
 1 © 2022 by ASME 

 
Proceedings of the ASME 2022 

International Design Engineering Technical Conferences and  
Computers and Information in Engineering Conference 

IDETC/CIE2022 
August 14-17, 2022, St. Louis, Missouri 

DETC2022-91021 
 

SPATIAL-TEMPORAL MODELING USING DEEP LEARNING FOR REAL-TIME MONITORING 
OF ADDITIVE MANUFACTURING  

 

 

Hyunwoong Ko  
Arizona State University, AZ, 

USA 

Jaehyuk Kim 
Associate, National Institute of 

Standards and Technology, 
MD, USA 

Pohang University of Science 
and Technology, Republic of 

Korea 

Yan Lu 
National Institute of Standards 

and Technology, MD, USA  

Dongmin Shin 
Hanyang University, Republic of 

Korea 
 

Zhuo Yang 
Associate, National Institute of 

Standards and Technology, 
MD, USA 

University of Massachusetts 
Amherst, MA, USA 

Yosep Oh 
Kyonggi University, Republic of 

Korea 

ABSTRACT 
Real-time monitoring for Additive Manufacturing (AM) 

processes can greatly benefit from spatial-temporal modeling 

using deep learning. However, existing, deep-learning 

approaches in AM are case-dependent, and therefore not robust 

to changes of control inputs and data types. As AM is dynamic 

and complex, this limitation leads to a lack of systematic, DL 

approaches for real-time monitoring of AM, which involves a 

large number of varying control parameters and monitoring 

data. To address the challenge, this paper introduces a novel 

approach for developing spatial-temporal models to monitor 

Laser Powder Bed Fusion (LPBF) processes using deep learning 

on real-time, monitoring data. First, we present a novel model 

for representing in-situ-monitoring and control data of LPBF at 

multiple scales. Second, from the model, we extract spatial-

temporal relationships for in-situ monitoring of LPBF processes. 

Third, we present a spatial-temporal, modeling approach using 

the architecture of convolutional long short-term memory 

(LSTM) to monitor the spatial-temporal relationships and detect 

anomalies. A case study used convolutional LSTM Autoencoder 

on optical, melt-pool-monitoring data, one of the most widely 

adopted data types in in-situ monitoring of LPBF. The data was 

generated from an LPBF testbed called the Additive 

Manufacturing Metrology Testbed. The novel, learning approach 

enables spatial-temporal modeling of AM dynamics directly from 

real-time data for the monitoring of varying AM environments. 

This methodical approach provides the potential to fuse real-

time data at multiple, spatial-temporal scales.           

 

Keywords: Deep Learning, Laser Powder Bed Fusion, 

Spatial-temporal Modeling, Real-time 

 

1. INTRODUCTION 
Additive Manufacturing (AM)’s unique capabilities have 

promised unprecedented opportunities to improve product 

performance and to flexibly react to the changes of desired 

product designs and functions [1]. Despite this promise, there 

still is a lack of knowledge about AM’s dynamics in complex 

processes (e.g., powder melting or melt-pool solidification in 

Laser Powder Bed Fusion (LPBF) and Directed Energy 

Deposition (DED) processes) [2]. This means that costly post-

build inspection or functional testing is required to qualify 

components for end-use applications [3]. Understanding the AM 

processes in real time helps with identifying their impacts on the 

quality of the final products (e.g., surface roughness and 

porosity). Therefore, real-time monitoring provides evidence for 

improved quality and process control of born-qualified products 

[2].  

Real-time monitoring measures process signatures, so called 

the voice of the process, to acquire dynamic, material-evolution 
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data that give information about both process physics and part 

quality metrics [4]. The acquisition of such in-situ data has 

suggested a place for data-driven models with the potential to be 

much faster and realistic than their simulated counterparts [3]. 

The data-driven models based on the real-time, real-world data 

could lead to advanced, on-line monitoring of dynamics in AM 

processes.  

Deep learning (DL) has demonstrated remarkable promise 

in the data-driven modeling for AM. Especially using real-time 

monitoring data, a DL model learns dynamics of AM process [2]. 

The DL methods using in-situ-monitoring data make predictions 

about flaws or porosity with considering the dynamic nature of 

the AM processes [4]. In DL for AM, spatial and temporal 

modeling is required to understand and control AM processes at 

multiple scales. As AM is dynamic and complex, there are a large 

number of varying control parameters at multiple, spatial-

temporal scales in AM [5]. To monitor AM processes and detect 

faults in real time, an approach for DL modeling needs to be 

robust to spatial-temporal changes in controls and data types.  

Many DL-based, modeling methods, however, are control-

input- or data-type dependent, and therefore ad-hoc and not 

robust to control and data changes. A problem is that the high 

diversity in AM control parameters enables collecting enough 

data to develop DL models for each process parameter set. This 

limits the development of a generic approach to create DL 

models in a dynamic AM environment. Such limitation leads to 

false detections increasingly, as useful information about the 

process dynamics is not applicable when using DL models as 

well as the knowledge extracted from the DL models or applying 

modeling approaches for different types of data or AM 

environments. 

To address the challenge, this study presents a novel 

approach for spatial-temporal modeling using DL for real-time 

monitoring of AM dynamics. We newly represent data of process 

control and monitoring in AM - where a list of sequential 

observations from monitoring is present with controlled inputs – 

that characterize relationships between the monitoring-control 

elements and identify relationships specific to real-time-

monitoring data. Then, we present an approach to map the 

extracted representations to the data-driven, predictive models as 

modeling inputs. This study uses convolutional Long Short-term 

Memory (ConvLSTM), which is known for learning from 

spatial-temporal data [6]. Our approach newly enables spatial-

temporal modeling using DL in a way robust to control and data 

changes for in-situ monitoring of AM. This study mainly focuses 

on LPBF, one of the most widely adopted metallic, AM 

processes. 

The remainder of the paper is as follows. Section 2 

introduces the approach. Section 3 demonstrates a case study. 

Section 4 presents results and discussions. Following this, we 
conclude this article in Section 5 with concluding remarks and 

future work. 

 
2. APPROACH 

In this section, we present a novel approach for developing 

spatial-temporal models to monitor AM processes using DL on 

real-time data, as shown in FIGURE 1. First, we present a novel, 

formal representation of in-situ-monitoring and control data in 

LPBF. Second, using the representation, we extract and structure 

spatial-temporal relationships considered for real-time 

monitoring of LPBF processes. Lasty, we design a spatial-

temporal model based on the architecture of convolutional 

LSTM autoencoder.  

 

 
FIGURE 1: AN OVERVIEW OF THE SPATIAL-TEMPORAL 

MODELING USING DL FOR REAL-TIME MONITORING OF AM 

DYNAMICS 

 

2.1 A Multi-scale Representation of In-situ-Monitoring 
and Control Data  
We present a novel, formal representation of the data of in-

situ monitoring and control of LPBF as shown in FIGURE 2. 

LPBF includes multiple processes that transform a virtual 

product description to a physical, final part by applying laser to 

powder materials in layer-by-layer manners. Therefore, LPBF 

can be considered a function that maps a design specification into 

a realized tangible product with controls. Considering that, the 

representation is developed for the function as a set of certain 

series of states as well as associated controls to the goal in the 

final state. It consists of a series of procedures that transform a 

current part state into a next state by exercising a control on AM 

parameters at each step. 

A model for LPBF can break down as follows: models 

representing powder-bed raking, behaviors in and around melt 

pools, and other sub-LPBF-processes [7]. A central aim of digital 

representations of LPBF using data is to present an integrated, 

layer-wise, multi-scale representation. In this study, to represent 

in-situ part states in LPBF, there are two types of state transitions 

defined: layer-wise and inner-layer transitions.  

In LPBF, for each layer, a machine deposits and presses 

down a new layer of powder for powder feeding. The layer-wise 

transition represents each actualization of such control events 

that change the layers. Equation (1) captures this transition 

function as follows.  

 
 𝛿𝑒𝑥𝑡: 𝑋𝑒𝑥𝑡 × ∑𝑒𝑥𝑡 → 𝑋𝑒𝑥𝑡  (1) 

 

In Equation (1), 𝑋𝑒𝑥𝑡  is a set of states representing each layer, 

where ∑𝑒𝑥𝑡  is a set of controls for proceeding from a completed 

layer to a next layer, which includes powder feeding and powder-

bed raking. Each actualization of a control in this transition 

function is defined as a state transition 𝛿𝑒𝑥𝑡 . 𝛿𝑒𝑥𝑡  is a transition 
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function representing the layer-wise transitions using the two 

inputs of previous states and control events in 𝑋𝑒𝑥𝑡 × ∑𝑒𝑥𝑡 . 

On the other hand, the inner-layer transition is related to 

melting powders by laser scanning and solidifying melted 

powders in a layer. This transition reflects the observations and 

controls of each layer’s building operation from start to finish. 

The inner-layer transition has two types: the transitions by 

control and time advance. The inner-layer transition by control 

represents a layer’s state changes as a laser beam melts powders 

and melted powders are solidified. This transition is captured in 

Equation (2). 

 
 𝛿𝑖𝑛𝑡 : 𝑋𝑖𝑛𝑡 × ∑𝑖𝑛𝑡 → 𝑋𝑖𝑛𝑡 (2) 

 

In Equation (2), 𝑋𝑖𝑛𝑡  is a set of states that represent a LPBF 

build being processed within a layer, where ∑𝑖𝑛𝑡  is a set of 

controls to complete a layer such as layer scanning and part 

solidification. Each actualization of a control in this transition 

function is defined as a state transition 𝛿𝑖𝑛𝑡. 𝛿𝑖𝑛𝑡 is a transition 

function that represents the inner-layer transitions using the two 

inputs of previous states and control events in 𝑋𝑖𝑛𝑡 × ∑𝑖𝑛𝑡. 

In LPBF, thermo-dynamics, hydro-dynamics, and fluid-

dynamics primarily drive the creation of powders’ or melted 

powders’ properties and their dependencies [2]. We call an entity 

that has such properties while participating in a physical, LPBF 
process a physical, real entity (e.g., metallic powders, melt pools: 

portions of melted powders) [2]. At any instance in time, any 

physical, real entity in a layer (e.g., ith layer) exists in a physical 

state (e.g., ith layer’s jth state after a series of laser scanning: 

𝑥𝑖,𝑗 ∈ 𝑋𝑖𝑛𝑡 , where 1≤  i, j < ∞ ). To digitally represent the 

physical properties, the properties of physical, real entities, with 

data, there are two types defined in AM: state and rate properties 

[2]. State property is a characterization of an amount or a 

momentum of a physical, real entity participating in an AM 

process. Rate property is a characterization of a flow rate, or a 

force applied to a physical, real entity during an AM process.  

A state, which changes during an AM process (e.g., melt-

pool size changes as laser is applied and laser nozzle moves), is 

affected by (1) preceded state properties of neighboring, physical 

entities (e.g., neighboring, metallic powders being melted and 

solidified) and (2) controls of the rate properties (e.g., laser 

frequency). The dependencies by the former and later are 

captured by the two types of inputs 𝑋𝑖𝑛𝑡 and ∑𝑖𝑛𝑡, respectively, 

in 𝑋𝑖𝑛𝑡 × ∑𝑖𝑛𝑡  of Equation (2). Based on Equation (2), the 

model represents an interaction between the physical properties, 

which we call a dynamical dependency [2], participating in an 

AM process. An example of a dynamical dependency is the 

dependency of a melt-pool-volume state on a neighboring, melt 

track's state. This type of dependency between state properties is 

called a state-state dependency. Another example is the 

dependency of a melt-pool-volume state on laser frequency. This 

type between state and rate properties is called a state-rate 

dependency. Using data, the two types of the dynamical 

dependencies together represent mechanisms by which physical, 

real entities transfer or control the flow of energy among them, 

and therefore enable the evolvement of part states in LPBF 

processes. 

The representation model also captures information about 

temporal measures of part states that are independent of the 

interaction between physical properties in LPBF processes. This 

information represents a measure that changes within a temporal 

coordinate system. Therefore, a part-state transition caused by 

temporal change is not necessarily involved in a dynamical 

dependency. The other type of inner-layer transition, transition 

by time advance, is represented in Equation (3) to capture those 

relationships using time advance function 𝑡𝑖𝑛𝑡.  

 
 𝛿𝑖𝑛𝑡: 𝑋𝑖𝑛𝑡 × 𝑡𝑖𝑛𝑡 → 𝑋𝑖𝑛𝑡  (3) 

 

2.2 Spatial-temporal Structurization of In-situ, 
Monitoring Data 

The formal, data model newly defines the representation of 

all directed paths of observations and controls of a LPBF build 

as Equation (4).  

 

 𝑈 ∈ ∑∗: 𝛿(𝑥0, 𝑢) (4) 

 

𝑈  represents controls that actualize all state changes at both 

inner-layer and layer-wise levels, starting from the initial state 

𝑥0 of a build in the first layer. Equation (4) uses an extended 

transition function 𝛿 :  𝑋 × ∑∗ → 𝑋 , where 𝑋 = 𝑋𝑒𝑥𝑡 ∪ 𝑋𝑖𝑛𝑡 , 

∑ =  ∑𝑒𝑥𝑡 ∪ ∑𝑖𝑛𝑡, and ∑∗ denotes a set of all concatenations of 

controls in ∑. In this way, a concatenation of controls represents 

successive controls, defined as a control activity, as an ordered 

sequence of finite operational control events. A control activity 

𝑢 is in 𝑈 if and only if it corresponds to an admissible path in 

the state transition model, equivalently, if and only if 𝛿𝑒𝑥𝑡   or 

𝛿𝑖𝑛𝑡 is defined at 𝛿(𝑥0, 𝑢).  

Among the control activities in 𝑈, we define another set of 
control activities 𝑚𝑎 in Equation (5): 

 
 𝑀𝑈 ≔ {𝑚𝑎 ∈ 𝑀𝑈: 𝛿(𝑥0, 𝑚𝑢) ∈ 𝐹} (5) 

 

, where 𝐹  is a set of final states. Therefore, Equation (5) 

represents all control activities in the scanning patterns, all 

 
FIGURE 2: A GRAPHICAL REPRESENTATION OF IN-SITU 
MONITORING AND CONTROL DATA. 
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possible successive controls, for a LPBF build, which enable the 

state transitions representing the transformation of raw materials 

to a final part during a build process.  

The successive controls in Equation (5) lead to 

corresponding successive changes of LPBF part states to monitor 

during the build process. Let 𝑥𝑖  and 𝑥𝑖+1  be two, successive 

states representing the states of neighboring layers where 𝑥𝑖 is 

the precedent layer and 𝑥𝑖+1 is the following layer. In this sense, 

the model represents targeted observations with a series of L 

states where a LPBF build is described as a concatenation of 

layer states in Equitation (6) as follows. 

 
 

𝑥 = ∏ 𝑥𝑖

𝐿

𝑖=1

, 1 ≤ 𝐿 < ∞ (6) 

 

, where, 𝑥   𝑥1 ∙ 𝑥2 ∙ 𝑥3 ∙ ⋯ ∙ 𝑥𝐿   such that  𝑥𝑖+1 =
𝛿𝑒𝑥𝑡(𝑥𝑖 , 𝑢𝑖) = 𝛿𝑒𝑥𝑡( 𝛿𝑒𝑥𝑡(𝑥𝑖−1, 𝑢𝑖−1

𝑒𝑥𝑡 ), 𝑢𝑖
𝑒𝑥𝑡)  and 𝑢𝑖−1

𝑒𝑥𝑡 , 𝑢𝑖
𝑒𝑥𝑡 ∈

∑𝑒𝑥𝑡 .  

𝑥𝑖 is represented as Equation (7). Equation (7) is a function 

of the model that captures the concatenations of inner-layer 

states in the transitions by inner-layer controls such as control of 

laser power, speed, location, and direction for laser scanning of 

powders and solidification of melted powders, to complete the 

build in the layer 𝑥𝑖 from start to finish.  

 
 

𝑥𝑖 = ∏ 𝑥𝑖,𝑗

𝑀

𝑗=1

, 1 ≤ 𝑀 < ∞ (7) 

 

, where 𝑥𝑖   𝑥𝑖,1 ∙ 𝑥𝑖,2 ∙ 𝑥𝑖,3 ∙ ⋯ ∙ 𝑥𝑖,𝑀  such that  𝑥𝑖,𝑗 =

𝛿𝑖𝑛𝑡(𝑥𝑖,𝑗 , 𝑢𝑙
𝑖𝑛𝑡) = 𝛿𝑖𝑛𝑡( 𝛿𝑖𝑛𝑡(𝑥𝑖,𝑗−1, 𝑢𝑗−1

𝑖𝑛𝑡 ), 𝑢𝑗
𝑖𝑛𝑡)  and 𝑢𝑗−1

𝑖𝑛𝑡 , 𝑢𝑗
𝑖𝑛𝑡 

∈  ∑𝑖𝑛𝑡 . 

Considering the transition between the inner states of 𝑥𝑖,𝑗 

by the time advance function 𝑡𝑖𝑛𝑡 , 𝑥𝑖,𝑗  is represented as 

Equation (8). Equation (8) is a function of the model that 

captures the concatenations of inner-layer states of 𝑥𝑖, especially 

𝑥𝑖,𝑗, changed by time advance.  

 

 

𝑥𝑖,𝑗 = ∏ 𝑥𝑖,𝑗,𝑘

𝑁

𝑘=1

, 1 ≤ 𝑁 < ∞ (8) 

 

, where 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗,1 ∙ 𝑥𝑖,𝑗,2 ∙ 𝑥𝑖,𝑗,3 ∙ ⋯ ∙ 𝑥𝑖,𝑗,𝑁 such that 𝑥𝑖,𝑗,𝑘+1 =

𝛿𝑖𝑛𝑡(𝑥𝑖,𝑗,𝑘 , 𝑡𝑖𝑛𝑡) = 𝛿𝑖𝑛𝑡( 𝛿𝑖𝑛𝑡(𝑥𝑖,𝑗,𝑘−1, 𝑡𝑖𝑛𝑡), 𝑡𝑖𝑛𝑡) . Therefore, the 

in-situ, monitoring data of an LPBF build is represented as 

Equation (9) to include both layer-wise and inner-layer 

transitions.  

 
 

∏ ∏ ∏ 𝑥𝑖,𝑗,𝑘

𝑁

𝑘=1

𝑀

𝑗=1

𝐿

𝑖=1

, 1 ≤ 𝐿, 𝑀, 𝑁 < ∞ (9) 

 

 

 

Equation (9) represents spatial-temporal relationships 

extracted for in-situ monitoring of LPBF processes. The layer-

wise, state transitions in an LPBF process always happen 

between physically, neighboring layers. The first layer (𝑥1  in 

FIGURE 3A) is followed by the second layer (𝑥2 in FIGURE 

3A), which the third layer (𝑥3 in FIGURE 3A) follows, and this 

continues until the final layer (𝑥𝐿 in FIGURE 3A) of a LPBF 

build. Therefore, the spatial dependencies between the 

neighboring layers are measurable in the representation model 

for a real-time observation of an LPBF build, in addition to the 

temporal dependencies between the layers captured by the 

concatenations. FIGURE 4 shows an example of a spatial-

temporal dependency between two, successive, neighboring 

layers with the layer-wisely interacting areas where the solidified 

areas after layer scanning in the Layer i-1 are remelted by layer 

scanning in the Layer i. This example shows a dependency of a 

melt-pool volume on a neighboring, previous layer’s state. 

Examples of the previous layer’s state is the energy density or 

volume of melted and solidified areas in the interacting areas of 

the previous layer, which the model captures in the layer-wise 

transition function for in-situ monitoring.  

The model also captures the spatial-temporal dependencies 

between neighboring, melt pools within a layer. The 

concatenations of the inner-layer states generated by the state 

transitions can be based on the successive control inputs for a 

layer (example of 𝑢𝑀−2
𝑖𝑛𝑡 , 𝑢𝑀−1

𝑖𝑛𝑡 , and 𝑢𝑀
𝑖𝑛𝑡 shown in FIGURE 3 

which can be controls of laser power, location, direction, and 

 
FIGURE 3: SPATIAL-TEMPORAL RELATIONSHIPS FOR IN-

SITU MONITORING OF LPBF PROCESSES EXTRACTED FROM 

THE REPRESENTATION MODEL: A. A CONCATENATION OF 

LAYER-WISE STATE TRANSITION, B. A LAYER AS A 

CONCATENATION OF INNER-LAYER STATE TRANSITION, 

AND C. AN INNER-LAYER STATE TRANSITION BY LASER 

SCANNING (GRAY CIRCLES REPRESENT INNER-LAYER 

CONTROL POINTS. THE ARROWS ON THE LAYERS 

REPRESENT LASER-SCANNING DIRECTIONS. A BLUE CIRCLE 

REPRESENTS A CONTROL POINT THAT ACTUALIZES EACH 

STATE TRANSITION. FOR EXAMPLE, IN 𝑋𝐼,𝑀−2  OF C, THE 

BLUE CIRCLE IS A CONTROL POINT WHERE 𝑈𝑀−2
𝐼𝑁𝑇  HAPPENED 

TO ACTUALIZE THE STATE TRANSITION FROM THE 

PREVIOUS STATE TO THE STATE 𝑋𝐼,𝑀−2) 

 

z

x

y

x

y

x

y

x

y

x

y

A 

B 

C 



 5 © 2022 by ASME 

speed in a layer). Such control creates successive, neighboring, 

melt pools and tracks in a layer. Therefore, the concatenations in 

Equation (9) capture the spatial-temporal dependencies between 

the melt pools: the relationships of the states of successive, 

neighboring, melt pools and tracks. FIGURE 4 also shows an 

example of a spatial-temporal dependency between two, 

successive, neighboring melt pools within a layer of which the 

interacting area is remelted. This example shows a dependency 

of a melt-pool volume on the state of a neighboring, previous 

melt pool within a layer, such as its energy density and volume 

of melted and solidified areas, especially in the interacting areas. 

This time the model captures an interaction in the inner-layer 

transition.   

 

2.3 Deep-learning-based, Spatial-temporal Modeling   
For spatial-temporal modeling, we additionally adopt 

Convolutional LSTM (ConvLSTM) neural network. Based on 

Equation (9), structured, monitoring data can contain 

information on a spatial state of a LPBF build in a temporal 

order. For example, 𝑥𝑖,𝑗,𝑘  in Equation (9) can be a two-

dimensional representation of a spatial state of a build: a spatial-

state information represented by a matrix with 𝑚 × 𝑛 elements. 
An example of 𝑥𝑖,𝑗,𝑘 , in this case, is an image capturing 

information on a spatial state of a layer of a build such as a 

geometry of a melt-pool track of a layer. Then, 𝑎𝑖𝑗 ∈ 𝑥𝑖,𝑗,𝑘 

becomes a value of the spatial information of 𝑖 × 𝑗 position in 
𝑥𝑖,𝑗,𝑘. Based on such representation of 𝑥𝑖,𝑗,𝑘, the concatenation in 

Equation (9) can represent a whole, LPBF build at multiple, 

spatial-temporal scales. Those data then become inputs to a 

ConvLSTM model for spatial-temporal prediction of LPBF 

dynamics.   

ConvLSTM can be represented as Equations (10)~(15) [6]. 

 
𝑖𝑡 = 𝜎(𝑊𝑋𝑖 ∗ 𝑋𝑡 + 𝑊𝐻𝑖 ∗ 𝐻𝑡−1 + 𝑊𝐶𝑖 ⊙ 𝐶𝑡−1 + 𝑏𝐻𝑖)  (10) 

𝑓𝑡 = 𝜎(𝑊𝑋𝑓 ∗ 𝑋𝑡 + 𝑊𝐻𝑓 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑓 ⊙ 𝐶𝑡−1 + 𝑏𝑓)  (11) 

𝑔𝑡 =  tanh(𝑊𝑋𝑔 ∗ 𝑋𝑡 + 𝑊𝐻𝑔 ∗ 𝐻𝑡−1 + 𝑏ℎ_𝑔)  (12) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡  (13) 

𝑜𝑡 = 𝜎(𝑊𝑋𝑜 ∗ 𝑋𝑡 + 𝑊𝐻𝑜 ∗ 𝐻𝑡−1 + 𝑊𝐶𝑜 ⊙ 𝐶𝑡 + 𝑏𝑓_𝑜)  (14) 

ℋ𝑡 =  𝑜𝑡 ⊙ tanh(𝐶𝑡)  (15) 

 

The ConvLSTM can use convolution filters of different 

sizes to capture spatial-temporal dependencies at different 

scales. We can regard all the inputs based on the structured input 

data ({𝑋1, ⋯ , 𝑋𝑡} ⊂ {𝑥1,1,1, ⋯ , 𝑥𝐿,𝑀,𝑁 }, cell outputs {𝐶1, ⋯ , 𝐶𝑡} , 

hidden states {𝐻1, ⋯ , 𝐻𝑡}, and the input, forget, and output gates 

𝑖𝑡 , 𝑓𝑡 , and 𝑜𝑡 , respectively, of the ConvLSTM as 3D tensors. 

The first two dimensions of the 3D tensors are spatial 

dimensions. The last dimension of the 3D tensors is the temporal 

dimension. The outputs of ConvLSTM cells depend on the 

inputs and actual states of local neighbors following the data 

representation model presented in Section 2.1 and Section 2.2. 

In Equations (10)~(15), ‘∗’ represents the convolution operator, 

‘⊙’ represents the Hadamard product, and '𝜎(∙)' represents the 

logistic sigmoid function.  

 

3. CASE STUDY 
The aim of the case study is to assess the proposed modeling 

approach. Specifically, we test an anomaly detection task, which 

is to detect the anomalous melt pools with the spatial-temporal, 

modeling approach. We consider a semi-supervised method, 

especially AutoEncoder, which can learn a meaningful 

representation into semi-labeled input data. The anomaly 

detection using AutoEncoder has typically three steps: 1) to 

define a normal input 2) to develop an Autoencoder model, and 

3) to monitor an anomaly score. Autoencoder is trained with the 

only defined normal input, and a residual between an input and 

a reconstructed input, is used as the anomaly score, which means 

how different from normal input. We explain them in more detail 

in the sub-sections. 

 

3.1 Experimental Design 
An experiment is carried out using the Additive 

Manufacturing Metrology Testbed (AMMT) at the National 

Institute of Standards and Technology (NIST), which is an open-

platform laser bed fusion system. This experiment creates 5mm 

x 9mm x 5mm geometry of a part on a wrought nickel alloy 625 

(IN625) plate cut to 100mm x 100mm x 12.5mm. A commanded 

laser power is 100 W and scan speed is 900mm/s for a pre-

contour and infill hatching occurred at 195 W and 800mm/s 

respectively. The part consists of 250 layers with 20µm thickness 

and 90° rotation between layers. The co-axial melt pool 

monitoring (MPM) camera is optically aligned with a laser. The 

camera generates melt-pool images with a 100μs/frame sampling 

rate. These images are 120 × 120 pixels and have gray-scale 

pixels whose range is 0 to 255, where each pixel is 8 x 8μm. 

Detailed experiment descriptions can be found in [8].  

 

3.2 Data Structurization and Pre-processing 
We use 5226 melt-pool images from layer 210 for training 

the model, and 4065 images from layer 150, which has many 

anomaly cases, for testing. These images are initially 120 × 120 

pixels in size. These are cropped to 60 × 60 pixels around the 

peak pixel values. To reduce discrete noises, their pixel values 

are subtracted by the 10-pixel value. A melt-pool image 

represents a local change of a spatial state of a layer as shown in 

the top of FIGURE 5. To add temporal dependencies, the 

concatenations of melt-pool images, following Equation (9), 

become input for the DL model. In this study, we set 4-time 

 
FIGURE 4: AN EXAMPLE OF LAYER-WISE AND INNER-

LAYER DEPENDENCIES BETWEEN MELT-POOL STATES 
IN LPBF 
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windows and 1-sliding; thus, 3,975 concatenations and 442 

concatenations are used for training and validation, respectively, 

and a total of 3,750 concatenations are used for testing.  

In this study, we assume that melt pools in a concatenation 

formed under the same process parameters have consistent 

characteristics; then they are defined as a normal case. 

Otherwise, when a few melt pools in a sequence are different, it 

is defined as an anomalous case. Using this assumption, we 

defined normal inputs for the training set by excluding melt-pool 

concatenations with anomalous, melt pools like FIGURE 6. We 

also consider data augmentation to prevent overfitting and get 

more variety of dataset. The training set is geometrically 

transformed with two strategies: 1) Scaling up and down by 

where a range is [70% ,130%], and 2) Rotation where a range is 

[-2π, 2π]. The example images before and after data 

augmentation are shown in FIGURE 7. 

 

3.3 Convolutional LSTM-Autoencoder Architecture  
Based on the proposed approach, we design a ConvLSTM-

Autoencoder (ConvLSTMAE) for the spatial-temporal 

modeling. The ConvLSTMAE consists of three networks: 

Encoder, Decoder, and latent space as shown in FIGURE 5. 

Encoder reduces the dimensions of the inputs of image 

concatenations into a latent space with convolutional layers and 

 
FIGURE 6: EXAMPLES OF ANOMALOUS, MELT-POOL 

IMAGES 

 
FIGURE 7: EXAMPLES OF MELT-POOL IMAGES. 

IMAGES AT THE TOP ARE BEFORE DATA 
AUGMENTATION, AND IMAGES AT THE BOTTOM ARE 
AFTER DATA AUGMENTATION. 
 

 

 
FIGURE 5: A CONVOLUTIONAL-LSTM-AUTOENCODER ARCHITECTURE WITH MELT-POOL IMAGE CONCATENATIONS 

STRUCTURED BASED ON EQUATION (9) 
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recurrent LSTM layers. Decoder reconstructs the image 

sequence from the latent space with the reverse order of the 

Encoder’s architecture. ReLU is used for a non-linear function 

and Batch normalization layer is added after ReLU to stabilize 

the weight updates. TABLE 1 shows the detail of 

ConvLSTMAE’s architecture. Then, the reconstructed 

concatenations of melt-pool images (�̂�) are compared with the 
initial image concatenations (𝑥 ), and a loss 𝐿(𝑥, �̂�)  between 
them is back-propagated to update the weights of the networks, 

aiming to minimize the loss. In this case, Binary Cross Entropy 

(BCE) is used as the loss 𝐿 as shown in Equation (16): 
 

 

𝐿: 𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑥, �̂�) =  −
1

𝑁
∑ 𝑥𝑖𝑙𝑛 (�̂�𝑖)

𝑁

𝑖=1

 (16) 

, where 𝑁 denotes a batch size. Based on the validation set, the 
𝑁 is 32 and the epoch is 200 in this case study. 
 

4 RESULTS AND DISCUSSION 
We investigate an additional model, which is a 

Convolutional Autoencoder (ConAE), to compare the effect of 

the proposed, spatial-temporal modeling. A ConvAE architecture 

is referred to in [9] that dealt with the same issue but did not 

consider a temporal aspect in addition to its consideration of 

spatial data. The ConvAE’s training settings are identical to those 

of ConvLSTMAE, however, its inputs are single, melt-pool 

images while not being structured based on the proposed 

approach. To monitor anomalies, Normalized Mean Square Error 

(NMSE) is used as the anomaly score. NMSE is defined as 

square error divided by the mean pixel intensity [3]. It can focus 

on reconstruction errors of melt pool sequence by minimizing 

the effect of melt-pool size. Equation (17) represents NMSE as 

follows: 

 
𝑁𝑀𝐸𝑆 =  

1

𝑥
∑||𝑥 − �̂�||

2
     

(17) 

 

, where 𝑥  means the mean pixel of 𝑥 . A comparison with a 

monitoring chart of anomaly score on the testing set is shown in 

FIGURE 8. The top of FIGURE 8 depicts the case of 

ConvLSTMAE, whereas the bottom depicts the case of ConvAE. 

Each anomaly score threshold is computed from the 99th 

percentile of the training set's anomaly score, allowing an error 

of the selected training set. 

To evaluate quantitatively the performance of two models, 

Accuracy, Precision, Recall, and F1 score, which are commonly 

used metrics for binary classification, are used. Each image in 

the testing dataset is labeled manually as “normal” and 

"anomalous". A total of 3,554 images are labeled as “normal”, 

whereas a total of 196 images are labeled as “anomalous”. The 

image sequence which includes at least one image with 

“anomalous” label is labeled as “anomalous”. TABLE 2 shows a 

comparison between the performance of the ConvLSTMAE and 

the ConvAE on the testing set, which shows the proposed 

approach’s outperformance.  

 

TABLE 2: Performance measurement comparison  

Model Accuracy Recall Precision F1-score 

ConvAE 0.87 0.87 0.91 0.89 

Conv 

LSTMAE 
0.98 0.98 0.98 0.98 

 

 

TABLE 1: THE DETAIL OF CONVOLUTIONAL LSTM-AUTOENCODER ARCHITECTURE USED FOR THE MELT-POOL MODELING 

Network Layer 
Channel 

(in/out) 
Filter size Stride Activation 

Encoder 

Conv2D_TimeDistributed 1/128 (5,5) 2 ReLU 

Batch_Normalization 128/128 - - - 

Conv2D_TimeDistributed 128/64 (5,5) 2 ReLU 

Batch_Normalization 64/64 - - - 

ConLSTM2D 64/64 (3,3) 1 ReLU 

Batch_Normalization 64/64 - - - 

latent space ConLSTM2D_TimeDistributed 64/32 (3, 3) 1 ReLU 

decoder 

ConLSTM2D_TimeDistributed 32/64 (3, 3) 1 ReLU 

Batch_Normalization 64/64 - - - 

Conv2DTranspose_TimeDistributed 64/64 (5,5) 2 ReLU 

Batch_Normalization 64/64 - - - 

Conv2DTranspose_TimeDistributed 64/128 (5,5) 2 ReLU 

Batch_Normalization 128/128 - - - 

Conv2DTranspose_TimeDistributed 128/1 (2,2) 1 Sigmoid 
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5 CONCLUSION 
In this paper, we proposed a novel approach of spatial-

temporal modeling using DL for real-time monitoring of LPBF. 

The proposed approach represented in-situ, monitoring and 

control data of LPBF at multiple scales. Then, the approach 

extracted spatial-temporal relationships for in-situ monitoring of 

LPBF processes. Lastly, the approach presented a spatial-

temporal, modeling method using the architecture of 

ConvLSTM to monitor the spatial-temporal relationships and 

detect anomalies. A case study developed a ConvLSTM-

Autoencoder model using melt-pool images based on the 

proposed approach, which showed improved performance. The 

novel, data-driven approach improves spatial-temporal modeling 

of AM dynamics directly from real-time data for the monitoring 

of varying AM environments. In the future, we will fuse various 

real-time data at multiple, spatial-temporal scales.           
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