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Incorporating measurement variability when comparing sets of 
high-resolution mass spectra 

Matthew J. Roberts , Arun S. Moorthy , Edward Sisco , Anthony J. Kearsley * 

National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• High dimensional consensus (HDC) 
mass spectra: a novel formulation for 
describing mass spectra as probability 
distributions. 

• Mathematical framework for comparing 
HDC mass spectra: after embedding 
mass spectra into an infinite dimen
sional Hilbert space, establish affordable 
analog of commonly employed similar
ity measure. 

• Performance: structurally similar com
pounds not differentiable with standard 
similarity are distinguishable by HDC if 
measurements collected under similar 
conditions.  
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A B S T R A C T   

Mass spectra are an important signature by which compounds can be identified. We recently formulated a 
mathematical approach for incorporating measurement variability when comparing sets of high-resolution mass 
spectra. Leveraging replicate mass spectra, we construct high-dimensional consensus mass spectra—representing 
each of the compared analytes—and compute the similarity between these data structures. In this paper, we 
present this approach and discuss its applications and limitations when trying to discriminate methamphetamine 
and phentermine using in-source collision induced dissociation mass spectra collected with direct analysis in real 
time mass spectrometry.   

1. Introduction 

Comparing mass spectra of unidentified compounds to reference 
mass spectra of known compounds is a key step in the compound 
identification process [1,2]. Based on this comparison—which is done 
both visually and numerically using similarity scores—an analyst must 
decide whether the mass spectra are sufficiently similar (or dissimilar) to 
confirm (or deny) that the spectra are measurements of the same 

compounds [3]. 
Fig. 1 shows the chemical structures of methamphetamine (top/ 

black) and phentermine (bottom/blue), as well as head-to-tail plots of 
representative high-resolution in-source collision induced dissociation (is- 
CID) mass spectra collected with Direct Analysis in Real Time Mass 
Spectrometry (DART-MS). The resulting mass spectra are more likely to 
present stable protonated molecules with lower fragmentation voltages 
(e.g., +30 V orifice 1 voltage) and are increasingly likely to show 
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fragment ions with increasing fragmentation voltages (e.g. +60 and +
90 V orifice 1 voltage). In this figure, we see that the +30 V is-CID mass 
spectra of methamphetamine and phentermine are visually dissimilar, 
and a standard cosine similarity between these mass spectra is 0.683. We 
also see that the +60 V and +90 V spectra of methamphetamine and 
phentermine are both dominated by a single fragment ion (nominal m/z 
91 corresponding to a tropylium cation), and are visually difficult and 
numerically impossible to distinguish. There are minor ions that may 
help an analyst visually conclude that the spectra are measurements of 
two different compounds—especially if the analyst is approaching the 
spectra with the intention of finding differences—however, with mass 
spectra collected through DART-MS or other ambient ionization MS 
techniques, it is possible that these minor peaks are non-reproducible 
artifacts. 

Although an analyst is unlikely to be trying to discriminate meth
amphetamine and phentermine using only high fragmentation is-CID 
mass spectra collected with an ambient ionization MS technique, the 
problem is exemplary of a more general challenge across mass spectral 
interpretation; many unique compounds produce near-identical mass 
spectra that are difficult to objectively discriminate with current 
approaches. 

Cosine similarity is one of several numerical similarity scores, or 
match factors, that have been discussed in the literature as objective 
metrics by which an analyst can discriminate mass spectra [4–14]. Most 
of these similarity scores were designed (i) for low resolution mass 
spectra where mass-to-charge ratios are mapped to nominal mass, and 
(ii) in the context of mass spectral library searching, where a single 
query mass spectrum is compared sequentially to individual reference 
mass spectra. However, we know that replicate high-resolution mass 
spectra of analytes will often have observable variability in both 
mass-to-charge ratios and relative intensities [15,16], and so any 
traditional similarity score computed with a pair of single 

high-resolution measurements will implicitly include some level of 
uncertainty. 

We recently formulated a new mathematical approach for comparing 
two samples when provided with replicate high-resolution mass spectra. 
Using these replicate measurements, we are able to consider peak 
variability when computing a high-dimensional consensus (HDC) mass 
spectral similarity score. The approach begins with constructing an HDC 
mass spectrum data structure with the available replicate measure
ments, and follows with comparing two of these data structures, each 
representing one of the samples. While this new approach, by virtue of 
design, must provide a more complete characterization of the similarity 
between sets of high-resolution mass spectra, a natural question is can 
we use peak variability differences as a signature to discriminate near iden
tical mass spectra? such as the +60 V is-CID mass spectra shown in Fig. 1. 
In this paper, we present our first formal description of computing HDC 
similarity scores between high-resolution mass spectra and report our 
preliminary observations from applying the method to the example 
problem in Fig. 1. 

2. Methods 

2.1. Computing high-dimensional consensus (HDC) mass spectral 
similarity scores 

This method of spectral comparison can best be described in two 
distinct steps: (i) building a data structure that captures the variability 
observed in a set of replicate high-resolution mass spectra, and (ii) 
computing a measure of similarity between a pair of these data 
structures. 

The term consensus mass spectrum is commonly used to refer to a data 
structure constructed from “averaging” mass spectra collected over 
several scans in the same experiment [17]. There are a variety of ways to 

Fig. 1. Chemical structures (left) and representative in-source collision induced dissociation (is-CID) mass spectra of methamphetamine and phentermine (right). The 
is-CID mass spectra were collected with DART-MS using orifice 1 voltages set to +30 V, +60 V, and +90 V. In the head-to-tail plots of mass spectra, the top/black 
mass spectra are measurements of methamphetamine and the bottom/blue mass spectra are measurements of phentermine. 
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average mass spectra, but the result is always a set of coupled average 
mass-to-charge ratios (x) and average relative intensity values (y); the 
structure of the constructed consensus mass spectrum is thus identical to 
any measured mass spectrum and so consensus mass spectra can be 
readily inserted into traditional algorithms for estimating mass spectral 
similarity. 

In our new approach, we construct high-dimensional consensus (HDC) 
mass spectra, which is a consensus mass spectrum together with the 
associated standard deviation of the mass-to-charge ratios and relative 
peak intensities (i.e., a set of points in R4 as opposed to R2). These high- 
dimensional data structures are a natural extension of traditional 
consensus mass spectra, carrying additional information about spectral 
variability that is typically discarded in a consensus mass spectrum. 

The process of constructing an HDC mass spectrum can be summa
rized as follows: We begin with a collection of n replicate mass spectra. 
We normalize the relative intensities in each mass spectrum by dividing 
each intensity value by the square root of the sum of squares of all in
tensity values in the spectrum (L2-norm); given that the method relies 
on observed variability, it is important that we do not normalize to a 
base peak, thus artificially removing variability from the most abundant 
peak across the spectra. Then, beginning with the most intense peak of 
all the measurements, p1, we identify the single peak in each replicate 
measurement that is closest to p1 when considering both m/z and rela
tive intensity values (euclidean distance). This set of n peaks, which we 
can refer to as S1, is used to define the first peak statistic P1 = (px,1,py,1,

spx,1 ,spy,1 ), where px,1 and py,1 are the sample means of the x and y values, 
respectively, and spx,j and spy,j are sample standard deviations, all 
computed using the peaks in S1. In the next iteration, the peaks in S1 are 
removed from the replicate spectra, and peak statistics P2 through Pm are 
computed, where m is a user-defined number of prominent peaks to 
include when constructing an HDC mass spectrum. The collection of 
peak statistics P1 through Pm are what we define as the HDC mass 
spectrum. An example of the HDC mass spectrum construction process 
using 3 replicate mass spectra and 3 prominent peaks is shown in Fig. 2. 

The primary advantage of HDC mass spectra over both traditional 
consensus or single measured mass spectra is the additional peak vari
ability information captured as sample standard deviations. Using these 
parameters, each peak statistic in an HDC mass spectrum can be iden
tified by a 2D probability distribution. If the identified 2D probability 
distribution is an accurate representation of the uncertainty associated 
with the peak statistics—as will be the case with increasing number of 
replicate mass spectra—then the similarity between any two HDC mass 
spectra can be approximated as a function of 2D probability distribution 
comparisons. 

A natural place to start is by assuming peak statistics can be identi
fied with a standard bivariate normal distribution. That is, a peak sta
tistic P = (px, py, spx , spy ) can be identified with the function 

fP(x, y) =
1

2πspx spy

e
− 1

2

[(
x− px
spx

)2

+

(

y− py
spy

)2]

. (1) 

To evaluate the similarity between any two peak statistics, P and Q, 
we compare the distributions fP(x, y) and fQ(x, y). This comparison is 
done by determining the cosine similarity between fP and fQ in the space 
L2(R2). While a discussion of function spaces is outside of the scope of 
this paper, we can draw an analogy to current mass spectral similarity 
computations to provide some context for our readers. In particular, 
much like how we can think of mass spectra as vectors in Rn (which is 
normally implied rather than explicitly stated), the functions fP and fQ 

are vectors in the function space L2(R2). And so we can measure the 
similarity of these functions as the cosine of the angle between their 
vectors in the space L2(R2). 

In this space, the inner product 〈fP, fQ〉L2(R2) is given by 

〈fP, fQ〉L2(R2) =

∫ ∞

− ∞

∫ ∞

− ∞
fP(x, y)fQ(x, y) dy dx, (2)  

and the norm ‖fP‖L2(R2) in L2(R2) generated by this inner product is given 

Fig. 2. An overview of how a high-dimensional consensus (HDC) mass spectrum is constructed from 3 replicate mass spectra, assuming 3 prominent peaks. Number 
of replicate mass spectra and prominent peaks are user-defined parameters and may be optimally selected for various applications. 
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therefore the cosine of the angle between fP and fQ in L2(R2) is computed 
by 
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While equation (4) appears unwieldly, because of the structure of 
functions fP and fQ, surprisingly we have the exact computation 
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which can be further disaggregated into its x and y components, 
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Thus, for a given pair of peak statistics P and Q, we define their 
similarity by 

θ(P,Q) = cos(θfP ,fQ ), (6)  

where all of the terms are as defined above. The similarity measure θ(P, 
Q) will evaluate between 0 and 1, where 0 indicates no similarity be
tween the peak statistics and 1 implies the peak statistics are identical. 

With peak statistic similarity measure (6) in place, we can define the 
similarity between a pair of HDC mass spectra in the following way: Let 
A = {P1,P2,…,Pm1} and B = {Q1,Q2,…,Qm2} be two HDC mass spectra 
being compared. We consider at most m = min(m1, m2) peak statistics in 
the comparison process. 

To begin, we identify the peak statistic from either A or B with largest 
mean relative intensity. Without loss of generality, assume this is peak 
Pi1 . We then identify the peak statistic Qj1 from the other HDC mass 
spectrum that is most similar to Pi1 using similarity measure θ defined in 
(6). This pair of peak statistics is set aside and removed from the HDC 

mass spectra and the process is repeated to identify pairs 
(

Pi2 ,Qj2

)

through 
(

Pim ,Qjm

)
. With all of these pairs, we compute the similarity 

between HDC mass spectra A and B as a weighted product of peak sta
tistics similarity using the formula 

φ(A,B) =
∑m

k=1py,ik qy,jk θ(Pik ,Qjk )∑m
k=1py,ik qy,jk

. (7) 

The similarity score φ(A, B) evaluates between 0 and 1, where 
0 suggest that there is no similarity between HDC mass spectra and 1 
means the HDC mass spectra are identical. 

2.2. Experimental data 

The data for our preliminary evaluation was collected with a JEOL 
AccuTOF LC-4G mass spectrometer (JEOL USA, Peabody, MA, USA) 

coupled with a DART-SVP ion source (IonSense, Saugus, MA, USA). The 
instrument parameters were identical to those used in the construction 
of the NIST DART-MS Forensic Database [18], and we collected three 
is-CID mass spectra (at +30 V, +60 V, and +90 V orifice 1 voltage) for 
each replicate using parameter switching. The DART gas temperature 
was set to 400 ◦C. Polyethylene glycol (PEG-600) was used as the mass 
calibration compound and a 0.1 mg/mL solution of AB-FUBINACA was 
used as a mass drift compensation compound. Both methamphetamine 
and phentermine were purchased from Cayman Chemical (Ann Arbor, 
MI, USA) as 1 mg/mL methanolic solutions and were diluted to an 
approximate concentration of 0.025 mg/mL in methanol. 

3. Results and discussion 

Consider the comparisons of the HDC mass spectra constructed using 
15 replicate +60 V is-CID mass spectra for methamphetamine compared 
to itself (Fig. 3a), phentermine compared to itself (Fig. 3b), and meth
amphetamine compared to phentermine (Fig. 3c). Though we only 
display the first three peak statistic comparisons, up to 5 prominent 
peaks were included in the overall HDC mass spectral similarity scores 
presented. In the case of the first two intra-sample comparisons, the HDC 
mass spectra were constructed using the first 15 replicates followed by 
the second 15 replicates, respectively. In the third inter-sample com
parison, we constructed HDC spectra using only the first 15 replicates of 
each compound. We can clearly see that the similarity score computed 
between HDC mass spectra of the same compounds (Fig. 3a and b) are 
higher than the score computed between HDC mass spectra constructed 
from different compounds (Fig. 3c). As expected, the overall HDC mass 
spectral similarity scores are driven by the pair-wise similarity of the 
dominant ions of each comparison (nominal m/z 91). Also, the minor 
peaks by which a skilled analyst might distinguish methamphetamine 
from phetermine (nominal m/z 119 vs m/z 105) had a pair-wise simi
larity of 0, which is desirable. If instead of weighing pair-wise similarity 
by average peak intensity in Equation (7), we had selected a weighting 
system that highlighted the score differences in minor peaks, we could 
have decreased the HDC mass spectral similarity score between meth
amphetamine and phentermine even more. Optimally scaling parame
ters to improve the performance of traditional single-measurement 
similarity scores has been previously explored in the literature [5,19] 
and similar ideas may be directly applicable to HDC mass spectra. 

We were surprised to see how different the observed distributions of 
the m/z 91 ion were between the HDC mass spectra of methamphet
amine and phentermine. In particular, we did not expect the mean mass- 
to-charge ratios to vary so substantially; both compounds were 
measured at equal concentrations and using identical protocols. One 
possibility is that there was an instrument drift adding an artificial 
signature to the peak variability that was allowing us to so clearly 
distinguish the nominal m/z 91 ion of methamphetamine from phen
termine. Our initial data collection process can be described as 
sequential: we collected 30 replicate mass spectra of methamphetamine 
with AB-FUBINACA analyzed at the beginning and after every ten 
measurements, and then collected 30 replicate mass spectra of phen
termine with AB-FUBINACA analyzed before and after every ten mea
surements. And so we re-measured our compounds but alternated 
between which compound was measured until we had 30 replicates of 
each methamphetamine and phentermine. Like our first set of mea
surements, AB-FUBINACA was analyzed before and after every ten 
measurements for drift compensation. The results of comparing spectra 
that were collected by alternating between compounds is shown in 
Fig. 4. 

With mass spectra measured in an alternating fashion, the mean 
mass-to-charge ratio of the m/z 91 ions between methamphetamine and 
phentermine were much closer together, and so the samples become 
more difficult to discriminate. That said, it appears that the variability in 
the peak intensity of the m/z 91 ion differs in a reproducible way be
tween methamphetamine and phentermine. We are currently 
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conducting additional experiments to determine if the discriminatory 
signature we observe with peak intensity variability is reproducible or 
whether it was introduced by the way the measurements were taken. 

Because we had two sets of measurements, one where compounds 
were analyzed sequentially and the second where compounds were 
analyzed simultaneously (but alternating), we thought it might be 
interesting to compare how similar the spectra from each set of mea
surements were (Fig. 5). In this comparison, we constructed HDC mass 
spectra using all 30 available replicate mass spectra for each data 
collection method. From these results, it is clear that the observed 
variability of these measurements is sensitive to measurement condi
tions. We can see that the spectra were clearly drift-compensated in 
different directions, and one could easily incorrectly interpret that the 
sets of mass spectra are measurements of different compounds. 

As noted earlier, an analyst is not likely to be analyzing pure com
pounds like methamphetemine and phentermine with DART-MS. And if 
they were looking at pure compounds, they would not be looking at 
single fragmentation is-CID mass spectra independently of the others 
that were collected simultaneously. However, we thought the example 
in Fig. 1 would be an interesting space to begin building a mathematical 
framework for incorporating measurement variability when comparing 
high-resolution mass spectra and we were not disappointed. We learned 
that there is a signature in the way peak variability differs between the 
dominant ion of the +60 V is-CID methamphetamine and phentermine 

(the same is true of the +90 V mass spectra but the results are not 
shown). We also learned that how we take measurements can affect this 
signature, which can subsequently affect result interpretation; with 
current instrumentation, it is probably best that HDC mass spectral 
comparisons are done with replicate mass spectra that were measured 
under near-identical conditions. These preliminary results have left us 
with several open questions:  

1. What is the best way to take replicate measurements using DART-MS 
to minimize the likelihood of introducing an artificial signature into 
the observed variability? Can we control hardware and software 
parameters to provide more reliable measurements? There is prece
dent for numerical optimization of instrument parameters in mass 
spectrometry [20] that may be applicable to DART-MS.  

2. Is there an optimal number of replicate measurements to accurately 
capture peak variability? While theory might suggest that we better 
capture peak variability with increasing number of replicates, we 
may also introduce deceptive variability signatures due to time- 
dependent sources of noise (e.g., instrument drift, ambient changes 
in the lab). There are also practical aspects of measurements that 
should be considered, and there may be diminished returns beyond a 
certain number of replicate measurements.  

3. How will this method perform using replicate measurements from 
other high-resolution mass spectrometry platforms? For example, 

Fig. 3. Comparison of HDC mass spectra where (a) 
both HDC mass spectra are constructed with +60 V is- 
CID mass spectra of methamphetamine, (b) both HDC 
mass spectra are constructed with +60 V is-CID mass 
spectra of phentermine, and (c) one HDC mass spec
trum is constructed with +60 V is-CID mass spectra of 
methamphetamine and the other is constructed with 
mass spectra of phentermine. The underlying is-CID 
mass spectra were collected by first measuring 30 
replicates of methamphetamine followed by 30 rep
licates of phentermine, with AB-FUBINACA measured 
between every 10 replicates for drift compensation.   
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will chromatography-coupled high-resolution mass spectrometry 
provide more reliable signatures in variability? We can imagine that 
methods like liquid chromatography (LC)-MS greatly reduce the 
likelihood of contamination-based variability as compared to 
ambient ionization systems. 

Addressing these questions, both through more highly-controlled 
data collection with ambient ionization platforms and by experimenta
tion with completely different instrumentation, will allow us to identify 
the complete scope of application areas that might benefit from col
lecting multiple replicate measurements and using an HDC mass spectral 
similarity approach to sample discrimination. 

4. Conclusion 

In this paper, we introduced a new mathematical approach for 
computing the similarity between sets of high-resolution mass spectra. 
The method incorporates peak variability as observed through replicate 
mass spectra and thus more completely represents the similarity of two 
sets of data. Through example, we showed that this method can help 
distinguish the near-identical mass spectra of methamphetamine and 
phentermine when the spectra were measured in a consistent way. We 
also showed that if measurements were inconsistent, the introduced 
variability makes measurements of the same compound appear like they 

are different compounds. While this last result may leave some readers 
questioning the value of including variability when computing similar
ity, we are of the opinion that this added dimension of discrimination is 
important for making well-informed claims about the certainty that two 
sets of mass spectra are measurements of the same or different 
compounds. 
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