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Abstract. Since its discovery, atomic force microscopy (AFM) has become widely used for 

surface characterization, evolving from a tool for probing surface topography to a versatile method 

for characterizing mechanical, electrical, chemical, magnetic, and electro-optical properties of 

surfaces at the nanoscale. Developments of several AFM-based techniques have enabled even 

subsurface imaging, which is routinely being carried out at the qualitative level of feature detection 

for localized subsurface inhomogeneities. We surmise, however, that a quantitative 3D subsurface 

characterization can emerge from the AFM mechanical response of flat buried interfaces, and 

present here a methodology for determining the depth of a film and its mechanical properties. 

Using load-dependent contact resonance atomic force microscopy (CR-AFM) and accurate 

modeling of the contact between the AFM tip and a layered sample, we determine the relationship 

between the measured resonance frequency of the AFM probe and the contact stiffness. Our 

subsequent statistical analysis reveals an intrinsic and sample-specific interdependence between 

the depth and modulus sensitivities of CR-AFM. This interdependence prevents the simultaneous 

accurate determination of both depth and modulus from measurements on a single layered sample.  

If the elastic moduli of the sample components are pre-determined from separate investigations of 

bulk samples (or otherwise known), then this methodology accurately yields the location of the 

interface between the layers of the sample; as such, it can serve as a nondestructive and robust 

technique for probing layer thickness, subsurface features, and elastic properties of materials used 

in semiconductor electronics, additive manufacturing, or biomaterials.  
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Introduction 

With the continuous decrease of physical dimensions in various exploratory scientific platforms 

and technological applications, nanoscale mechanical properties play an important role in the 

structure-functionality paradigm of materials design. Driven by semiconductor, battery and 

communication technologies, the 3D materials integration that sustains the deployment of ever 

smaller, faster, and more energy efficient devices requires non-destructive methods for 

characterizing mechanical properties that are critical for structural integrity, device functionality, 

material selection, and evaluation. Mechanical property measurements can be used along with 

other characterization techniques to expand our understanding of the morphology and properties 

of materials and to make advances in the fabrication of new materials and devices with desired 

properties and functionalities from nanoscale to macroscale.1 Combining nanoscale mechanical 

and chemical characterizations, for example, has recently been used to reveal the nanoscale 

structure-property relationship of organosilicate materials with applications in electronics,2-4 and 

to examine morphological structures of cell walls,5 vesicles,6 and spores7 in biology.   

Measurements that provide nanoscale mechanical property characterization emerge from 

various atomic force microscopy (AFM) techniques, with either quasi-static (force volume AFM)8 

or dynamic operation (contact resonance AFM,9-10 ultrasonic AFM,11 multi-frequency AFM,12 

bimodal AFM).13-14 They extract different mechanical properties of a material from observations 

of the response of a stimulated AFM tip-sample contact. Either in spectroscopic or mapping 

measurements, nanoscale mechanical AFM characterizations had been demonstrated on exposed 

surfaces of various materials and structures, including, for example, metals, ceramics, polymers, 

composites, films, nanostructures, and organics.4, 8, 15-18 In few instances,6, 19-21 it has been shown 

that some AFM methods can further provide a glimpse into the subsurface variation of mechanical 

properties of materials.  In single frequency modulation techniques such as the contact resonance 

AFM (CR-AFM) and ultrasonic force microscopy (UFM)  the subsurface contrast is due to 

changes of the deformation field underneath the sample surface.22 These changes are induced by 

the presence of material inhomogeneities  in the matrix of the sample, e.g., particles,23-26 patterns, 

22, 27 or cavities,28-31 leading to variations of the AFM tip-sample contact stiffness that are sensed 

as eigenmode frequency changes. In multi-frequency modulation techniques such as heterodyne 

force microscopy (HFM)32 and mode-synthesizing AFM (MSAFM),33-34 the subsurface contrast 

may originate from the scattering of the ultrasound waves guided through the sample; it has also 
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been pointed out35-36  that the ultrasound wavelengths are often orders of magnitude larger than 

the relevant dimensions of the subsurface features and their propagation through the sample would 

only marginally be altered.  

In any AFM methods, the subsurface imaging via mechanical response stems from the 

ability to convert the observed contrast into quantitative characterization through modeling of 

mechanical interactions involved and the associated vibrational response. However, due to the 

complexity of the mechanics problem, the measured response has often been analyzed through 

approximate analytical models29, 37-38 or via simplified finite element analysis (FEA).28 At times, 

the modeling of the AFM tip-sample system was done through a collection of springs and an 

equivalent stiffness for an inhomogeneous subsurface structure.39 FEA calculations26, 28 could not 

always be used to accurately model the entire 3D response of the system due to the high computing 

power required to extract the elastic properties of subsurface features from the non-inverse analysis 

of the measurements. While approximate models and FEA calculations on simplified systems 

enable a rapid qualitative analysis (e.g., demonstrations of feature detection), their use can also 

obfuscate the strengths of the experimental technique and prevent the objective evaluation of its 

performance and limitations. Difficulties do not exclusively lie in the use of a model, as data 

collected from the vibrations of AFM tip-sample contact is noisy, and vibrational frequencies 

change with the load on the contact; averaging over many measurements at the same load, and 

performing measurements at different loads alleviate this problem, while adding complexity to the 

task. Attempting to resolve subsurface features by combining averaged AFM measurements with 

coarse or simplified models would lead to inaccurate characterization of the relevant dimensions 

or mechanical properties and hinder our understanding of the sensitivity and limitations of the 

method.   

In this article, we present a method based on CR-AFM measurements and accurate 

modeling of the tip-sample contact to determine the depth and modulus of a flat interface in a 

layered sample. The CR-AFM observable is the frequency of an eigenmode of the cantilever when 

the AFM tip is loaded and in contact with the sample. This so-called contact resonance (CR) 

frequency directly relates to the tip-sample contact stiffness. We have performed load-dependent 

CR-AFM measurements40 on a series of two-layer films to obtain the load dependence of the tip-

sample contact stiffness. Unlike previous CR-AFM works based on single load measurements, we 
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demonstrate that eigenfrequency measurements and the associated contact stiffness under variable 

load, in correlation with physics-based mechanical models for the AFM tip-sample contact, 

provide the necessary means to describe the details of the mechanical response of the subsurface 

region. We have used physically faithful models of the tip-surface interaction in which the contact 

geometry, the sample material/structure, and the tip-sample interactions are input parameters in 

the mechanical modelling, which is realized in two independent ways. The first modeling 

framework is a set of semi-analytical equations41-42 that accurately reproduce the indentation of a 

spherical rigid on a half-space coated substrate in the presence of adhesion. The second way of 

modeling is 3D finite element analysis (FEA). Both frameworks have been used to predict the 

load-dependent contact stiffness for given layered structure of the sample, material, and tip-sample 

interaction and contact geometry. By comparing the contact stiffness resulted from the measured 

CR frequencies with those from the models, we evaluated the depth of the surface layer and its 

elastic properties. We have found that the elastic modulus sensitivity of CR-AFM increases with 

increasing layer thickness and the interface depth sensitivity increases with decreasing thickness. 

The two opposing trends explain why it is difficult to simultaneously resolve the material contrast 

and location of subsurface heterogeneities in nanomechanical subsurface imaging. However, 

through a quantitative analysis of the measurement uncertainties, we show that an optimal working 

point in the dual space of the correlated depth and elastic modulus parameters can be established 

for each structure. Furthermore, if either the elastic moduli of the layers or the depth of the interface 

is known or predetermined, then the remaining parameter can be accurately determined from our 

measurement uncertainty analysis. This methodology demonstrates that AFM-based subsurface 

mechanical characterization can be significantly improved, and its applicability further extended 

by means of quantitative analysis for probing layer thickness, subsurface features, and elastic 

properties of materials used in semiconductor electronics, additive manufacturing, or biomaterials.  

 

Materials and Measurements 

The low-k dielectric bilayer film structures investigated in this study are described in Figure 1, 

with the dimensions given in Table 1. These layered films  were deposited on 300 mm diameter 

Si(001) substrates by plasma enhanced chemical vapor deposition (PECVD).43 Briefly, the bottom 

SiOC:H low-k dielectric layer L2 with a nominal thickness of  2000 nm was deposited by PECVD 
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using an alkoxysilane precursor diluted in an inert gas at a temperature on the order of 400 C. The 

stiffer top layer, SiCO:H low-k dielectric (L1, with nominal thicknesses ranging from 10 to 500 

nm) was deposited by PECVD using an organosilane and an oxidizing gas. The thicknesses of the 

two layers were independently determined using a spectroscopic ellipsometry based technique by 

individually depositing each film on a separate Si substrate. The properties of the two layers differ 

significantly from each other, due to their different mass densities (1.4 versus 2.0 g/cm3) and their 

different Si-C/Si-O network bond ratios (< 1.0 versus > 1.0).44  

 

 

Figure 1: (a) The layered structure of the investigated samples consists of a top layer L1 (yellow) and a 

bottom layer L2 (blue) on a silicon substrate S (gray). Sample 1 has only the layer L2 on the substrate S. (b) 

Schematic of the CR-AFM measurements with the modulation applied by a photothermal drive laser at the 

base of the cantilever. The applied and measured signals of the CR-AFM modulation are operated by a 

high-speed lock-in amplifier, while the tip-sample interaction was operated by the AFM controller. (c) 

Frequency sweep in air showing the first two flexural eigenmode peaks. Inset: frequency sweeps for the tip 

in contact with each of the samples and fused silica, under the same applied load of 150 nN. (d) Dual 

resonance frequency-tracking for the tip on fused silica, showing the main carrier A1 (red), the lower A2 

(blue) and higher A3 (green) amplitude modulations bracketing the main carrier, and the difference A3-A2 

(black) of the A3 and A2 modulations. A feedback control acts on the difference A3-A2 to follow any 

change in the CR frequency (see text for details). 
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Table 1: The layered structure of the samples measured. The bottom layer L2 was SiOC:H and the top layer 

L1 was SiCO:H. Their thicknesses were determined by spectroscopic ellipsometry of each individual layer 

deposited with its nominal thickness on the silicon substrate. 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

L1 thickness (nm) none 9.1 20.8 105.7 476.9 

L2 thickness (nm) 2045.3 2043.5 2038.5 2026.5 2002.6 

 

 

The CR-AFM measurements were performed on a MultiMode AFM (Bruker, Santa 

Barbara, California, USA) equipped with a custom-made optical head that incorporates a 

photothermal drive module.45 The so-called “small cantilever head” was built during an open-

science workshop at EPFL (Lausanne, Switzerland). The photothermal drive laser is mounted on 

an adjustable kinematic block; the positioning of its spot at the base of the cantilever is independent 

of that of the readout laser at the end of the cantilever. The CR-AFM oscillation was provided by 

the photothermal drive laser modulated by a small-amplitude, frequency-controlled signal from an 

UHF 600 MHz lock-in amplifier (Zurich Instruments AG, Zurich, Switzerland). To avoid the noise 

and bandwidth limitations of the AFM base’s electronics, the deflection signal from the readout 

detector was directly fed into the signal access module box of the AFM controller instead of being 

routed through the base of the AFM. The peak emission wavelengths of the readout and drive 

lasers of the photothermal head are around 645 nm and 686 nm, respectively. 

Given that the materials in our study have elastic moduli from a few GPa to ≈100 GPa, the 

best sensitivity to the normal stiffness of the tip-sample contact in CR-AFM was accomplished by 

tracking the shift in the resonance frequency of the first eigenmode of the cantilever. The first two 

flexural eigenmode frequencies of the cantilever used (MikroMasch HQ:NSC14/Al BS, acquired 

from NanoAndMore USA Corp., Watsonville, CA, USA) were measured in air (out of contact) at 

148.0 kHz and 987.4 kHz, respectively (Figure 1c). The stiffness of the cantilever was determined 

to be 7.2 N/m ± 0.2 N/m from the thermal noise method integrated on the MultiMode AFM; the 

uncertainty represents one standard deviation of the mean value from 20 independent 

measurements. Once the AFM probe is brought into mechanical contact with a surface, all the 

eigenmode frequencies of the cantilever will undergo (positive) frequency shifts of their 

frequencies in accordance with the increased stiffness of the established tip-sample contact. Figure 
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1d shows frequency sweeps that include the resonance peaks of the first eigenmode in contact on 

each of the samples studied and fused silica; we used fused silica as a reference material with a 

well-known elastic modulus of 72 GPa. All the CR-AFM spectra shown in Figure 1d have been 

acquired under the same applied force of 150 nN and with the same tip. This means that the 

observed difference among the CR peaks is due to an intrinsic difference in the elastic properties 

of the samples and we can say that an increase in the elastic modulus is demonstrated as we go 

from Sample 1 to Sample 5; this is due to the increasing thickness of the stiffer layer L1.  

 In order to provide accurate probe-sample contact, we have imaged the AFM probe via 

scanning electron microscopy (SEM), and have used the dimensions measured from SEM images 

in constructing models of the tip for numerical FEA calculations. The SEM used was a Quanta 

200 FEI (Portland, OR, USA). A detailed description of our measurement protocol and analysis is 

given at the beginning of the Supporting Information (SI). 

 

Results and Discussion 

CR-AFM frequency sweeps (e.g., Figure 1d) can be used to determine the CR frequency at a given 

applied force. Depending on the frequency range and the number of measurements to be acquired, 

these sweeps are relatively slow, each of the order of few seconds. In addition, the measurement 

of CR frequencies at different applied forces would be necessary to provide reliable data for the 

contact model used in analysis. To mitigate these aspects, the CR frequency can be continuously 

tracked under a variable load like in load-dependent CR-AFM40 or intermittent CR-AFM (ICR-

AFM).46 CR frequency tracking is also commonly used in CR-AFM mapping under a fixed applied 

load. We have used the dual-frequency resonance-tracking (DFRT) method47 on a UHF 600 MHz 

lock-in amplifier to perform load-dependent CR-AFM spectroscopy on each of the five samples 

and fused silica during regular force-distance AFM ramps; details of the DFRT measurements are 

presented in SI.  
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Figure 2: (a) Force-distance measurements (cantilever deflection versus piezo displacement) on Samples 

1 through 5. The dashed lines are theoretical responses computed with the Derjaguin-Muller-Toporov 

(DMT) model for three hypothetical materials of different elastic moduli, going from 2 GPa (blue) to 50 

GPa (red) and 1000 GPa (black). (b) Load-dependent CR-AFM measurements in the form of CR frequency 

versus piezo displacement.  

 Representative AFM force-distance curves from our measurements are shown in Figure 

2a, where only five curves (out of 20) for each sample are plotted in order to avoid excessive 

overlap. There is only one set of the curves well separated from the rest, namely the curves 

corresponding to Sample 1. The smaller slope of the contact part of the curves measured on Sample 

1 (Figure 2a) indicates that this sample is more compliant than Samples 2 ‒ 5. However, there is 

practically no distinction among the contact parts of the curves for Samples 2, 3, 4, and 5, because 

within the range of small forces where usually the AFM is operated (here at forces smaller than 

150 nN), the slope of the force-distance curves is less sensitive to the sample’s elastic modulus 

(few tens of GPa to hundreds of GPa). The lack of sensitivity of the force-distance curves to elastic 

modulus is also seen in theoretical models. Figure 2a shows theoretical cantilever deflections 

versus piezo displacements calculated for a few hypothetical elastic moduli of the sample; for 

moduli between 50 and 1000 GPa, there is no significant difference between the curves. These 

curved were computed based on the Derjaguin-Muller-Toporov (DMT) analytical model48 that 

includes an adhesive force 𝐹A outside the contact region in an otherwise Hertzian model.49 The 

indentation depth 𝑑 produced by a spherical rigid indenter into a half-space elastic material under 

an applied force 𝐹 is given by48 
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𝑑 = [
3(𝐹+𝐹A) 

4𝐸∗√𝑅
]

2/3

,                                                                  (1) 

where 𝑅 is the tip radius and 𝐸∗ is the reduced elastic modulus associated with the tip and sample. 

For a rigid tip, as the one considered here, 𝐸∗ = 𝐸/(1 − 𝜈2), with 𝐸 and 𝜈 being the Young’s 

modulus and Poisson’s ratio of the indented material.49 The piezo displacement 𝑑p is the sum of 

the indentation depth 𝑑 and the cantilever deflections induced by the attractive adhesive force 

(𝐹A 𝑘c⁄ ) and by the repulsive contact force (𝑑c),  

𝑑p = 𝑑 + 𝐹A 𝑘c⁄ + 𝑑c.                                                                 (2) 

Both the measurements and theoretical curves shown in Figure 2a indicate that the force-distance 

curves cannot be used to differentiate between materials with elastic moduli larger than about 50 

GPa. To achieve that differentiation, we resort to CR-AFM that directly relates the measured CR 

frequency to the stiffness of the tip-sample contact. 

Figure 2b shows the load-dependent CR-AFM measurements along the contact parts of 

AFM force-distance curves performed on all the samples, about 15 curves for each sample (Figure 

S2 in SI, which includes measurements on fused silica). On each material, the DFRT method was 

used to lock-in on the CR frequency generated for cantilever deflections up to a maximum 

equivalent to 150 nN applied force. The central frequency and range for the DFRT were adjusted 

for each material, depending on its stiffness. All the force-distance ramps were made over 50 nm 

piezo displacement at a rate of 0.5 Hz per ramp. Figure 2b shows the measured CR frequencies as 

functions of the piezo displacement in the contact regime, going from zero to about 25 nm. In 

Figure 2b, we have shown only the acquisitions from the approach parts of the force-distance and 

CR frequency curves as the subsequent analysis will be focused only on them. In general, 

additional contributions from contact dissipation are observed on the retract parts.40 The CR 

frequency was not acquired from the contact point on the most compliant materials (Samples 1 

and Sample 2), rather,  the optimized detection was performed for relatively strong contacts 

wherein the contact force was larger than the adhesion force. The best tracking for the CR 

frequency during contact loading was achieved for the stiffest material (Sample 5). Unlike the 

force-displacement curves (Figure 2a), Figure 2b shows excellent separation in terms of stiffness 

from sample to sample; furthermore, this separation of the curves holds for the entire range of 

applied force values considered. These load-dependent measurements offer the necessary profiles 
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to compare with semi-analytical or numerical calculations in order to extract the depth and elastic 

properties of the samples.  

 

  

Figure 3: (a-c) SEM images of the AFM probe used to construct the geometry (shape and dimensions) of 

the AFM probe; the original scale bars of the SEM images are highlighted for clarity. (d-f) Counterparts of 

the SEM images (a-c) as modeled in COMSOL Multiphysics. The magnification and orientation chosen 

here provide clear view of the cantilever body and its connections to the base and tip and the apex of the 

tip cone. 

 

The first step in correlating measurements and modeling consists in accurately converting 

the CR frequencies into contact stiffness. Such conversion requires a realistic geometric and 

mechanical description of the AFM probe, which includes the cantilever and the tip. In many CR-

AFM analyses4 some of the geometrical parameters of the AFM probe (e.g., the tip radius and tip 

position along the cantilever) are not measured, and this information is instead bypassed by taking 

the ratio of successive measurements on the test sample and a reference material with known 

elastic modulus. Figures 3a-c display SEM images of the AFM probe at different magnifications 

(refer to Figures S3 and S4 in SI for the entire set of SEM images). From these images, we extracted 

the dimensions of the cantilever and tip and found them to be within less than 5 % percent of their 

nominal values provided by the manufacturer. It is worth pointing out that the AFM tip remained 

intact after the measurements, with a well-defined radius of 43 nm (Figure 3c).  
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 The cantilever dynamics was modeled using the structural mechanics module of COMSOL 

Multiphysics 5.6 platform (COMSOL Inc., Burlington, MA, USA). The geometry used in the FEA 

calculations was based on the dimensions extracted from the SEM images of the AFM probe. A 

few of these COMSOL cantilever replicas are displayed in Figures 3d-f at 1:1 scale, for the exact 

orientations (also refer to Figures S3 and S4 in SI for side-by-side comparisons). Some of the 

geometric details that we have included in FEA –the underneath cut of the cantilever’s base (Figure 

3a), the extent of the cantilever over the base (Figure S3 in SI), the trapezoidal cross-section of the 

cantilever (Figure S3), the pyramidal shape and orientation of the tip (Figure S4) are not captured 

by simple analytical models such as the Euler-Bernoulli beam theory.9 The precise tip location 

along the longitudinal axis of the cantilever (Figure 3a), as well as its lateral offset from the axis 

(Figure S4), are also factors that alter the dynamics of the cantilever. The entire AFM probe was 

tilted such that the cantilever’s plane makes an angle of 11o with respect to the horizonal xy plane 

of the surface of the sample, as in the actual AFM operation.  

We have adopted a realistic description in the FEA modeling for the material of the AFM 

probe50 (refer to SI). As specified by the vendor, the HQ:NSC14/Al BS AFM probes are made of 

silicon integrated probes with a backside aluminum coating of about 30 nm to increase reflectivity 

and a diamond-like carbon (DLC) coating on the tip side to increase the hardness of the tip. In 

COMSOL Multiphysics, we have used the fully anisotropic crystallography of silicon, with the 

surface of the AFM probe in the (100) plane and its axis along the [110] direction. The aluminum 

backside coating was neglected since we have checked that its contribution is negligible to the 

dynamics of the cantilever; the changes to the resonance frequencies of the cantilever due to this 

reflective coating is only few tens of Hertz. Since the DLC coating has significantly larger modulus 

than the samples probed, we took the tip to be fully rigid in FEA calculations and in the contact 

mechanics model (DMT).  

The first two free (i.e., out of contact) resonance frequencies of the FEA-modeled AFM 

probe were computed to be 148.3 kHz and 988.5 kHz, respectively, which are within 1 kHz of 

their measured values. We have determined the cantilever stiffness from FEA calculations as 

follows. With direct vertical forces applied on the apex of the tip, the average vertical deflection 

of the tilted cantilever was measured over a circular region of 10 µm centered on the backside of 

the cantilever and located at the tip position (refer to Figure S6 in SI). This mimicked the actual 
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forces experienced by the tip during contact while the measured average deflection was similar to 

the real deflection of the cantilever determined from the four-quarter AFM photodetector. The 

stiffness of the cantilever, from FEA, was found to be 7.4 N/m, which is within 3 % of the average 

value measured by the thermal noise method.51 As both the stiffness and free flexural resonance 

frequencies of the FEA cantilever match closely the measured values, we conclude that the quasi-

static and dynamic bending of the cantilever is very well reproduced by FEA, and the modeled 

AFM probe is suitable to also reproduce the cantilever mechanics when the tip is brought into 

contact.     

 

 

Figure 4: (a) First eigenmode resonance frequencies of the AFM probe as a function of the contact stiffness. 

Points B and C represent two tip-sample normal couplings, 𝑘∗  =  148 N/m at fc1 = 620 kHz (point B) and 

𝑘∗  =  529 N/m at fc1 = 840 kHz (point C). The dependence of the contact resonance frequency on the 

contact stiffness has been calculated using FEA (red curve) based on the geometry of the AFM probe 

(Figure 3). For comparison, we have included predictions from the Euler-Bernoulli (E-B) beam theory, with 

black (blue) curves corresponding to the situation with (without) the cantilever tilt included. (b), (c) Shape 

of the cantilever’s vibrational profile corresponding to points B and C of panel (a), respectively. To 

highlight the shape differences for different contact stiffnesses, a scale factor of 104 was applied to the 

surface deformation. 

Using FEA, we have converted our measured CR frequencies into contact stiffness values 

𝑘∗ (refer to Figure 4a). For making this conversion, in the FEA software we have attached springs 

with given spring constants at the end of the tip; these springs are oriented along the z direction in 

Figures 4b, c which would be perpendicular to the sample surface in experiments. Figures 4b, c 
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show two instances of the cantilever’s bending corresponding to two different contact stiffnesses, 

with a larger deflection towards the end of the cantilever at lower 𝑘∗, and more bending in the 

middle of the cantilever at higher 𝑘∗. The CR frequency versus contact stiffness relationship 

calculated from FEA is shown in Figure 4a along with two theoretical dependences from the Euler-

Bernoulli (E-B) beam theory, with and without cantilever tilt considered. The cantilever 

parameters needed for the two theoretical E-B functions were the same as those in FEA: cantilever 

length of 142.5 μm, cantilever width of 33.4 μm, cantilever thickness of 2.3 μm, tip position at 

0.86 from the base, tip height of 15 μm, and cantilever tilt of 11°. For CR frequencies in the 600 

kHz to 850 kHz range, the E-B model without the cantilever tilt substantially overestimates the 

contact stiffness, while the E-B model with cantilever tilt moderately underestimates the contact 

stiffness (Figure 4a). This analysis shows that separate FEA determination of the CR frequency 

 

Figure 5: Contact stiffness versus applied force. The colored lines have been obtained from CR-AFM 

measurements on each of the samples. The black continuous lines are analytical DMT fits, considering 

each sample to be a homogeneous half-space of its top layer material.  The dotted lines represent the 

semi-analytical DMT dependencies for nominal L1 layer (Table 1) on L2 half-spaces (i.e., large 

bottom-layer thickness limits for Samples 2 through 4). The red open circles represent data obtained 

from FEA calculations for each of the sample probed. 
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versus 𝑘∗ curves is preferable to commonly used E-B models, even in the case where tilt is 

included.   

The contact stiffnesses obtained from the measured CR frequencies and FEA modelling 

(Figure 4a) are plotted as functions of the applied force in Figure 5 for each sample. For a half-

space Sample 1 (i.e., large L2 thickness limit), half-space Sample 5 (large L1 thickness limit), and 

fused silica (refer to Figure S9 in SI), we have used the analytical contact DMT model48 to 

understand how well it describes the observed force dependence of the contact stiffness 

(continuous black curves in Figure 5) for one thick layer (L1 or L2) on a substrate. We have first 

tested the DMT model using the fused silica sample, for which we fit the average dependence of 

the converted contact stiffness versus applied force data by the DMT model, with using the tip 

radius and adhesive force as fit parameters. In this fit, the Young’s modulus and Poisson’s ratio 

for our test fused silica sample were taken as 72.0 GPa and 0.17. Within the 60 nN to 180 nN range 

of applied forces, the fit led to a tip radius of 42.6 nm and adhesive force of 35.6 nN. This tip 

radius value is in excellent agreement with the value determined directly from the SEM scans of 

the apex of the AFM probe. The adhesive force comes also close to the values observed in the pull-

off force-distance contacts on the fused silica, which were in the 25 nN to 35 nN range. With the 

43 nm value for the tip radius from the CR-AFM measurements on fused silica and from direct 

SEM measurements, the DMT analytical model was subsequently used to determine the elastic 

moduli of Sample 1 and Sample 5; the same Poisson’s ratio of 0.2 was assumed for each of the 

sample. The fits resulted in Young’s moduli of 12.8 GPa ± 0.3 GPa and 78.9 GPa ± 3.0 GPa for 

Sample 1 and Sample 5, respectively; the uncertainty represents one standard deviation from the 

mean value. We have used these moduli values for the subsequent analysis of Samples 2, 3, and 

4.  

To analyze the mechanics of the frictionless, adhesive contact between the tip (as a rigid 

indenter) and a multi-layer sample (Samples 2, 3, and 4), we have used a semi-analytical model41-

42 which is also described in Sec. 6 of SI. Based on a transfer matrix method, the semi-analytical 

model reduces the stress-strain equations to two coupled integral equations for the stress 

distribution under the indenter and the ratio between the adhesion radius and the contact radius. 

The solution of these coupled equations41-42 are expressed in terms of load dependencies of the 

contact radius and indentation depth for various values of the adhesion parameter and layer 
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composition. These quantities can be used to calculate the contact stiffness, 𝑘∗ =
𝜕𝐹

𝜕𝑑
  , as a function 

of the applied force. Although the  semi-analytical model41-42 considers a general Maugis-type 

adhesive interaction52 between the indenter and the contacted surface, we retained only the DMT 

limit of this interaction, with the adhesive force from force-distance curve measurements and the 

elastic moduli as determined above from the  large thickness limits each layer. The results from 

the semi-analytical model (DMT for layer/half-space) are shown in Figure 5 with dotted lines for 

Samples 2 ‒ 4. For these samples, we have also plotted the DMT half-space dependencies in Figure 

5 (black lines); a comparative inspection reveals significant differences between the DMT 

layer/half-space model and DMT half-space. In the case of Sample 4, the difference between these 

two models, while observable, is less pronounced than for the other samples because the thickness 

of the top layer is large (~ 106 nm). This comparison suggests that in the regime of L1 thicknesses 

corresponding to our samples, the layer geometry is important: the samples cannot be modeled as 

half-spaces unless L1 thickness surpasses a certain threshold (that is greater than 106 nm, based on 

Figure 5).  For each of Samples 2, 3, and 4, the average of the contact stiffness vs load curves 

(converted from the measured CR frequencies) is reproduced very well by the semi-analytical 

model, while visibly departing from the DMT half-space model.  Notably, the results in Figure 5 

indicate that CR-AFM can “sense” the L1 ‒ L2 interface through a stiff coat (~ 80 GPa) that is at 

least 106 nm thick (Sample 4).  

All the contact stiffness versus applied force measurements shown in Figure 5 were also 

determined from separate FEA calculations in COMSOL Multiphysics (details in SI), using a rigid 

tip, 78.9 GPa modulus for layer L1, and 12.8 GPa for layer L2, film dimensions from Table 1, 43 

nm tip radius, and flat sample surface. The contact model of the FEA was frictionless and non-

adhesive, and the contributions of the adhesive forces to the Hertzian FEA calculations were 

included by simply shifting the applied forces by the adhesive force measured on each material. 

The FEA calculations for the contact stiffnesses (open circles in Figure 5) are in excellent 

agreement with the DMT-layer/half-space dependences for Samples 2 through 5 (Figure 5). Such 

agreement suggests that the two methods can be used interchangeably for future quantitative 

investigations, based on considerations of computational time and complexity of the sample 

geometry. 
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Figure 6: Displacement fields under the AFM tip at an applied vertical force of 100 nN. The cross sections 

shown are (a) 150 nm × 150 nm of Sample 1; (b) 50 nm × 32 nm of Sample 2; (c) 80 nm × 50 nm of Sample 

3; (d) 200 nm × 150 nm of Sample 4. The selected contours, drawn at constant values of the z component 

of the displacement field, highlight the magnitude and spread of the deformation in the subsurface region 
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of each sample. The interface between the L1 and L2 layers (indicated by the dashed horizontal line in panels 

(b, c, d)) is located at 9 nm, 21 nm, and 106 nm below the surface of Sample 2, Sample 3, and Sample 4, 

respectively. (e, f) Profiles of the z-displacement along (e) the horizontal direction x at z = 0 and (f) the 

vertical direction z at x =0, for all the samples, measured under 100 nN applied normal force. The dashed 

curves in (e) were calculated by using the Hertz contact model for half-space L1 or L2 materials. The kinks 

in (f) indicate the interface between the layers for Samples 2, 3, and 4.  

 

We now focus on correlating the observed depth sensitivity of the CR-AFM measurements 

with the deformation field created in the subsurface region of each sample during indentation. 

Figures 6a through 6d show maps of the z-component of the displacement field in the xz plane of 

selected samples. Figures 6e and 6f display the z-deformation profiles along the x and z directions, 

respectively. For Sample 1 (in Figure 6a and 6e) and Sample 5 (in Figure 6f), the displacement 

field is radially smooth (no kinks) at any depth. In contrast, the displacement in each of the layered 

structures (Samples 2, 3, and 4) is noticeably perturbed or kinked at the interface between the two 

layers. The associated kinks are visible both in the cross-section maps (Figures 6b- d) and the 

vertical profiles in Figure 6f. Interestingly, the curves in Figure 6f start to align towards that of 

Sample 1 (same material as the bottom layer L2) below the interface line.  In general,  noise in the 

measurements can greatly obfuscate the mechanical contrast of the subsurface inhomogeneities.53 

Below, we  show that this contrast for a flat interface is quite achievable and well-resolved using 

CR-AFM down to depths of at least 106 nm through materials comparable in stiffness to fused 

silica.    
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Figure 7. The red curves map the dual-uncertainty space of the thickness and elastic modulus of the layer 

L1 (Samples 2, 3, and 4) calculated within 3 standard deviations of the best fits of the contact stiffness 

versus applied force measurements (Figure 5). An elastic modulus value of 12.8 GPa was taken for the L2 

layer of all samples. The crosses indicate the locations of the best fits for each of the three samples, and 

the open triangles indicate the nominal values of the thickness (Table 1) at the determined modulus. The 

rectangular boxes indicate the expected domain of values based on 10 % expected variations in nominal 

thickness and on the determined 79 ± 3 GPa L1 modulus.  

 

We now focus on investigating the quantitative limits of resolving the depth and the 

modulus of the top layer for the morphology of our samples, both presumed unknown at the outset. 

While the procedure is exemplified here for flat buried interfaces of layered structures analyzed 

via a semi-analytical (SI) model and FEA, it is also applicable to other geometries (e.g., buried 

nanoparticles or other subsurface inhomogeneities) that can be modeled only through FEA.  We 

analyze the contact stiffness measurements (Figure 5) to find the best-fit values given by the semi-
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analytical model41-42 for the thickness and elastic modulus of layer L1.  These two fit parameters 

are taken as free variables in the minimization of the goodness-of-fit54 function 𝜒2, defined as 

𝜒2 = ∑
(𝑘𝑖

∗−𝑘𝑖
∗t)

2

𝜎𝑖
2

𝑁
𝑖 ,                                                       (3) 

where  𝑘𝑖
∗ are the contact stiffness (converted from CR frequencies) shown in Figure 5, 𝑘𝑖

∗t are the 

theoretical contact stiffnesses calculated based on the DMT layer/half-space model, and 𝜎𝑖 is the 

standard deviation of the mean of the measurements in bin  𝑖 (1 ≤ 𝑖 ≤ 𝑁).  For each sample, our 

data points corresponding to loads from 80 nN to 140 nN have been divided into 𝑁 = 24 bins, 

each corresponding to a load increment of 2.5 nN. We included only the measurements for forces 

above 80 nN in order to avoid data scarcity at lower loads and to ensure a good measurement 

distribution for each sample. For a given sample and each bin 𝑖 comprising 𝑀𝑖 points, we have 

calculated the standard deviation of the mean as 𝜎𝑖 = √∑ (𝑘𝑖,𝑗
∗ − 〈𝑘𝑖

∗〉)
2𝑀𝑖

𝑗=1 (𝑀𝑖(𝑀𝑖 − 1))⁄ ; 〈𝑘𝑖
∗〉is 

the mean of the 𝑀𝑖 measurements 𝑘𝑖,𝑗
∗  (1 ≤ 𝑗 ≤ 𝑀𝑖) in  bin i. For the goodness-of-fit, we have 

retained 𝜒2 values within three standard deviations 3𝜎𝜒2 = 3√2𝑁 of its mean value 𝑁; in our case, 

𝑁 was 24 and each 𝑀𝑖 about 70. We have confirmed that the absolute minimum value 𝜒min
2  of 𝜒2, 

with respect to both fit parameters, was within  2𝜎𝜒2  of the mean, i.e. the null hypothesis test for 

N is satisfied. Figure 7 shows the contours of constant 𝜒2  at three standard deviations from the 

mean for Samples 2 ‒ 4, and reveals different relationships between the two fit parameters in each 

case. The contours straddle the regions of the expected values for the two parameters (rectangular 

color boxes in Figure 7); these regions are defined based on an assumed, conservative 10 % 

uncertainty of the layer thickness and on the 79 ± 3 GPa elastic modulus of layer L1 determined 

earlier in our analysis (Figure 5, DMT half-space analysis of Sample 5).   

 From Figure 7, we can see that for very thin layers (e.g., L1 is about 9 nm for Sample 2) 

the fit is very sensitive to changes in thickness: variations of only 1.6 nm for the confidence region 

of  L1 thickness correspond to elastic modulus variations of 20 GPa.   This illustrates a reduced 

modulus sensitivity and very good depth sensitivity for the CR-AFM-based subsurface imaging 

on very thin films for which both the depth and the elastic modus are unknown. As the thickness 

of the layer L1 increases (21 nm for Sample 2), the correlation between the two fit parameters 

(increased tilt of the 𝜒2 contours) increases, leading to a decrease in the thickness sensitivity and 
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increase in the elastic modulus sensitivity. For very thick layers (e.g., 106 nm for layer L1 of 

Sample 4), the uncertainty in the elastic modulus, ± 4.2 GPa (Figure 7), approaches that of the 

measurements on the (nearly) half-space Sample 5 (Figure 5), ± 3 GPa, while the confidence limit 

for the layer thickness expands over a wide range (172.5 nm range, larger than the nominal layer 

thickness). This points to an inherent difficulty to simultaneously localize planar interfaces and 

accurately determine layer modulus.  This is because the contact stiffness depends on both the 

dimensions and elastic modulus of the region probed; these dependences are coupled, leading to 

interdependent sensitivities of the stiffness with respect to depth and modulus.  Although Figure 7 

shows that uncertainties can be large (e.g., ± 86 nm for the layer thickness in Sample 4, or ± 10 

GPa for the modulus in Sample 2), it is worth pointing out that the minimum  𝜒min
2  of the 𝜒2 

function was found to be reasonably close to the expected values for both thickness and elastic 

modulus of the top layer for each of Samples 2 ‒ 4. The above discussion considers the fit 

uncertainties if both fit parameters are unknown. However, if either the thickness or the elastic 

modulus is given or pre-determined, then this analysis will provide a very precise determination 

for the other parameter because the region enclosed within the 𝜒2contours is very narrow for each 

sample (Figure 7). This means that for buried interfaces, we can either use their precise location 

to determine the material’s modulus or, conversely, resolve the interface location underneath the 

surface based on knowledge of the elastic modulus.  

 

Conclusion 

To summarize, we have developed a quantitative methodology for resolving the layer thickness 

and elastic modulus of flat samples with layered morphologies. This methodology is based on a) 

load-dependent CR-AFM measurements on several layered samples, b) conversion of the 

measured resonance frequencies into contact stiffnesses using a faithful representation of the 

geometry and materials of the AFM probe in FEA calculations, and c) modeling of the tip-sample 

contact using either accurate FEA calculations or a semi-analytical DMT layer/half-space model. 

Our uncertainty analysis based on the goodness of fit parameter for the contact stiffness as a 

function of load (measured compared to modeled) has highlighted an inter-dependence of the depth 

and modulus sensitivities of the methodology: this interdependence prevents the simultaneous 

determination of interface depth and top layer elastic modulus from one single sample. We have 
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shown that the use of several samples results in the evaluation of the elastic moduli for the layer 

materials in the bulk limit.  Although measurements on bulk samples may perhaps be seen as 

additional tasks that slow down the main characterization (e.g., when compared to faster methods 

focused mainly on subsurface feature detection) the large thickness limits for moduli are necessary 

inputs for the precise determination of layer thickness (interface depth).  Our correlative analysis 

shows that the interplay between thickness and elastic modulus can be exploited to tune either the 

depth or material sensitivity of the CR-AFM based subsurface imaging; such tuning can prove 

useful for resolving mechanical effects based on interface or defect proximity, as well as for 

material or sample selection in various applications.  
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