), as shown below on the left. A
“Save as” dialog box will appear. Save the file as mycollection-
oxygen.ditamap to the directory where your SCAP Composer DITA map will
reside. Choose “Expand All” from the DITA Maps menu to view all elements.
mycollection-oxygen.ditamap now contains an incomplete (and therefore
invalid) “stub” XML document. Errors are highlighted in red with messages listed
below the DITA Maps Manager view, as shown in Fig. 8.

5 DITA Maps Manager is one of several ways to view or edit a DITA map in Oxygen. There is also a Text mode (similar to Emacs/nXML)
and an Author mode with a word processor look-and-feel.

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 8. DITA Maps Manager view with errors highlighted.

2. To fix these errors:

a. Add missing @href values to both Component elements,

b. Add a @useCase value to scapDataStream.

Choose “Edit Attributes…” from the “DITA Maps” menu to add the missing values.
In addition, since the scapComponent element whose @keys value is ‘oval’
references an external resource, give its @scope attribute the value ‘external’.
mycollection-oxygen.xml is now valid, as shown in Fig. 9.

Fig. 9. mycollection-oxygen.ditamap now valid.

3. Add a CPE dictionary component by right-clicking on the “xccdf = scapComponent”
scapComponent. Choose “Insert After” from the context menu that appears, and
then choose “scapComponent…” from the cascading submenu as shown in Fig. 10.

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 10. Inserting an scapComponent element

4. An “Insert scapComponent” dialog box will appear. Type “cpedict” in the “Define
Keys:” text box, as shown in Fig. 11, and click the “Choose target for defined key(s)”
hyperlink.

Fig. 11. “Insert scapComponent” dialog box: defining a key.

5. Choose cpe-dictionary.xml in the nist-example directory as the target, as
shown in Fig. 12.

Fig. 12. “Insert scapComponent” dialog box: choosing a target.

6. Add an OVAL component for the CPE dictionary by repeating steps 3, 4, and 5. Set
the @keys value to “cpe-oval”, and the target to nist-example /cpe-oval.xml.
The DITA map now has four scapComponent elements, as shown in Fig. 13.

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 13. Four scapComponent elements.

7. Insert an scapDictionaries element before scapChecklists by right-clicking
“scapChecklists”, choosing “Insert Before”, and then choosing “scapDictionaries…”
from the cascading menu as shown in Fig. 14.

Fig. 14. Inserting an scapDictionaries element.

8. Click the “Insert and close” button in the “Insert scapDictionaries” dialog box that
appears. An error message will notify you the newly created scapDictionaries
element is missing a nested scapCpeListRef, as shown in Fig. 15.

Fig. 15. Error message: Missing required element “scapCpeListRef”.

9. Insert the missing scapCpeListRef child element by right-clicking
“scapDictionaries”, choosing “Append child”, and then choosing
“scapCpeListRef…” from the cascading menu as shown in Fig. 16.

Fig. 16. Appending an scapCpeListRef child element.

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

10. An “Insert scapCpeListRef” dialog box will appear. Set @keyref to “cpedict” as
shown in Fig. 17. Click the “Insert and Close” button.

Fig. 17. Setting the scapCpeListRef element’s @keyref attribute.

11. Using the “Append child” menu action, nest an scapExternalLinks element
inside scapCpeListRef, and an scapUri element inside scapExternalLinks.
An “Insert scapUri” dialog box will appear. Set @keyref to “cpe-oval”.

12. Using the “Append child” menu action, next a second scapOvalRef element inside
scapChecks as shown in Fig. 18.

Fig. 18. Nesting a second scapOvalRef element.

13. Set the newly created scapOvalRef element’s @keyref attribute to “cpe-oval”.
Save mycollection-oxygen.ditamap for later use.

 Using the Transformation Plug-ins

The SCAP Composer transformation plug-ins, gov.nist.scap.datastream and
gov.nist.scap.split, accept a DITA map as input and produce a zip file as output. Both
plug-ins may be invoked either using a self-installed DITA-OT dita command or from a
third-party DITA-OT-enabled software product. The plug-ins are invoked from within
Oxygen XML Editor/Author by applying imported transformation scenarios.

gov.nist.scap.datastream provides the following functionalities:

• Transforms a DITA map conforming to the SCAP Composer document type into an
SCAP source data stream collection,

• Uses SCAPVal to validate the generated SCAP source data stream collection,

• Uses SCAPVal to validate an XML resource referenced by an scapComponent in an
SCAP Composer DITA map.

gov.nist.scap.split splits an SCAP source data stream collection into a set of XML
resources comprising its components. Because all DITA-OT transformations require DITA

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

as input, input is a map with a single reference to the SCAP source data stream collection to
be split. This map may be created using the Map (Single XML Resource).ditamap
authoring template mentioned in Sec. 4, replacing “resource.xml” in the template with the
SCAP source data stream collection URI.

As an SCAP Composer user, you do not need to be cognizant of which DITA-OT plug-in
you are using. It is simpler instead to keep in mind the four basic transformation
functionalities: (1) SP 800-126 source data stream collection generation either with or (2)
without SCAPVal validation, (3) component validation, and (4) splitting.

Table 4 lists the inputs and output zip file contents for each of the four functionalities.
Outputs in italics are input artifacts that are not generated by SCAP Composer. These are
included in the zip file because they might possibly be helpful to you but can be ignored if
you do not find them helpful.

Table 4. SCAP Composer plug-in inputs and outputs

Functionality Input DITA Map Output Zip File Contents
Generate
SCAP without
SCAPVal
validation

SCAP Composer
document

XML resources referenced by SCAP Composer
document
Map referencing SCAP source data stream
collection file
SCAP source data stream collection file

Generate
SCAP with
SCAPVal
validation

SCAP Composer
document

XML resources referenced by SCAP Composer
document
Map referencing SCAP source data stream
collection file
SCAP source data stream collection file
SCAPVal validation report in HTML and XML

SCAPVal
validation of
component
XML resource

SCAP Composer
document

XML resources referenced by SCAP Composer
document
XML resource validated

SCAPVal validation report in HTML and XML

Split SCAP
collection into
component
resources

Map referencing an
SCAP source data
stream collection

SCAP source data stream collection file
referenced by the map
XML resource files

6.1. Invoking the Transformation Plug-ins using the dita Command
The dita command may be entered from a command prompt or from within GNU Emacs as
a shell command. Basic dita command syntax is

dita -i input-file -f output-format [options]

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

where input-file is a DITA map, and output-format is either sds (for generating an
SCAP source data stream collection file) or split (for splitting a collection file into separate
XML resource files).

[options] include additional optional command line arguments and parameters. One such
command line argument is the -v flag, which prints additional information to the console
that may be useful in diagnosing errors or unexpected output results.

The following two parameters apply for the sds output format:

• --sds.scapval=jar-file
Specifies the SCAPVal jar file location.

• --sds.componentkey=key
Specifies a component to validate using SCAPVal, where key identifies the
component. Requires --sds.scapval.

The following subsections provide examples of using the dita command to achieve the four
functionalities from Table 4. Input for the first three functionalities is the
mycollection.ditamap document, authored in Sec. 5.1. Input for the example in Sec.
6.1.4 for the fourth functionality is composed-mycollection.ditamap, an output from
the first two examples.

6.1.1. Generate SCAP Without SCAPVal Validation

dita -i mycollection.ditamap -f sds

Output is a zip file mycollection.zip whose contents include the following outputs:

• mycollection.xml – a source data stream collection conforming to the SP 800-
126 data model,

• composed-mycollection.ditamap – a DITA map referencing
mycollection.xml, for use as an input argument when splitting a collection into
its resources (see Sec. 6.1.4).

6.1.2. Generate SCAP With SCAPVal Validation

dita -i mycollection.ditamap -f sds --sds.scapval=scapval.jar

Output is a zip file mycollection.zip with the same contents as in Sec. 6.1.1 plus the
following files:

• validation-report.html – a browser-viewable HTML report file,

• validation-result.xml – a validation result file.

6.1.3. SCAPVal Validation of Component OVAL resource

dita -i mycollection.ditamap -f sds --sds.scapval=scapval.jar --
sds.componentkey=oval

Output is a zip file mycollection.zip whose contents includes:

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

• oval-validation-report.html – a browser-viewable HTML component report
file for oval.xml,

• oval-validation-result.xml – a validation result file.

6.1.4. Split SCAP Collection into Component Resources

dita -i composed-mycollection.ditamap -f split

Output is a zip file composed-mycollection.zip whose contents includes:

• cpedict.xml – CPE dictionary resource,

• cpe-oval.xml – OVAL definitions document containing checks needed for the
CPE dictionary resource,

• oval.xml – OVAL definitions document containing checks needed for the XCCDF
resource

• xccdf.xml – XCCDF resource.

6.2. Invoking the Transformation Plug-ins from Oxygen Editor/Author
Invoking the transformation plug-ins from Oxygen Editor/Author is simply a matter of
selecting and applying the appropriate imported transformation scenario to the currently
edited document. Each transformation scenario corresponds to a functionality from Table 4.
Transformation zip file output is the same as with the dita command as discussed in Sec.
6.1.

If you apply the “SCAP Data Stream Collection – componentkey” scenario, a dialog prompts
for a key name as shown in Fig. 19.

Fig. 19. SCAP Data Stream Collection – “componentkey” scenario.

A “Transformation in progress” message then appears in the status bar at the bottom of the
Oxygen window while the transformation scenario is running. If the transformation is
successful, the message changes to “Transformation successful” and a console output icon
appears to the right. Clicking on the icon causes console output to display, as shown in Fig.
20.

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Fig. 20. Console output with “Transformation successful” message in status bar.

 Concluding Remarks

This guide documented SCAP Composer, a software application for creating SCAP source
data stream collections. Installation and usage instructions targeted two deployment
scenarios: one requiring freely available open source tools, and the other requiring a
commercial software product meeting SCAP Composer’s requirements. These two scenarios
are intended to cover the most likely ways in which SCAP Composer will be obtained,
installed, and used.

SCAP Composer’s release coincides with a new effort underway to improve upon SCAP
version 1.3. Within the proposed scope of this “SCAP 2.0” initiative [22] is improved “SCAP
content creation, acquisition, and reuse.” SCAP Composer can contribute to this goal by
making it easier to combine content into new source data streams. Also, SCAP Composer’s
DITA-based implementation approach could be applied to other content authoring problems
such as easing the development of XCCDF or OVAL content. Reference [23] discusses
preliminary work done to determine the feasibility of specializing DITA to represent XCCDF
configuration compliance rules and groupings of rules, but more implementation is needed to
scale this initial effort to a real-world XCCDF checklist or OVAL definitions document. If
such implementation were successful, the DITA-OT plug-in architecture would make it easy
to combine the existing SCAP Composer implementation with new plug-ins to support
XCCDF or OVAL authoring.

SCAP Composer is a research prototype whose purpose is to spur development of third-party
software products that advance the adoption of SCAP. Would-be software developers are
encouraged to obtain and experiment with the source code, available at
https://github.com/usnistgov/sctools. For questions about the code, or about SCAP Composer
in general, please email the point of contact listed on NIST’s SCAP Composer information
page (https://www.nist.gov/services-resources/software/scap-composer). Feedback, bug
reports, and suggestions for improvement are all welcome. The SCAP Composer information
page also contains links to publications and presentations discussing implementation details
not covered in this document.

Acknowledgments

I am grateful to my NIST colleagues Stephen Banghart, Yan Lu, and Frank Riddick for
feedback on earlier drafts of this guide, and to Neeraj Shah, CheeYee Tang, and Tim
Zimmerman for assistance with deploying SCAP Composer-generated content in NIST’s

https://github.com/usnistgov/sctools
https://www.nist.gov/services-resources/software/scap-composer

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

Cybersecurity for Manufacturing Systems Testbed – an experience that inspired Sec. 2’s
HMI scenario.

I also wish to thank Gabe Alford, Bernd Grobauer, Bill Munyan, David Ries, Charles
Schmidt, and other SCAP 2.0 Content Authoring Working Group members for their insights
on distinct operational roles of various categories of SCAP users. These insights were helpful
to me when writing the introductory paragraphs in Sec. 2.

References

[1] Waltermire D, Quinn S, Booth H, Scarfone K, Prisaca D (2018) The technical
specification for the security content automation protocol (SCAP) version 1.3 (National
Institute of Standards and Technology, Gaithersburg, MD), NIST SP 800-126r3.
https://doi.org/10.6028/NIST.SP.800-126r3

[2] Extensible Markup Language (XML) 1.0 (Fifth Edition) (2008) , W3C
Recommendation. Available at http://www.w3.org/TR/xml/

[3] Cook M, Quinn S, Waltermire D, Prisaca D (2018) Security content automation
protocol (SCAP) version 1.3 validation program test requirements (National Institute of
Standards and Technology, Gaithersburg, MD), NIST IR 7511r5.
https://doi.org/10.6028/NIST.IR.7511r5

[4] DITA Open Toolkit Available at https://www.dita-ot.org/

[5] DITA Version 1.3 Specification (2018) (Organization for the Advancement of
Structured Information Standards), OASIS Standard. Available at http://docs.oasis-
open.org/dita/dita/v1.3/dita-v1.3-part0-overview.html

[6] Home / Oval Repository Available at https://oval.cisecurity.org/

[7] Waltermire D, Schmidt C, Scarfone K, Ziring N (2011) Specification for the Extensible
Configuration Checklist Description Format (XCCDF) Version 1.2, NIST Interagency
Report 7275 Revision 4. Available at
http://csrc.nist.gov/publications/PubsNISTIRs.html

[8] GNU Emacs - GNU Project Available at https://www.gnu.org/software/emacs/

[9] Oxygen XML Editor Available at https://www.oxygenxml.com/

[10] CIS Security Benchmarks Available at https://benchmarks.cisecurity.org/

[11] Security Technical Implementation Guides (STIGs) – DoD Cyber Exchange Available
at https://public.cyber.mil/stigs/

[12] ComplianceAsCode/content: Security compliance content in SCAP, Bash, Ansible, and
other formats Available at https://github.com/ComplianceAsCode/content

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8290-upd1

[13] XML Schema Part 0: Primer Second Edition (2004) , W3C Recommendation. Available
at https://www.w3.org/TR/xmlschema-0/

[14] Lubell J (2018) A New SCAP Information and Data Model for Content Authors.
Critical Infrastructure Protection XII, IFIP Advances in Information and
Communication Technology., eds Staggs J, Shenoi S (Springer International
Publishing), Vol. 542, pp 127–146.

[15] Lubell J (2019) SCAP Composer: A DITA Open Toolkit Plug-in for Packaging Security
Content. Proceedings of Balisage: The Markup Conference, Balisage Series on Markup
Technologies. (Washington, DC). https://doi.org/10.4242/BalisageVol23.Lubell01

[16] XML Catalogs (2005) , OASIS Standard V1.1. Available at https://www.oasis-
open.org/committees/download.php/14809/xml-catalogs.html

[17] Information technology — Document Schema Definition Language (DSDL) — Part 2:
Regular-grammar-based validation — RELAX NG (2008) (International Organization
for Standardization), ISO/IEC 19757-2.

[18] Oxygen Documentation Available at
https://www.oxygenxml.com/documentation.html#user_guide

[19] Cichonski P, Waltermire D, Scarfone K (2011) Common platform enumeration ::
dictionary specification version 2.3 (National Institute of Standards and Technology,
Gaithersburg, MD), NIST IR 7697.

[20] Waltermire D, Scarfone K, Casipe M (2011) Specification for the open checklist
interactive language (OCIL) version 2.0 (National Institute of Standards and
Technology, Gaithersburg, MD), NIST IR 7692.

[21] Information technology — Document Schema Definition Language (DSDL) — Part 3:
Rule-based validation — Schematron (2016) (International Organization for
Standardization), ISO/IEC 19757-3.

[22] Waltermire D, Fitzgerald-McKay J (2018) Transitioning to the Security Content
Automation Protocol (SCAP) Version 2 (National Institute of Standards and
Technology, Gaithersburg, MD), NIST CSWP 09102018.
https://doi.org/10.6028/NIST.CSWP.09102018

[23] Lubell J (2017) Using DITA to Create Security Configuration Checklists: A Case
Study. Proceedings of Balisage: The Markup Conference, Balisage Series on Markup
Technologies. (Washington, DC). https://doi.org/10.4242/BalisageVol19.Lubell01

	1. Introduction
	2. Why SCAP Composer?
	3. SCAP Composer Architecture, Functionality, and Benefits of DITA
	4. Obtaining and Installing SCAP Composer
	4.1. Installation for Use with GNU Emacs and Self-installed DITA-OT
	4.2. Installation for Use with Oxygen Editor/Author

	5. SCAP Composer Document Type
	5.1. Editing Using GNU Emacs nXML Major Mode
	5.2. Editing Using Oxygen XML Editor/Author DITA Maps Manager

	6. Using the Transformation Plug-ins
	6.1. Invoking the Transformation Plug-ins using the dita Command
	6.1.1. Generate SCAP Without SCAPVal Validation
	6.1.2. Generate SCAP With SCAPVal Validation
	6.1.3. SCAPVal Validation of Component OVAL resource
	6.1.4. Split SCAP Collection into Component Resources

	6.2. Invoking the Transformation Plug-ins from Oxygen Editor/Author

	7. Concluding Remarks
	References

